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Introduction
A molecular detection revolution is underway in the field of 
biology. High-throughput sequencing (HTS) of DNA1 is 
steadily becoming a cost-effective way to achieve diverse 
tasks, including comparing DNA sequences of individuals for 
genetic analysis (genotyping by sequencing2), sequencing and 
counting RNA molecules after conversion to DNA to mea-
sure steady-state RNA expression through the construction 
of a gene expression matrix (GEM) (RNAseq3,4), identifying 
organisms in environmental samples (metagenomics5,6), and 
many other applications.

In the case of RNAseq, biologists can now determine 
the dynamics of gene expression by counting millions of 
RNA molecules using HTS technology. RNA is extracted 
and converted to DNA, resulting in a set of DNA mol-
ecules that are sequenced and quantified. This avoids issues 
of cross-hybridization on molecular probe technologies such 
as microarray, and uncharacterized RNA transcripts can be 
detected.7 In essence, biologists can now “observe” molecu-
lar information flow from genomes that will have as much 

impact in understanding biological systems as the microscopy 
revolution of the 17th century.

There are several HTS platforms, including those from 
Illumina,8 Ion Torrent,9,10 and Pacific Biosciences,11 each with 
their own nuances. For example, Illumina creates a large quan-
tity (often in the millions) of short DNA sequences of various 
lengths (36–300 base pairs) that are encoded in chromosomal 
intervals (ie, genes) with specific sequences that are unique to 
the species and individual. It would be ideal to capture the 
sequence of the entire DNA molecule without errors, but 
high-quality sequences are often obtained from one end of 
the molecule (single-end reads) or as pairs from both ends of 
the molecule (paired-end reads). Thus, a key aspect of HTS 
DNA analysis involves aligning a large number of short DNA 
sequences to a smaller number of large-reference genome 
DNA sequences. The HTS DNA data lifecycle and the typi-
cal computational workflow are shown in Figure 1.

HTS DNA data files can be quite large and require com-
plex computational workflows that extract a quantitative bio-
logical measurement. After sequencing is complete, an HTS 
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DNA dataset is a concatenation of DNA sequence strings and 
metadata that include base pair call accuracy encoding (quality 
scores) as well as sample and instrument information. The 
datasets are stored in standard formats including FASTQ12 
and SRA.13 Of note, SRA files can be manipulated and con-
verted into FASTQ with the NCBI sra-toolkit.14 Raw DNA 
reads often contain sequence contamination and poor quality 
reads and must be cleaned before downstream processing.  
A Java application called Trimmomatic15 performs this prepro-
cessing task.

Once cleaned, reads are mapped to a reference genome16 
or transcriptome sequence set.17 Several short-read genome 
aligners may be used for this, including bowtie2,18 bwa,19–21 
SOAP,22 and others, all of which create an alignment file, 
often in the SAM/BAM format.23 The SAM/BAM file can 
be processed to extract sequence variants to the reference 
genome as well as count molecules that were sequenced at 
specific positions in the reference sequence. In the case of the 
RNAseq workflow, a GEM can be constructed where each 
row is a known gene transcript and a column is a vector of 
gene expression intensities (ie, RNA molecule count output 
detected for all genes in the sample). Molecule count informa-
tion can be determined by the “tuxedo” suite of software that 
include Tophat,24 Cufflinks,25 HISAT,26 and StringTie.27 It 
should be noted that there is a plethora of software platforms 
that process HTS reads, including GATK,28 Galaxy,29 and 
R/Bioconductor30 to name but a few.

Processing HTS DNA datasets requires significant 
hardware resources. While it is possible to process these 
datasets on lab workstations, high-performance computing, 
high-throughput computing, and even big data systems may 
be required as the end user scales up the number of sam-
ples, while datasets get richer and larger. One system that 
is highly scalable for HTS DNA workflow execution is the 
Open Science Grid (OSG31), a U.S.-based consortium of over  
100 universities and national laboratories set up to share dis-
tributed high-throughput computing resources. The OSG 
provides free access to these resources for U.S.-based research-
ers and supports projects of varied scale. For example, a major 
stakeholder community of the OSG includes Large Hadron 
Collider physicists. As the OSG has matured, the benefits of 
the infrastructure have become apparent to experiments in 
other fields of science, including genomics, as well as universi-
ties to serve their local users’ computational needs.

