Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2016 Jul 19;72(Pt 8):1143–1146. doi: 10.1107/S2056989016011373

Crystal structure of strontium dicobalt iron(III) tris­(orthophosphate): SrCo2Fe(PO4)3

Adam Bouraima a,b,*, Thomas Makani b, Abderrazzak Assani a, Mohamed Saadi a, Lahcen El Ammari a
PMCID: PMC4971858  PMID: 27536399

The transition metal orthophosphate, SrCo2Fe(PO4)3, crystallizes in an alluaudite-type structure. The chains characterizing the alluaudite structure are built up from edge-sharing [CoO6] octa­hedra linked together by PO4 tetra­hedra.

Keywords: crystal structure, SrCo2Fe(PO4)3, transition metal phosphate, solid-state reaction synthesis, alluaudite-like structure

Abstract

The title compound, SrCo2Fe(PO4)3, has been synthesized by a solid-state reaction. It crystallizes with the α-CrPO4 type structure. In this structure, all atoms are on special positions of the Imma space group, except for two O atoms which are located on general positions. The three-dimensional network in the crystal structure is made up of two types of layers stacked normal to (100). The first layer is built from two edge-sharing CoO6 octa­hedra, leading to the formation of Co2O10 dimers that are connected to two PO4 tetra­hedra by a common edge and corners. The second layer results from apex-sharing FeO6 octa­hedra and PO4 tetra­hedra, which form linear chains alternating with a zigzag chain of SrII cations. These layers are linked together by common vertices of PO4 tetra­hedra and FeO6 octa­hedra to form an open three-dimensional framework that delimits two types of channels parallel to [100] and [010] where the SrII cations are located. Each SrII cation is surrounded by eight O atoms.

Chemical context  

The phosphate literature includes important works on the structural study of transition metal phosphates. The basic framework is built from tetra­hedrally coordinated phospho­rus linked to transition metals M in various environments, such as MOn (n = 4, 5 or 6). The manner in which polyhedra are inter­connected generates important structure types with porous or lamellar set-ups that can exhibit inter­esting physical properties. Accordingly, widespread studies have been devoted to this family of compounds, stimulated by the wide range of potential and commercial applications of these materials. Examples include applications in catalysis, as ion exchangers and in the manufacture of lithium and sodium rechargeable batteries. One particular scientific area in our laboratory is focused on investigating new functional phosphates belonging to the alluaudite (Moore, 1971) or α-CrPO4 (Attfield et al., 1988) structure types, owing to their potential use as new cathode materials for battery devices (Trad et al., 2010; Kim et al., 2014; Huang et al., 2015).

Our earlier hydro­thermal investigations were undertaken with the A 2O–MO–P2O5 and M′O–MO–P2O5 systems (A = monovalent cations, M and M′ = divalent cations) with approximate molar ratios A:M:P = 2:3:3 and M′:M:P = 1:3:3, which characterize the alluaudite or α-CrPO4 phases. Those studies involved the synthesis and structural characterization of new phosphates such as Na2Co2Fe(PO4)3 (Bouraima et al., 2015) and Na1.67Zn1.67Fe1.33(PO4)3 (Khmiyas et al., 2015) belonging to the alluaudite-type structure group. In addition, divalent and trivalent transition-metal-based phosphates, such as SrNi2Fe(PO4)3 (Ouaatta et al., 2015) and MMnII 2MnIII(PO4)3 (M = Pb, Sr, Ba) (Alhakmi et al., 2013a ,b; Assani et al., 2013) have been shown to adopt the α-CrPO4 structure type.

In search of a new promising phosphate, a solid-state chemistry investigation of A 2O–MO–M2O3–P2O5 systems was undertaken. The present work reports on synthesis and crystal structure of the new strontium cobalt iron phosphate, SrCo2Fe(PO4)3, which has the α-CrPO4 type structure.