When the OSG resource contributors do not need 
their full capacity – for example, when an instrument is 
down for maintenance and no new data are produced – the 
unused cycles on the compute resource can be shared back to  
the OSG community. These opportunistic cycles add up to 
over 100  million core hours annually, and these cycles are 
used for our OSG-GEM workflow. To access the OSG, our 
project utilized OSG Connect, which provides a simple but 
feature-rich interface to the OSG. Services used in this work 
include submit hosts, used to submit and manage jobs, and 

Stash, which is a multi-petabyte file-storage service. Stash is 
a centralized storage system that provides a number of access 
methods such as web portal, Globus,32 standard file-transfer 
mechanisms, and sharing tools such as distributed data cach-
ing close to the compute resources.

The OSG supports high throughput computing (HTC) 
via HTCondor.33 HTCondor is a high-throughput batch sys-
tem for managing jobs on distributed resources. In a typical 
HTC workflow, several tasks are concurrently executed on 
independent machines that are connected through a network. 
Many scientific computations, including molecular screening, 
parameter sweeps, and statistical sampling, are suitable for 
HTC. HTC systems have the potential to accelerate GEM 
construction, as large quantities of short sequences from HTS 
are processed. The GEM workflow developed for the OSG 
may be modified to enable transfer of any HTC systems, 
including a local campus cluster, grid, or cloud.

The Pegasus Workflow Management System enables the 
execution of large-scale computational workflows on a vari-
ety of infrastructures.34 Pegasus workflows are described as 
abstract directed acyclic graphs (DAG), which describe the 
tasks and data dependencies but not the execution environ-
ment specifics. The reason for this abstract representation is 
that it provides portability for the workflow. The same work-
flow can be modified suitably as an executable workflow for 
use in different resources at different times. This modifying 
step of changing an abstract DAG to an executable workflow 
is where Pegasus adds nodes to the graph, such as data man-
agement nodes, and applies transformations to the graph, such 
as task clustering and workflow reduction based on already 
existing data products.

The OSG Gene Expression Matrix (OSG-GEM) work-
flow described in this article is a distributed computing mech-
anism to generate GEMs using the tuxedo suite of software. 
We provide details on how the Pegasus-based workflow is 
organized as well as information on the usage and evaluation 
of OSG-GEM. While the workflow is currently designed to 
process paired-end Illumina-sequencing datasets for RNA 
transcript quantification, OSG-GEM is adaptable to alter-
native methods of processing of HTS DNA datasets, as well 
as tuning or replacing the described software applications. 
OSG-GEM is available under the GNU GPL License v2 at 
https://github.com/feltus/OSG-GEM.

Workflow Usage
OSG-GEM workflow overview. The OSG-GEM 

workflow is capable of processing hundreds to thousands 
of paired-end Illumina HTS DNA datasets in the FASTQ 
format on the OSG. Output is a two-column matrix of gene 
identifiers and normalized RNA expression intensities. Mul-
tiple workflows can be launched in parallel and the result-
ing matrices can be stitched together to create larger GEMs 
for an organism, suitable for downstream analysis including 
gene co-expression matrix construction35,36 (GCN in Fig. 1) 
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and differential gene expression profiling37 (DEG in Fig. 1).  
In order to execute the workflow, the user will need an account 
on the OSG,38 HTS DNA datasets in the FASTQ format, and 
a reference genome or transcript assembly with associated gene 
annotations in the GTF/GFF3 format. These files are placed 
either in a specific OSG-GEM directory or via paths defined 
in the osg-gem.config file. The OSG-GEM workflow can be 
obtained from github,39 which contains the most up-to-date 
documentation on this workflow. A test dataset is cloned with 
the workflow, which utilizes human chromosome 21 from the 
GRCh38 build of the human-reference genome40 along with 
a small dataset containing 200,000 human sequences (from 
SRR182596241). The user can submit this reduced test dataset 
to become familiar with workflow setup and execution.