Structural commentary  

In the title phosphate, SrCo2Fe(PO4)3, all atoms are on special positions, except two oxygen atoms (O3, O4) which are on general positions of the Imma space group. Its three-dimensional structure is constructed on the basis of PO4 tetra­hedra, FeO6 and CoO6 octa­hedra, as shown in Fig. 1. The connection between these polyhedra produces two types of layers stacked normal to (100). The first layer is built from two edge-sharing CoO6 octa­hedra, leading to the formation of Co2O10 dimers, which are connected to two PO4 tetra­hedra by a common edge and vertex, as shown in Fig. 2. The second layer is formed by alternating FeO6 octa­hedra and PO4 tetra­hedra, which share corners, building linear chains that surround a zigzag chain of SrII cations (see Fig. 3). The layers are joined by the apices of PO4 tetra­hedra and FeO6 octa­hedra, giving rise to an open three-dimensional framework that delimits two types of channels parallel to [100] and [010] where the SrII cations are located, as shown in Fig. 4 and Fig. 5. This structure is characterized by a stoichiometric composition in which the Sr atom is surrounded by eight oxygen atoms with Sr—O bond lengths that vary between 2.6561 (13) and 2.6690 (9)Å. The same Sr environment is observed in the manganese homologue phosphates, namely MMnII 2MnIII(PO4)3 (M = Pb, Sr, Ba).

Figure 1.

Figure 1

The principal building units in the structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry codes: (i) −x + 2, −y + Inline graphic, z + 1; (ii) x, y, z + 1; (iii) −x + 2, −y + Inline graphic, z; (iv) −x + Inline graphic, −y + 1, z + Inline graphic; (v) x + Inline graphic, y + Inline graphic, z + Inline graphic; (vi) −x + Inline graphic, y + Inline graphic, z + Inline graphic; (ix) −x + Inline graphic, y, −z + Inline graphic; (x) x, −y + 1, −z; (xi) −x + 1, y, z; (xii) x, −y + 1, −z + 1; (xiii) −x + 1, −y + 1, −z + 1;(xiv) x − Inline graphic, y, −z + Inline graphic.]

Figure 2.

Figure 2

Edge-sharing [CoO6] octa­hedra forming a layer parallel to (100).

Figure 3.

Figure 3

A view along the a axis, showing a layer resulting from chains connected via vertices of PO4 tetra­hedra and FeO6 octa­hedra, alternating with a zigzag chain of Sr atoms.

Figure 4.

Figure 4

Polyhedral representation of SrCo2Fe(PO4)3, showing channels running along [100].

Figure 5.

Figure 5

Polyhedral representation of SrCo2Fe(PO4)3, showing channels running along [010].

Synthesis and crystallization  

The title phosphate, SrCo2Fe(PO4)3, was synthesized in a solid-state reaction by mixing nitrates of strontium, cobalt and iron along with NH4H2PO4, taken in the molar proportions Sr:Co:Fe:P = 1:2:1:3. After a series of heat treatments up to 873 K in a platinum crucible, inter­spersed with grinding, the reaction mixture was heated to the melt (1343 K). The molten product was then cooled to room temperature at 5 K/h. The resulting solid contained brown crystals of a suitable size for X-ray diffraction.

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 1. The highest peak and the deepest hole in the final Fourier map are at 0.63 and 0.68 Å from Sr1 and P2, respectively.

Table 1. Experimental details.

Crystal data
Chemical formula SrCo2Fe(PO4)3
M r 546.24
Crystal system, space group Orthorhombic, I m m a
Temperature (K) 296
a, b, c (Å) 10.4097 (2), 13.2714 (3), 6.5481 (2)
V3) 904.63 (4)
Z 4
Radiation type Mo Kα
μ (mm−1) 11.64
Crystal size (mm) 0.30 × 0.27 × 0.21
 
Data collection
Diffractometer Bruker X8 APEX
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
T min, T max 0.595, 0.747
No. of measured, independent and observed [I > 2σ(I)] reflections 10008, 1297, 1243
R int 0.030
(sin θ/λ)max−1) 0.858
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.017, 0.046, 1.16
No. of reflections 1297
No. of parameters 54
Δρmax, Δρmin (e Å−3) 1.00, −0.74

Computer programs: APEX2 and SAINT (Bruker, 2009), SHELXT2014 (Sheldrick, 2015a ), SHELXL2014 (Sheldrick, 2015b ), ORTEP-3 for Windows (Farrugia, 2012), DIAMOND (Brandenburg, 2006) and publCIF (Westrip, 2010).

The distinction between cobalt and iron by X-ray diffraction is nearly impossible. Therefore we have examined several crystallographic models during the crystal structure refinements of the title compound. Based on the stoichiometric ratio of 1:2 for iron and cobalt in the starting materials, we assumed the same ratio in the crystal structures with oxidation states of +II for cobalt and and +III for iron. The best model is obtained with Fe1 and Co1 atoms in the Wyckoff positions 4a (2/m) and 8g (2), respectively. This cationic distribution in this model corresponds to the stoichiometry of the expected compound, in addition to the electric neutrality in the structure in reasonable agreement with the final model.

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016011373/pk2584sup1.cif

e-72-01143-sup1.cif (312.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016011373/pk2584Isup2.hkl

e-72-01143-Isup2.hkl (106.1KB, hkl)

CCDC reference: 1492743

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the Unit of Support for Technical and Scientific Research (UATRS, CNRST) for the X-ray measurements and Mohammed V University, Rabat, Morocco, for the financial support.

supplementary crystallographic information

Crystal data

SrCo2Fe(PO4)3 Dx = 4.011 Mg m3
Mr = 546.24 Mo Kα radiation, λ = 0.71073 Å
Orthorhombic, Imma Cell parameters from 1297 reflections
a = 10.4097 (2) Å θ = 3.1–37.6°
b = 13.2714 (3) Å µ = 11.64 mm1
c = 6.5481 (2) Å T = 296 K
V = 904.63 (4) Å3 Block, brown
Z = 4 0.30 × 0.27 × 0.21 mm
F(000) = 1036

Data collection

Bruker X8 APEX diffractometer 1297 independent reflections
Radiation source: fine-focus sealed tube 1243 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.030
φ and ω scans θmax = 37.6°, θmin = 3.1°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −17→17
Tmin = 0.595, Tmax = 0.747 k = −22→19
10008 measured reflections l = −11→11

Refinement

Refinement on F2 0 restraints
Least-squares matrix: full w = 1/[σ2(Fo2) + (0.0245P)2 + 0.761P] where P = (Fo2 + 2Fc2)/3
R[F2 > 2σ(F2)] = 0.017 (Δ/σ)max < 0.001
wR(F2) = 0.046 Δρmax = 1.00 e Å3
S = 1.16 Δρmin = −0.74 e Å3
1297 reflections Extinction correction: SHELXL2014 (Sheldrick, 2014b), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
54 parameters Extinction coefficient: 0.0131 (4)

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
Sr1 1.0000 0.7500 0.59715 (3) 0.00785 (6)
Co1 0.7500 0.63284 (2) 0.2500 0.00537 (6)
Fe1 0.5000 0.5000 0.5000 0.00392 (7)
P1 1.0000 0.7500 0.09098 (8) 0.00336 (9)
P2 0.7500 0.42747 (3) 0.2500 0.00388 (7)
O1 1.0000 0.65633 (9) −0.04439 (19) 0.00660 (18)
O2 0.88277 (11) 0.7500 0.23618 (18) 0.00607 (18)
O3 0.71075 (8) 0.36360 (6) 0.06735 (14) 0.00776 (14)
O4 0.63833 (7) 0.50376 (6) 0.29533 (14) 0.00600 (13)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
Sr1 0.00819 (9) 0.01003 (10) 0.00534 (9) 0.000 0.000 0.000
Co1 0.00533 (9) 0.00376 (10) 0.00704 (10) 0.000 0.00073 (6) 0.000
Fe1 0.00292 (11) 0.00439 (13) 0.00443 (12) 0.000 0.000 0.00015 (9)
P1 0.00344 (18) 0.0029 (2) 0.0038 (2) 0.000 0.000 0.000
P2 0.00410 (14) 0.00365 (17) 0.00388 (14) 0.000 0.00051 (10) 0.000
O1 0.0081 (4) 0.0045 (5) 0.0073 (4) 0.000 0.000 −0.0017 (4)
O2 0.0046 (4) 0.0073 (5) 0.0063 (4) 0.000 0.0020 (3) 0.000
O3 0.0094 (3) 0.0075 (3) 0.0064 (3) −0.0017 (3) 0.0003 (3) −0.0023 (2)
O4 0.0050 (3) 0.0057 (3) 0.0074 (3) 0.0013 (2) 0.0021 (2) 0.0006 (2)