Pre-workflow steps. As shown in Figure  2, the first 
end-user decision to be made is with regard to whether the 
Hisat2 or the Tophat2 method will be used. We recommend 
Hisat2, since the developers are no longer supporting further 
development of Tophat2 (according to their website). We also 
recommend that the user becomes familiar with the applica-
tion documentation for each method. If the Hisat2 method is 
chosen, the user must obtain the reference genome sequence 
file in the FASTA format42 and gene-location annotations 
in the GTF format.43 If the Tophat2 method is selected, the 
user must accumulate the reference genome sequence file in 
the FASTA format and gene-location annotations in the GFF 
format.43 Reference genome indices must be constructed using 

hisat2-build44 or bowtie2-build.45 In order to guide the accurate 
mapping of sequencing reads independently from one another, 
annotated splice site information must be provided. For 
Hisat2, the built-in hisat2_extract_splice_sites.py script gener-
ates a tab-delimited list of splice junctions that allow the user 
to disable discovery of novel splice junctions.26 Tophat2 can 
map reads directly to a reference transcriptome by generating 
index files of all sequences that are present in the reference 
genome annotation.24 A reference genome annotation file in 
the GFF3 format is provided to guide RNA molecule count-
ing using either StringTie27 or Cufflinks.25

OSG-GEM workflow setup. To set up an OSG-GEM 
workflow, the user must modify the osg-gem.config file to 
select software options and point to input data for recogni-
tion by Pegasus. First, the user must identify a reference pre-
fix ($REF_PREFIX) that will be used to name all reference 
genome files used by the workflow. Next, the user must pro-
vide the file path to a forward FASTQ file and to a reverse 
FASTQ file. FASTQ filenames must end with .forward_1.
fastq.gz or .forward_1.fastq to signify forward-sequencing 
reads, and .reverse_2.fastq.gz or .reverse_2.fastq to signify 
reverse-sequencing reads. Finally, the user must select “True” 
or “False” for each software option. Once the osg-gem.config 
file is appropriately modified, the user must place the neces-
sary reference genome files in the reference directory of the 
workflow with filenames containing the $REF_PREFIX that 
was specified in the osg-gem.config file.

Image/sequence
processing

Quality/contamination
trimming

(trimmomatic)

BAM

SRA

FASTQ

GEM

Format conversion
(sra-toolkit)

DEG

GCN
Reference genome

alignment
(tophat/hisat)

Molecule
counting

(cufflinks/stringtie)

NCBI

Figure 1. DNA sequence file lifecycle. A DNA sequence starts its life as a TIFF image stack from a DNA-sequencing instrument. Raw images are 
converted to a FASTQ text file and preprocessed or deposited into repositories such as the National Center for Biotechnology Information (NCBI) as 
Short Read Archive (SRA) files. Cleaned FASTQ files are mapped to a reference genome and converted to a BAM alignment file. BAM files can be 
mined for gene expression vectors that can be bundled into a gene expression matrix (GEM). GEMs are a stable data structure that can be mined for 
differentially expressed genes (DEGs) or used to construct Gene Co-expression Networks (GCNs) and processed by other workflows.
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If the user selects Hisat2 as “True,” the following files 
must be present in the reference directory:

$REF_PREFIX.fa,
$REF_PREFIX.1.ht2 … $REF_PREFIX.N.ht2,
$REF_PREFIX.Splice_Sites.txt,
$REF_PREFIX.gff 3

�If the user selects Tophat2 as “True,” the following files must 
be present in the reference directory:

$REF_PREFIX.fa,
$REF_PREFIX.1.bt2 … $REF_PREFIX.N.bt2,
$REF_PREFIX.rev.1.bt2
$REF_PREFIX.rev.2.bt2,
$REF_PREFIX.transcriptome_data.tar.gz,
$REF_PREFIX.gff 3

For example, a user cloned OSG-GEM into “/stash2/
user/username/GEM_test”, and placed input FASTQ files for 
dataset “TEST” in ‘/stash2/user/username/Data’. To process 
this dataset using Hisat2 and StringTie with the GRCh38 
build of the human-reference genome, the osg-gem.config file 
would be modified as follows:

[reference]
reference_prefix = GRCh38
[inputs]

forward =/stash2/user/username/Data/TEST_1.fastq.gz
reverse =/stash2/user/username/Data/TEST_2.fastq.gz
[config]
tophat2 = False
hisat2 = True
cufflinks = False
stringtie = True
OSG-GEM workflow execution. Once the user sub-

mits the workflow by running the submit script, a list of all 
reference files recognized by Pegasus will be displayed on the 
screen, including the commands that can be used to monitor 
the workflow. If no reference files were found or multiple soft-
ware options for alignment or quantification were selected, 
Pegasus will produce an error message.