Geometric parameters (Å, º)

Sr1—O1i 2.6561 (13) Fe1—O4 1.9678 (8)
Sr1—O1ii 2.6561 (13) Fe1—O4xi 1.9678 (8)
Sr1—O2iii 2.6600 (12) Fe1—O4xii 1.9678 (8)
Sr1—O2 2.6600 (12) Fe1—O4xiii 1.9678 (8)
Sr1—O3iv 2.6690 (9) Fe1—O1iv 2.0950 (12)
Sr1—O3v 2.6690 (9) Fe1—O1xiv 2.0950 (12)
Sr1—O3vi 2.6690 (9) P1—O1iii 1.5268 (12)
Sr1—O3vii 2.6690 (9) P1—O1 1.5268 (12)
Co1—O2 2.0824 (8) P1—O2iii 1.5470 (12)
Co1—O2viii 2.0824 (8) P1—O2 1.5470 (12)
Co1—O4ix 2.0913 (8) P2—O3 1.5219 (9)
Co1—O4 2.0914 (8) P2—O3ix 1.5219 (9)
Co1—O3x 2.1183 (9) P2—O4 1.5698 (8)
Co1—O3iv 2.1183 (9) P2—O4ix 1.5698 (8)
O1i—Sr1—O1ii 55.81 (5) O2viii—Co1—O3x 84.14 (4)
O1i—Sr1—O2iii 141.74 (2) O4ix—Co1—O3x 89.21 (3)
O1ii—Sr1—O2iii 141.74 (2) O4—Co1—O3x 92.88 (3)
O1i—Sr1—O2 141.74 (2) O2—Co1—O3iv 84.14 (4)
O1ii—Sr1—O2 141.74 (2) O2viii—Co1—O3iv 93.94 (4)
O2iii—Sr1—O2 54.61 (5) O4ix—Co1—O3iv 92.89 (3)
O1i—Sr1—O3iv 109.21 (2) O4—Co1—O3iv 89.21 (3)
O1ii—Sr1—O3iv 78.48 (2) O3x—Co1—O3iv 177.44 (5)
O2iii—Sr1—O3iv 108.19 (3) O4—Fe1—O4xi 94.07 (5)
O2—Sr1—O3iv 63.77 (3) O4—Fe1—O4xii 85.93 (5)
O1i—Sr1—O3v 78.48 (2) O4xi—Fe1—O4xii 180.0
O1ii—Sr1—O3v 109.21 (2) O4—Fe1—O4xiii 180.0
O2iii—Sr1—O3v 63.77 (3) O4xi—Fe1—O4xiii 85.93 (5)
O2—Sr1—O3v 108.19 (3) O4xii—Fe1—O4xiii 94.07 (5)
O3iv—Sr1—O3v 171.61 (4) O4—Fe1—O1iv 86.02 (3)
O1i—Sr1—O3vi 78.48 (2) O4xi—Fe1—O1iv 86.02 (3)
O1ii—Sr1—O3vi 109.21 (2) O4xii—Fe1—O1iv 93.98 (3)
O2iii—Sr1—O3vi 108.19 (3) O4xiii—Fe1—O1iv 93.98 (3)
O2—Sr1—O3vi 63.77 (3) O4—Fe1—O1xiv 93.98 (3)
O3iv—Sr1—O3vi 68.78 (4) O4xi—Fe1—O1xiv 93.98 (3)
O3v—Sr1—O3vi 110.56 (4) O4xii—Fe1—O1xiv 86.02 (3)
O1i—Sr1—O3vii 109.21 (2) O4xiii—Fe1—O1xiv 86.02 (3)
O1ii—Sr1—O3vii 78.48 (2) O1iv—Fe1—O1xiv 180.0
O2iii—Sr1—O3vii 63.77 (3) O1iii—P1—O1 109.01 (10)
O2—Sr1—O3vii 108.19 (3) O1iii—P1—O2iii 110.91 (3)
O3iv—Sr1—O3vii 110.56 (4) O1—P1—O2iii 110.91 (3)
O3v—Sr1—O3vii 68.78 (4) O1iii—P1—O2 110.91 (3)
O3vi—Sr1—O3vii 171.61 (4) O1—P1—O2 110.91 (3)
O2—Co1—O2viii 83.39 (5) O2iii—P1—O2 104.15 (9)
O2—Co1—O4ix 103.68 (3) O3—P2—O3ix 112.30 (7)
O2viii—Co1—O4ix 170.65 (4) O3—P2—O4 108.00 (5)
O2—Co1—O4 170.65 (4) O3ix—P2—O4 114.17 (5)
O2viii—Co1—O4 103.68 (3) O3—P2—O4ix 114.17 (5)
O4ix—Co1—O4 70.01 (4) O3ix—P2—O4ix 108.00 (5)
O2—Co1—O3x 93.94 (4) O4—P2—O4ix 99.68 (6)