The Pegasus workflow manager directs the execution 
of tasks in the workflow. In order to parallelize the execu-
tion of read trimming and mapping while keeping hard-
ware requirements low, the workflow splits input FASTQ 
files into files of 20,000 sequences on the OSG stash file-
system. To minimize filesystem I/O, input is read from 
the disk and written only once by piping compressed input 
to gunzip and by piping the results to a python script that 
splits the files. To keep the number of files within each file-
system directory manageable, the hierarchical structure of 
the workflow is established at this step. Each sub-workflow 
manages the processing of 1,000 forward and 1,000 reverse 
FASTQ files.

Tophat2 method

genome.gff3
genome.fasta

Hisat2 method

genome.gtf
genome.fasta

bowtie2-build (indexing)
tophat2 (gene model indices)

hisat2-build (indexing)
hisat2_extract_splice_sites.py
(splice site extraction) 

forward.fastq
reverse.fastq
genome.fasta

genome-indexed.(bt2/ht2)
splice_site_information

genome.gff3

OSG-GEM
WORKFLOW 

Pre-workflow
Steps

Figure 2. Preparation of input files for the gene expression matrix construction workflow on the Open Science Grid (OSG-GEM). Required input files 
for either the Hisat2 or the Tophat2 method are shown in boxes. The user provides paired-end DNA sequences in the FASTQ format (forward/reverse), 
which can be extracted from SRA format files with the NCBI SRA toolkit. The reference genome (genome) in the FASTA format must be indexed using 
either the Hisat2 or the Bowtie2 application. Built into the Hisat2 software package, the hisat2_extract_splice_sites.py script can generate a tab-
delimited list of splice sites using a reference annotation file in the GTF format. Tophat2 can generate a set of gene model indices from GFF3 or GTF 
format files that contain splice site information in the form of a reference transcriptome. FASTQ file locations are defined in the osg-gem.config file and 
all other files are placed in the reference directory of the OSG-GEM workflow.
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An example input dataset contains 80 million sequences 
split into 1,000 chunks (20,000  sequences each) that will 
be managed by four DAG sub-workflows (Fig. 3). For each 
subworkflow, Pegasus creates a set of job-submission scripts 
whose execution is managed by DAGMan and implemented 
by the HTCondor job submission system. A job consists of 
trimming (Trimmomatic) and mapping (Hisat2 or Tophat2) 
sequences to the reference genome. A Pegasus job cluster size 
of five results in five tasks being performed by each job. After 
a job is completed, BAM-format alignment results are trans-
ferred to a temporary OSG filesystem and then submitted to 
an OSG compute node for an initial merge. Upon completion 
of all DAG subworkflows, a BAM file from each DAG sub-
workflow is transferred to an OSG compute node to generate 
the final merged.bam file. The final BAM file is then used to 
generate molecule counts, which are represented as a column 
in a GEM.

Pegasus provides a set of commands that can be used to 
monitor the progression of the workflow. In the event of a 
failed job, DAGMan will relaunch the job two more times. 
Upon the third failure, the workflow will end without pro-
ducing an output matrix. The pegasus-analyzer command can 
be called within the workflow directory to inform the user 
of information relating to any failed jobs. The workflow out-
put directory will contain standard output files resulting from 
Trimmomatic and Hisat2/Tophat2. Information about the read 
trimming and mapping rates can be extracted from these files 
to indicate quality of the data.

OSG-GEM workflow customization. OSG-GEM 
can be easily modified to support specific research needs. 
Command-line parameters that are passed to each software 
can be customized by modifying the job wrapper scripts in 
the tools directory of the workflow. It is important to note 
that discovery of novel splice junctions is disabled in both the 

Dataset:  80,000,000 paired sequences in two FASTQ files
Location: on an OSG central filesystem (eg, stash2) Prepare-inputs

OSG-GEM level-1

OSG-GEM level-2

Merged.bam

Sub-workflows

Gene expression
matrix 

Trimmomatic

DAG001

BAM001

DAG003

BAM003

DAG002

BAM002

DAG004

BAM004

Trim, map

Merge A

Merge B

Molecule count

Tophat2/Hisat2

Samtools

Samtools

Cufflinks/StringTie

Figure 3. OSG-GEM Pegasus workflow diagram for a representative HTS DNA sequence dataset. The workflow is managed by Pegasus and divided 
into two phases called levels 1 and 2. In level 1, input FASTQ files are split into an appropriate size for OSG compute nodes. In level 2, a specific quantity 
of split sequence files are managed by a finite number of DAGMan sub-workflows based on input file size. DAGMan manages the submission of jobs in 
the workflow, which results in the trimming of FASTQ files, mapping to a reference sequence, merging alignment files, and quantifying RNA expression 
levels. Upon completion of all DAG subworkflows, a final merged.bam file is created. The final BAM file is used to count molecules for parsing into a gene 
expression matrix (GEM).
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hisat2 and tophat job wrappers, since reads are not mapped 
independently of one another with default parameters. 
Memory and disk space on compute nodes requested by the 
workflow can also be changed by modifying the submit script 
in the base of the OSG-GEM workflow. Further guidance 
on customizing software and hardware options in the work-
flow is provided in the README.md file at https://github.
com/feltus/OSG-GEM.

Workflow Evaluation
Workflow speed. The total OSG-GEM workflow run-

time was compared with the total runtime of an equivalent 
workflow processed on the Clemson University Palmetto 
Cluster (Fig.  4). The first 5,000,000  sequences of dataset 
NCBI SRR1825962 were mapped against the GRCh38 build 
of the human-reference genome. The corresponding compre-
hensive gene model annotation was downloaded40 (Gencode 
Release 24) as GTF and GFF3 files. This dataset was pro-
cessed using either a combination of Tophat2-Cufflinks or 
Hisat2-StringTie. The OSG-GEM workflows were submit-
ted with requests of 6 GB of RAM and 30 GB of disk storage 
per job. An IBM DX340 machine with an allocation of 14 GB 
of RAM and 111 GB of available local_scratch node storage 
was requested for each job on the Palmetto Cluster. For OSG-
GEM workflows, files were split into 20,000 sequence pieces 
as described previously, while the jobs on the Palmetto Clus-
ter processed the dataset as complete FASTQ files. The total 
OSG-GEM walltime was documented using the pegasus- 
statistics command, and the job walltime on the Palmetto 
Cluster was documented using the qstat command. The 

cumulative job walltime for each OSG-GEM subcomponent 
in an example workflow is shown in Figure 5.

Workflow accuracy. The first 5,000,000  sequences of 
NCBI dataset SRR1825962 were processed as described 
above. To confirm the accuracy of the OSG-GEM work-
flow, gene expression values generated by each workflow were 
compared with results from the same tasks performed on 
the Palmetto Cluster without splitting the input file (Fig. 6).  
A tab-delimited list of splice sites was provided to guide 
mapping of reads using Hisat2 with novel splice junction 
discovery disabled. Reads were mapped to the reference 
transcriptome directly using Tophat2, with novel splice junc-
tion and insertion–deletion discovery disabled. The Hisat2-
StringTie OSG-GEM workflow produced identical results 
with the Palmetto Cluster, while the Tophat2-Cufflinks 
workflow resulted in a high correlation (Pearson’s R = 0.99). 
These results indicate no loss of accuracy using the OSG-
GEM workflow.

Discussion
We have described an open-source OSG-GEM workflow to 
process HTS DNA datasets in the OSG-distributed comput-
ing environment. The output of OSG-GEM, the GEM, is 
a focal data structure for multiple downstream analyses that 
could also be adapted to the OSG. Given the nature of the 
OSG, the workflow is highly scalable, adaptable, and avail-
able to a broad research community. OSG-GEM is in an 
active state of development, and we are continually working to 
synchronize OSG-GEM with new software applications and 
hardware resources available for OSG job submission.
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Figure 4. Walltime comparison between the OSG and Palmetto Cluster. Total workflow walltime of OSG-GEM workflows was compared with the total 
walltime of equivalent workflows processed as single jobs on Clemson University’s Palmetto Cluster. A representative dataset containing 5,000,000 
paired-end sequencing reads was mapped to the human-reference genome followed by RNA molecule quantification using a combination of Hisat2-
StringTie or Tophat2-Cufflinks. Error bars represent the standard error of the mean (n = 3).
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This workflow serves as a valuable resource in a variety 
of situations. First, scientists without institutional access to 
high-performance computing clusters may utilize the OSG 
to process RNASeq datasets without paying the cost of com-
mercial cloud providers. Second, there is a significant develop
ment period to create and tune a complex workflow on the 
OSG or local computer. OSG-GEM is a solid baseline to use 
as it is or extend it to other purposes. Third, as input dataset 
size continues to swell in size and quantity, hardware require-
ments will become more challenging, especially with compe-
tition for resource allocation on campus-computing clusters. 

The ability to split large input datasets to process in parallel on 
the OSG will alleviate some of these issues by democratizing 
the resources available to analyze large datasets.

The goal of OSG-GEM is to construct accurate GEMs 
as quickly as possible for which there is potential for opti-
mization in the balance between resources requested, queue 
time, and job failure rate, all of which can potentially increase 
the performance of this workflow for a given dataset size. 
Resources can be adjusted by requesting more RAM or more 
disk space that should result in fewer failed jobs but could 
result in longer queue times. Job failure can be caused by 
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requesting insufficient resources or by encountering problems 
on one or more nodes such as exceeding local disk storage or 
hardware failure. In addition to failed jobs, we have found 
“run-away” jobs that complete in an exceptionally long time, 
thereby greatly influencing the final wall time (Fig. 5 inset). If 
problematic nodes are avoided, OSG-GEM should complete 
in a fraction of the time shown in Figure 5.

As shown in Figure 4, the total workflow walltime of 
OSG-GEM workflows was greater than that of equivalent 
workflows processed on the campus Palmetto Cluster. Basic 
properties of the OSG make comparison to cluster resources 
difficult. We used the OSG via the OSG Connect system and 
thus had opportunistic access to the currently unused com-
puting resources. A small percentage of our opportunistic jobs 
had to be restarted as resource owners reclaim the resources 
for their own work. Such restarts might increase the overall 
walltime of the workflow. In addition, there is a large set of 
variables for the resource supply and demand equation on the 
OSG, including the number of available resources with vary-
ing system properties, the number of active users and what 
resources they require, and HTCondor user priorities. All of 
these variables change over time. However, it is only when 
doing performance tests that a user has to be concerned about 
these variables. For data processing, OSG users enjoy an 
automatic fair-share–based work to resource matching.

Data access is also a factor when comparing the execution 
on a campus resource versus the OSG. The campus resources 
usually have a local file system connected with a high-speed, 
low-latency network. The distributed nature of OSG means 
that jobs starting up on some remote resource will have to 
transfer or access data remotely over a wide area network. In the 
case of the OSG-GEM workflow, Pegasus handles these trans-
fers transparently. Input data to a job are pulled in via parallel 
HTTP connections to the OSG Connect Stash filesystem, and 
potential output data are transferred back to Stash over SSH. 
These transfers do not show up in the runtime of the individual 
tasks but can add up and affect the overall walltime.

In conclusion, the OSG-GEM workflow is a robust 
method for processing RNASeq datasets to generate GEMs 
that serve as input for downstream applications. In the future, 
we intend to develop linked workflows that build upon the 
GEM datatype. OSG-GEM is fully functional and under 
active development as we adapt to evolving OSG infrastruc-
ture and tune the workflow to our needs. Therefore, we point 
the reader to examine the current software version and up-to-
date documentation at https://github.com/feltus/OSG-GEM.
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