Symmetry codes: (i) −x+2, −y+3/2, z+1; (ii) x, y, z+1; (iii) −x+2, −y+3/2, z; (iv) −x+3/2, −y+1, z+1/2; (v) x+1/2, y+1/2, z+1/2; (vi) −x+3/2, y+1/2, z+1/2; (vii) x+1/2, −y+1, z+1/2; (viii) −x+3/2, −y+3/2, −z+1/2; (ix) −x+3/2, y, −z+1/2; (x) x, −y+1, −z; (xi) −x+1, y, z; (xii) x, −y+1, −z+1; (xiii) −x+1, −y+1, −z+1; (xiv) x−1/2, y, −z+1/2.

References

  1. Alhakmi, G., Assani, A., Saadi, M. & El Ammari, L. (2013a). Acta Cryst. E69, i40. [DOI] [PMC free article] [PubMed]
  2. Alhakmi, G., Assani, A., Saadi, M., Follet, C. & El Ammari, L. (2013b). Acta Cryst. E69, i56. [DOI] [PMC free article] [PubMed]
  3. Assani, A., Saadi, M., Alhakmi, G., Houmadi, E. & El Ammari, L. (2013). Acta Cryst. E69, i60. [DOI] [PMC free article] [PubMed]
  4. Attfield, J. P., Cheetham, A. K., Cox, D. E. & Sleight, A. W. (1988). J. Appl. Cryst. 21, 452–457.
  5. Bouraima, A., Assani, A., Saadi, M., Makani, T. & El Ammari, L. (2015). Acta Cryst. E71, 558–560. [DOI] [PMC free article] [PubMed]
  6. Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
  7. Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  8. Farrugia, L. J. (2012). J. Appl. Cryst. 45, 849–854.
  9. Huang, W., Li, B., Saleem, M. F., Wu, X., Li, J., Lin, J., Xia, D., Chu, W. & Wu, Z. (2015). Chem. Eur. J. 21, 851–860. [DOI] [PubMed]
  10. Khmiyas, J., Assani, A., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, 690–692. [DOI] [PMC free article] [PubMed]
  11. Kim, J., Kim, H., Park, K.-Y., Park, Y.-U., Lee, S., Kwon, H.-S., Yoo, H.-I. & Kang, K. (2014). J. Mater. Chem. A, 2, 8632–8636.
  12. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst. 48, 3–10. [DOI] [PMC free article] [PubMed]
  13. Moore, P. B. (1971). Am. Mineral. 56, 1955–1975.
  14. Ouaatta, S., Assani, A., Saadi, M. & El Ammari, L. (2015). Acta Cryst. E71, 1255–1258. [DOI] [PMC free article] [PubMed]
  15. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  16. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  17. Trad, K., Carlier, D., Croguennec, L., Wattiaux, A., Ben Amara, M. & Delmas, C. (2010). Chem. Mater. 22, 5554–5562. [DOI] [PubMed]
  18. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920–925.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989016011373/pk2584sup1.cif

e-72-01143-sup1.cif (312.5KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2056989016011373/pk2584Isup2.hkl

e-72-01143-Isup2.hkl (106.1KB, hkl)

CCDC reference: 1492743

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES