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Abstract

Motile cilia lining the nasal and bronchial passages beat synchronously to clear mucus and foreign 

matter from the respiratory tract. This mucociliary defense mechanism is essential for pulmonary 
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health, because respiratory ciliary motion defects, such as those in patients with primary ciliary 

dyskinesia (PCD) or congenital heart disease, can cause severe sinopulmonary disease 

necessitating organ transplant. The visual examination of nasal or bronchial biopsies is critical for 

the diagnosis of ciliary motion defects, but these analyses are highly subjective and error-prone. 

Although ciliary beat frequency can be computed, this metric cannot sensitively characterize 

ciliary motion defects. Furthermore, PCD can present without any ultrastructural defects, limiting 

the use of other detection methods, such as electron microscopy. Therefore, an unbiased, 

computational method for analyzing ciliary motion is clinically compelling. We present a 

computational pipeline using algorithms from computer vision and machine learning to 

decompose ciliary motion into quantitative elemental components. Using this framework, we 

constructed digital signatures for ciliary motion recognition and quantified specific properties of 

the ciliary motion that allowed high-throughput classification of ciliary motion as normal or 

abnormal. We achieved >90% classification accuracy in two independent data cohorts composed 

of patients with congenital heart disease, PCD, or heterotaxy, as well as healthy controls. 

Clinicians without specialized knowledge in machine learning or computer vision can operate this 

pipeline as a “black box” toolkit to evaluate ciliary motion.

INTRODUCTION

Cilia are microtubule-based hair-like projections of the cell; in humans, they are found on 

nearly every cell of the body. Cilia can be motile or immotile. Diseases known as 

ciliopathies where cilia function is disrupted can result in a wide spectrum of diseases. In 

primary ciliary dyskinesia (PCD), airway cilia that normally beat in synchrony to mediate 

mucus clearance can exhibit dyskinetic motion or become immotile, resulting in severe 

sinopulmonary disease (1–4). Because motile cilia are also required for left-right patterning, 

PCD patients can exhibit mirror symmetric organ placement, such as in Kartagener’s 

syndrome, or randomized left-right organ placement, such as in heterotaxy. Patients with 

congenital heart disease and heterotaxy exhibit a high prevalence of ciliary motion (CM) 

defects similar to those seen with PCD (5). CM defects have been associated with increased 

respiratory complications and poor postsurgical outcomes (5–8). Similar findings were 

observed in patients with a variety of other congenital heart diseases, including transposition 

of the great arteries (TGA) (9, 10). Early diagnosis of CM abnormalities may provide the 

clinician with opportunities to institute prophylactic respiratory therapies that could improve 

long-term outcomes in patients.

Current methods for assessing CM rely on a combination of tools comprising a “diagnostic 

ensemble.” Electron microscopy, considered one of the most reliable methods of the 

ensemble, cannot identify PCD patients who present without ultrastructural defects (11). 

Video-microscopy of nasal brush biopsies can be used to compute ciliary beat frequency 

(CBF) (12–15), but this metric has low sensitivity to detect abnormal CM, because it does 

not capture the broad distribution of frequencies present in ciliary biopsies (3, 11, 16–19). 

Currently, the most robust method for identifying abnormal CM entails visual examination 

of the videomicroscope nasal brush biopsies by expert reviewers for ciliary beat 

abnormalities. This is often used clinically to identify patients with CM abnormalities. 

However, the reliance on visual evaluations by expert reviewers makes these assessments 
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time-consuming, highly subjective, and error-prone (17, 20). Additionally, manual 

evaluations are not amenable to cross-institutional comparisons.

To overcome these deficiencies, we developed an objective, computational method for 

quantitative assessment of CM. In this computational framework, we consider CM as an 

instance of dynamic texture (21, 22). Dynamic textures are modeled as rhythmic motions of 

particles subjected to stochastic noise (23–26). Examples of dynamic textures include 

familiar motion patterns such as flickering flames, rippling water, and grass in the wind, 

each with a small amount of stochastic behavior altering an otherwise regular visual pattern. 

Dynamic texture analysis has been shown to be an effective analysis method in other 

biomedical contexts, such as localizing cardiac tissue in three-dimensional time-lapse heart 

renderings (27) and the quantitation of thrombus formations in time-lapse microscopy (28). 

CM is well described as a dynamic texture, as it consists of rhythmic behavior subject to 

stochastic noise that collectively determine the beat pattern. Here, we present a 

computational pipeline that uses dynamic texture analyses to decompose the CM observed in 

high-speed digital videos into idealized, or elemental, components (26, 29).

Two distinct methods were tested for generating “digital signatures,” or quantitative 

descriptions of the CM, from the elemental components. Both methods obtained robust 

results on two independent patient data sets of differing quality, recapitulating the expert 

assessment of ciliary beat pattern to a high degree of accuracy. Our pipeline can be used as a 

“black box” tool by clinicians and researchers without specialized knowledge in machine 

learning or computer vision, rendering CM predictions in an objective and quantitative 

fashion and eliminating reviewer subjectivity. Although this study focuses on identifying 

abnormal CM in patients with PCD and congenital heart disease, this framework could be 

used to analyze CM across a broad spectrum of ciliopathies and related disorders.

RESULTS

Decomposing CM into elemental components

A critical hurdle in CM evaluation is accounting for and capturing a diversity of motion 

phenotypes. A single nasal brush biopsy often contains a spectrum of beat frequencies and 

motile cilia behaviors. Consequently, a single numerical value, such as CBF, cannot 

encapsulate the heterogeneity of CM phenotypes (Fig. 1A and movies S1 to S5). CM 

heterogeneity can arise from multiple sources: as an inherent property of the cilia in the 

sample, technical artifacts (for example, overlapping cilia), background particulate 

obstructing proper view of the cilia, and video capture artifacts (for example, changes in the 

plane of focus and translational motion of the sample) (movies S6 and S7).

We modeled CM heterogeneity by first computing the optical flow in user-specified regions 

of interest (ROIs) in the digital videos (Fig. 1B). Conceptually, optical flow (29) models the 

apparent motion between two frames as a vector field, indicating the direction and 

magnitude of apparent motion at each pixel position in the ROI (Fig. 1C). Optical flow does 

not explicitly track particles but rather provides an estimate of the local motion, or flow, at 

each pixel from frame to frame. We provide a detailed overview and derivation of optical 

flow in the Supplementary Materials and Methods.
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Using the spatial and temporal derivatives of the optical flow (Fig. 1D), we computed 

elemental components of the CM, specifically instantaneous rotation (curl) and deformation 

(biaxial shear) (Fig. 1E) (30, 31). These elemental components can be conceptualized as 

videos, each of which has the same height, width, and number of frames as the original 

ciliary biopsy videos. However, instead of grayscale pixel intensities, the values of the 

elemental components are used in each pixel position. Deformation, like optical flow, is a 

vector quantity with x and y components at each pixel position (Fig. 1E, right column) and 

unit pixels/s, whereas rotation is a scalar quantity at each pixel position and has units 

radians/s (21).

In computing elemental components at each pixel, we aim to uncover fundamental variations 

in the temporal evolution and spatial distribution of the elemental components as a means to 

differentiate normal from abnormal CM. Figure 2 compares the CM waveforms at three 

pixel locations in normal and abnormal CM in terms of grayscale pixel intensities, rotation, 

and deformation amplitude. Pixel positions in Fig. 2A were chosen to compare waveforms at 

the proximal (blue) and distal (red) regions of cilia, as well as background motion of the 

biopsy suspension medium (black). Like pixel intensities (Fig. 2B), elemental components 

exhibit periodic temporal behavior, particularly at the distal regions of the cilia (red). 

Rotation (Fig. 2C) and deformation (Fig. 2D) computed for healthy CM showed strong 

periodic behavior and large magnitudes. By contrast, the rotation and deformation in 

abnormal cilia showed erratic, weakly periodic behavior in addition to reduced magnitudes.

There are at least two technical advantages of using elemental components instead of 

grayscale pixel intensities in our analyses. One is the ability to directly compare these 

quantities between video samples without regard to lighting conditions or microscope 

settings, because relative brightness difference between two videos does not inherently 

signify a difference in CM. Second, elemental components are orientation-invariant; other 

methods for generating quantitative descriptions of images rely on specific orientations of 

the objects of interest (Supplementary Materials and Methods) (24–26). In particular, we 

used principal components analysis (PCA) to reduce the dimensionality of the elemental 

components. PCA realigns the axes of the data in the directions of maximal variance. 

Because elemental components are computed from the magnitudes of optical flow 

derivatives, the relative orientation of structures in the videos is irrelevant to elemental 

component computations. In practical terms, this allows videos of cilia to be analyzed in 

tandem regardless of the perspective of the cilia relative to the camera.

From elemental components to digital signatures

Autoregressive models—Our first method for computing digital signatures from the 

elemental components involved the use of autoregressive (AR) processes. AR models are 

linear dynamics systems that are useful for representing periodic signals, and are among the 

state-of-the-art dynamic texture analysis methods (22, 23, 27, 28). Although linear models 

can be limited in their ability to capture complex behaviors, the high capture speed of most 

ciliary biopsy videos (200 Hz) guarantees that linear transformations will be sufficient to 

model the motion between successive frames (fig. S1). We used the formulation of AR 

processes as defined in Eq. 1 (23, 32). Briefly, this formulation embeds the CM in a low-
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dimensional space using PCA to capture as much of the variance in the data in as few 

dimensions as possible. The first five principal components of the rotation data captured 

more than 90% of the variance (Fig. 3A). By fitting the rotation and deformation time series 

to linear equations (Eq. 2 and Fig. 3B), we used the resulting coefficients of the equations—

the quantitative basis for CM in the PCA space—as the digital signatures of the CM.

Magnitude and frequency histograms—Our second method for computing digital 

signatures involved histograms to represent the distributions of elemental components 

present in CM samples. For each CM sample, we computed four histograms to represent the 

distributions of four CM quantities: rotation magnitude, deformation magnitude, rotation 

frequency, and deformation frequency. The magnitude histograms (Fig. 4A) were built by 

placing all computed rotation and deformation values into respective histograms. The 

frequency histograms (Fig. 4B) were computed by transforming the time-series rotation and 

deformation data into the frequency domain using a fast Fourier transform. Specifically, we 

computed a spectrogram (33), or a sliding average of frequency spectra. We computed the 

dominant frequency present at each pixel position (analogous to computing CBF from pixel 

intensity variations) (fig. S2) and placed the dominant frequencies from rotation and 

deformation into respective histograms. These four histograms collectively comprised the 

digital signature of the CM for the histogram method. Using the histograms, we could 

visually observe any differences in the overall distributions of rotation and deformation 

between normal and abnormal CM.

Using digital signatures to classify CM

We used two patient CM data cohorts (Table 1 and fig. S3). The first cohort consisted of 

videos of CM biopsies from 49 individuals (27 healthy controls, 5 PCD controls, and 17 

TGA patients with abnormal CM) recruited from Children’s Hospital of Pittsburgh (CHP 

cohort). The second cohort consisted of videos from 31 subjects (27 patients with heterotaxy

—10 abnormal CM, 17 normal CM—and 4 PCD controls) recruited from the Children’s 

National Medical Center (CNMC cohort) reported in (6). With these two cohorts, we 

evaluated the performance of our pipeline by using the manual beat pattern calls made by 

blinded experts as ground truth, and compared the CM predictions made by the pipeline to 

the ground truth. We also compared our pipeline to baseline automated methods using CBF 

and pixel intensities (Table 2).

Having constructed digital signatures from both data cohorts and established CM ground 

truth (see Materials and Methods), the final step in our pipeline involved supervised 

classification (fig. S4). There are many supervised algorithms available; we used a support 

vector machine (SVM) because SVMs are known to perform well with high-dimensional 

data. Functionally, each ROI could be considered a point in high-dimensional space; thus, 

any linear classifier (including SVMs) will attempt to find a plane in that space that most 

accurately separates the normal instances from the abnormal ones (see Materials and 

Methods for specific data structure layouts). The hyperparameters used in training the SVM, 

as well as constructing the digital signatures, can be found in table S1.
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We performed 10-fold cross-validation, averaged over 100 randomized iterations, on both 

cohorts independently. Each ROI was a single data point; therefore, to provide CM 

predictions at the patient level, a consensus classification step was used, in which the CM 

predictions for each ROI influenced the final CM prediction for the patient. We report the 

result of consensus classification, averaged over all 100 randomized iterations, as the final 

accuracy for each method (fig. S4). For the first (CHP) cohort, classification using the AR 

method achieved an optimal accuracy of 88.6% with rotation and 86.4% with deformation, 

and the histogram method reached 93.8% accuracy. For the second (CNMC) cohort, the AR 

method yielded an accuracy of 83.3% using rotation and 70.0% with deformation, and the 

histogram method obtained 86.7% accuracy.

PCD was the most accurately identified motion abnormality. In the CHP cohort, it was 

correctly classified as abnormal 93.5% of the time; in the CNMC cohort, it was correctly 

classified 100% of the time. These results, as well as their sensitivity, specificity, and 

comparison to the baseline methods, can be found in Table 2. CBF was used as one of the 

baseline methods because of its typical use in conjunction with electron microscopy and 

manual visual assessment in identifying CM. The other baseline consisted of adapting our 

histogram method for use with raw pixel intensities. In these cases, classification using our 

proposed digital signatures far outperformed the baseline methods.

Examples of misclassifications by our pipeline are shown in movies S8 and S9. In movie S8, 

the dyskinetic motion exhibits a larger freedom of movement than was typical for abnormal 

CM, resulting in our framework misclassifying this instance as healthy. In movie S9, while 

depicting normal motion, the top-down perspective (as opposed to the side profile, which 

constituted the majority of our data) limited the degree of observable motion, resulting in 

digital signatures more characteristic of abnormal motion.

Quantitative distinctions between normal and abnormal CM

The magnitude histograms depicted a broad distribution of rotation and deformation values 

for normal motion relative to the narrower distributions of rotation and deformation for 

abnormal motion (Fig. 4A). The frequency histograms depicted a clear dominant frequency 

in normal CM, contrasted again with abnormal CM in which the power was spread over 

many frequencies (Fig. 4B). Qualitatively, we can characterize normal CM as having a 

relatively uniform beat frequency, but which rotates or deforms with a relatively wide 

variance, suggesting much greater freedom of movement than abnormal CM.

We found a similar effect from examining the AR coefficients of normal cilia compared to 

those from abnormal CM. As visualized in the PCA space, the normal CM showed more 

freedom of movement than did the abnormal CM (Fig. 5A). Although there was a large 

overlap between normal and abnormal CM in one dimension (Fig. 5B, left), two or three 

dimensions (Fig. 5B, middle and right, respectively) depicted a noticeable separation in the 

motion patterns between normal and abnormal CM, where the motion of abnormal cilia was 

considerably more restricted by comparison.
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Confidence in identifying PCD patients

We note that among both data cohorts, the PCD controls were consistently identified as 

exhibiting abnormal CM by both methods; these were among the CM instances our pipeline 

classified with the greatest confidence. This confidence was determined by averaging the 

individual patient classification accuracies over the cross-validation iterations. The 

histogram method, especially in the CHP cohort, was confident in nearly all the predictions 

it made. This is shown in fig. S5, where the accuracy for each patient tended to be either 0 or 

100%, with few in between, irrespective of the number of ROIs per patient. The AR method 

(fig. S5) tended to be more sensitive to training sets used in the cross-validation iterations, 

because we observed very few perfect patient-level average classification accuracies.

DISCUSSION

Here, we addressed the unmet clinical need of quantitatively representing CM with two 

approaches: AR models and histograms. Both methods for computing digital signatures 

resulted in CM identification accuracy that rivaled manual expert assessment, correctly 

classifying abnormal cilia in nasal biopsies from more than 90% of all patients and nearly 

100% of patients with PCD. Considering the CM as dynamic textures permitted the use of 

sophisticated dynamic texture analysis techniques, such as AR models, and more intuitive 

methods, such as histograms.

Of the two elemental components used in this study, rotation most accurately differentiated 

normal from abnormal CM. Despite the subjectivity in manual identification of ciliary beat 

pattern, clinical studies consistently describe abnormal motion as having reduced beat 

amplitude, stiff beat pattern, failure to bend along the length of the ciliary shaft, static cilia, 

or a flicking or twitching motion (16, 17). Rotation in particular is affected by the stiffness 

that is often observed in abnormal CM, providing a conceptual link between CM phenotype 

and the resulting digital signatures.

The few misclassifications made by our pipeline could be attributed to either poor sample 

and video quality (movies S6 and S7) or possible error in the determination of ground truth 

CM by our expert panel. These artifacts, when converted to digital signatures, closely 

mimicked those of normal CM. This effect is particularly prevalent in the CNMC data set 

where the data were noisier, explaining the lower specificity. Regarding possible ground 

truth error, there were five CNMC patients consistently misclassified but whose data 

contained no noticeable recording artifacts. Closer inspection revealed that these patients 

were potentially assessed incorrectly by the expert panel. For all five patients, the majority 

vote in establishing ground truth CM was not unanimous, underscoring the primary 

motivation for developing this pipeline: establishing a quantitative ground truth and 

eliminating subjective, manual reviewer assessment of CM.

The consensus classification step in the pipeline (fig. S4) enhanced robustness to noise. By 

generating multiple digital signatures for each patient, classifying them independently, and 

merging their results into a single CM prediction for the patient, the effects of noisy data on 

automated CM recognition could be minimized. We found that, beyond a minimum number 

of roughly three ROIs per patient, the quality of the ROI selection (and, by proxy, the video 
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samples) was more important than the quantity of ROIs. This reliance on manual ROI 

selection by experts is one limitation in our approach. Future work that includes an 

intelligent patch-sampling strategy will help begin the process of fully automating the 

pipeline.

We envision the computational pipeline described here to be deployed in a clinical setting to 

objectively and quantitatively identify CM defects, enabling multicenter trials to effectively 

compare findings from ciliary biopsies. This pipeline is applicable to any environment in 

which CM assessment plays a role, including common airways diseases, cystic fibrosis, or 

asthma (2, 5–7, 9, 10, 34). Our pipeline will be made accessible to researchers across the 

world as a web service. To this end, we have designed a prototype web interface for 

uploading videos and annotating them with ROIs (fig. S6). Using this web interface, it will 

be possible to pursue a multicenter international “computational ciliary motion assessment” 

(CCMA) trial. This will establish and validate a standardized protocol for automated CM 

defect identification in PCD patients and patients with other ciliopathies or respiratory 

diseases. In the future, CCMA may serve as a rapid first tier screen to identify at-risk 

patients who would warrant further testing using other modalities (genetic testing, nasal 

nitric oxide measurement, and ultrastructural analysis by electron microscopy or 

immunofluorescence imaging) to establish a clinical diagnosis.

Overall, our computational approach improves on the current methods for ciliary beat 

pattern analysis by using computer vision techniques to replicate expert CM assessment to a 

high level of accuracy. This approach demonstrates the efficacy of analyzing elemental 

components for differentiating normal and abnormal CM and eliminating reviewer 

subjectivity that is inherent even to expert analysis.

MATERIALS AND METHODS

Study design

The overall objective of this study was to develop a computational CM analysis pipeline, 

which achieved parity with manual expert beat pattern assessment of CM. From CHP, 49 

patients were recruited with TGA. Additionally, 27 healthy subjects were recruited to serve 

as controls. Informed consent was obtained from adult subjects or parents/ guardians of 

children, with assent obtained from children over 7 years of age. In addition, we recruited 

five PCD patients to serve as abnormal controls. The resulting corpus formed the first data 

cohort (CHP), depicting biopsies from 49 individuals (27 healthy controls, 5 PCD controls, 

and 17 TGA patients). The second cohort consisted of nasal biopsy videos from 31 subjects 

from CNMC that have been described previously (6). Twenty-seven subjects were patients 

with heterotaxy: 17 had normal CM and 10 had abnormal CM, as evaluated by a blinded 

panel of investigators in an identical manner to the CHP cohort. Four additional subjects 

were included as PCD controls (fig. S3). The video samples were examined by the authors 

of this study, and data from numerous subjects were discarded on the grounds of spurious 

camera motion, variable lighting conditions, poor focus, and other recording artifacts. All 

study protocols were approved by the University of Pittsburgh Institutional Review Board. 

This study was not blinded.
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Data acquisition

Nasal epithelial tissue was collected by curettage of the inferior nasal turbinate under direct 

visualization using an appropriately sized nasal speculum using Rhino-probe (Arlington 

Scientific). Nasal brushings and tracheal biopsies have been shown to provide tissue of 

comparable quality and similar pathology with increased sensitivity over nasal biopsies (35–

37). Three passages were made, and the collected tissue was resuspended in L-15 medium 

(Invitrogen) for immediate video-microscopy using a Leica inverted microscope with a 100× 

oil objective and differential interference contrast optics. Digital high-speed videos were 

recorded at a sampling frequency of 200 Hz using a Phantom v4.2 camera. At least eight 

videos were obtained per subject. These videos were used in our study. However, to establish 

ground truth CM, these samples were reciliated, and these reciliated biopsies were analyzed 

by a panel of researchers (M.J.Z., R.J.F., and C.W.L.) blinded to the subject’s clinical 

diagnosis, nasal nitric oxide values, and reciliation results. This process of establishing 

ground truth using reciliated samples while performing the computational analysis on 

original samples eliminates, or otherwise minimizes, the possibility of introducing 

secondary CM defects as a result of tissue sampling. After reviewing all reciliated videos, a 

call of normal or abnormal CM was made by consensus. Where differences could not be 

resolved, the majority vote was accepted.

Collaborators uploaded AVI format videos to our prototype web service (fig. S6). After 

upload, the user was presented with an HTML5 canvas interface through which they could 

specify ROIs by drawing boxes over a still frame of the video. ROIs were drawn wherever 

ciliated cells were seen in profile to avoid overlapping cells or multiple layers of ciliated 

cells. Only areas where mucus or cell debris is seen overlying the cilia and interfering with 

motion were excluded. Each ROI inherited the normal or abnormal label of the patient from 

which it was derived. For each subject, an average of three to four videos were uploaded, 

and an average of five to eight ROIs were selected, although the ROI count per patient varied 

from as few as 2 to as many as 18. All subsequent analyses were performed at the ROI level.

Derivation of AR models

AR models are linear dynamics systems that are useful for representing periodic signals, and 

are among the state-of-the-art dynamic texture analysis methods (22, 23, 27, 28). We used 

the formulation defined in (23, 32),

(1)

(2)

where Eq. 1 models the appearance of the cilia y⃗ at a given time t (plus a noise term u⃗t), and 

Eq. 2 represents the state x⃗ of the CM in a low-dimensional subspace defined by an 

orthogonal basis C at time t, and how the state changes from t to t + 1 (plus a noise term vt⃗).
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Equation 1 is a decomposition of each frame of a CM video y⃗t into a low-dimensional state 

vector x⃗t and a white noise term u⃗t, using an orthogonal basis C (Fig. 3A). This basis was 

derived using singular value decomposition (SVD). The input to the SVD consisted of a 

raster scan of the original video. Therefore, if the height and width of the video in pixels 

were given by h and w, respectively, and the number of frames as f, the dimensions of the 

raster-scanned matrix would be hw × f.

A core assumption in dynamic texture analysis is that the state of the dynamic texture lives 

in a low-dimensional subspace as defined by the principal components C (Fig. 3A). Once the 

data y⃗t are projected into this subspace, the state of the dynamic texture x⃗t can be modeled 

with relatively few parameters by virtue of its low dimensionality, relative to y⃗t. We can 

think of this as a linear process: the state of the cilia in this low-dimensional space at time t 
+ 1 is a linear function of its state at time t. Equation 2 reflects this intuition: state xt⃗ of the 

CM is a function of the sum of d of its previous states x⃗t-1, x⃗t-2, …, x⃗t-d, each multiplied by 

corresponding coefficients B = {B1, B2, …, Bd}. The noise terms u⃗ and v⃗ are used to 

represent the residual difference between the observed data and the solutions to the linear 

equations; often, these are modeled as Gaussian white noise.

When comparing dynamic textures using AR models, each dynamic texture M is often 

represented as M = (B, C): a combination of its coefficients B and its subspace C (38). 

However, CM analysis differs in that we assume all CM lives within the same subspace C. 

What differentiates CM using this method, we claim, is the way CM evolves in the subspace 

defined by C. Figure S7 provides quantitative support for this assumption: for each video of 

CM, we averaged pairwise angles between the first 20 principal components. Each pairwise 

comparison was orthogonal or nearly orthogonal (0 or very small angle, fig. S7), suggesting 

that they are derived from the same subspace. Therefore, we represent each instance of CM 

with only the coefficients B.

Structure of feature vectors for classification

For both methods of generating a digital signature, we first performed a video preprocessing 

method designed to identify pixels of interest (Supplementary Materials and Methods and 

fig. S2). After this pruning step, we generated our digital signatures using only the 

remaining pixels.

For the AR method, we located a pixel nearest the middle of an ROI with a signal at the 

dominant frequency for the ROI, and expanded a 15 × 15 box around that pixel, forming a 

patch. For each frame of the video (truncated at 250 frames), we flattened the pixels in the 

15 × 15 patch into a single 225-length vector (y⃗t in Eq. 1). Repeating this process over 250 

frames, each patch was contained in a data structure with shape 225 × 250. We repeated this 

process for all ROIs, appending each patch to the end of the previous one. For the CHP data 

set with 331 ROIs, this resulted in a 225 × (331 * 250) data structure, or matrix with 

dimensions 225 × 82,750. Performing SVD on this structure yielded the principal 

components C (Fig. 3A). Having C, we solved for x⃗ in Eq. 1 and subsequently the AR 

coefficients B in Eq. 2, which we used as the digital signature. The parameter q modulated 

the dimensionality of the CM subspace C; therefore, each coefficient Bi was a matrix with 

dimensions q × q. The parameter d specified the number of AR coefficients B = {B1, B2, …, 
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Bd}. The coefficients B1, B2, …, Bd were flattened row-wise and concatenated, resulting in a 

single vector with length q2d as the digital signature for each ROI. We performed parameter 

scans over q ∈ [2, 20] and d ∈ [1, 5].

For our histogram method, the magnitude histograms were constructed using rotation and 

deformation values. The frequency histograms were constructed using the dominant rotation 

and deformation frequencies computed at each pixel. These four histograms were combined 

by comparing them pairwise against the four matching histograms of all other ROIs (Eq. 3), 

forming an n × n matrix K (see subsequent section for full derivation), where n = 331 for the 

CHP cohort and n = 262 for the CNMC cohort (Table 1). This matrix, used to initialize the 

SVM classifier, is specifically referred to as a kernel matrix. We found two parameters most 

affected classification accuracy with the histogram method: the size of Gaussian smoothing 

of the rotation or deformation time series σ, and the number of bins in the frequency 

histogram κ. We performed parameter scans over σ ∈ [0,8] and κ ∈ [5,100]. Accuracies for 

the optimal parameter combinations are reported in Table 2. Results of parameter scans over 

q, d, σ, and κ are reported in fig. S8.

Classifier design for CM recognition

We used an SVM to test our methods. For our AR method, the SVM used the default, 

nonlinear radial-basis function (RBF) kernel matrix. We found that this scheme significantly 

outperformed other strategies, such as linear SVMs and ensemble methods including 

random forests; the performance of linear classifiers was much lower in comparison. SVMs 

with nonlinear kernels are well suited for high-dimensional classification problems where 

data are not plentiful.

For our AR strategy, the concatenated AR parameters B constituted the input to the 

classification algorithm. For our histogram method, we used a different strategy. Histograms 

lend themselves to direct comparison through the χ2 distance metric. Therefore, rather than 

concatenate all four histograms into a single vector as with the AR strategy, we instead 

combined the four histograms from each ROI into a custom SVM kernel matrix K (39). 

Given a pair of ROIs, x(i) and x(j), we compared the four histograms of each ROI pairwise, 

computing the χ2 metric between matching histograms. The four resulting χ2 metrics were 

weighted independently using weights α1, α2, β1, and β2, such that α1 + α2 + β1 + β2 = 1. 

Multiple weighting schemes were tested to determine whether, for example, weighting the χ2 

distance between magnitude histograms more heavily than frequency histograms resulted in 

an improvement or decline in overall classification accuracy. The four weighted χ2 metrics 

were summed into a final similarity score between ROIs x(i) and x(j):

(3)

where xw is a histogram with associated weight w ∈ α1, α2, β1, and β2. Furthermore, μw was 

the average χ2 distance for histogram type w across all ROIs. This was done for all pairwise 

combinations of ROIs x(i) and x(j), generating an n × n kernel matrix K, where n is the 

number of ROIs in our data cohort (Table 1). This was used to initialize the SVM for 
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classifying the histograms. Such an initialization was not required for the AR method; the 

default RBF kernel was used.

Cross-validation and consensus classification

k-fold cross-validation is a verification process for classification algorithms to estimate their 

performance against unobserved data. One round of cross-validation involves partitioning 

the data into complementary subsets, performing the analysis on one subset (training set), 

and validating the resulting model against the other subset (testing set). Multiple rounds are 

performed using different partitions to reduce the variability of the results, and these results 

are averaged over rounds.

We treated each ROI as a single datum with its corresponding label (0 for healthy, 1 for 

abnormal). Owing to the relatively small size of our data cohorts, we chose to perform 10-

fold cross-validation to test our methods, maximizing the size of the training set while also 

creating more diverse testing subsets.

Because ROIs were treated as single data instances, the algorithm would therefore predict 

the CM of individual ROIs. However, our goal was to predict CM at the patient level. To 

translate the CM prediction for ROIs into a CM prediction for each patient, we performed a 

consensus classification. We grouped ROI predictions together according to the patients 

from which they originated; that is, all the predictions for ROIs originating from patient p 
would be collected. If most of the CM predictions on the ROIs for patient p were abnormal, 

then the patient-level prediction for patient p would also be abnormal (fig. S4). Consensus 

classification was performed with each iteration of cross-validation, and the accuracy 

reported was computed from consensus classification.

Software

Python 2.7 was used to implement the analysis pipeline. We used the scientific computing 

packages NumPy and SciPy, and the plotting package Matplotlib. For computing optical 

flow vectors, we used the pyramidal Lucas Kanade (40) implementation packaged in 

OpenCV 2.4 and confirmed its viability using the software package by Sun et al. (29) for 

Matlab. For video collection and annotation, we used a Web site built using the open source 

jQuery-File-Upload application (https://github.com/blueimp/jQuery-File-Upload) on an 

Apache 2.2 server running PHP 5. Annotations were stored in a MySQL database. Video 

transcoding was performed using ffmpeg. Statistical classification was performed using the 

Python scikit-learn machine learning library (41), which uses the popular libsvm 

implementation for SVMs. All of these packages (with the exception of Matlab) are publicly 

available under open source licenses.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

We thank R. Schwartz, C. Horwitz, K. Morrell, F. Quinn, S. P. Anand, J. Castro, and J. Ayoob for their rigorous and 
thorough manuscript edits. We thank A. Ramanathan for his figure edits. We thank O. Khalifa for CHP patient 

Quinn et al. Page 12

Sci Transl Med. Author manuscript; available in PMC 2016 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

https://github.com/blueimp/jQuery-File-Upload


recruitment and for conducting the nasal biopsy and respiratory cilia videomicroscopy. We thank C. Jenko, D. 
Pham, and C. Bark for work in their cilia capstone projects.

Funding: Grants NIH HL-098180 and NIH 1R01GM104412-01A1, and the Pennsylvania Department of Health.

REFERENCES AND NOTES

1. Chilvers MA, McKean M, Rutman A, Myint BS, Silverman M, O’Callaghan C. The effects of 
coronavirus on human nasal ciliated respiratory epithelium. Eur Respir J. 2001; 18:965–970. 
[PubMed: 11829103] 

2. Thomas B, Rutman A, Hirst RA, Haldar P, Wardlaw AJ, Bankart J, Brightling CE, O’Callaghan C. 
Ciliary dysfunction and ultrastructural abnormalities are features of severe asthma. J Allergy Clin 
Immunol. 2010; 126:722–729.e2. [PubMed: 20673980] 

3. O’Callaghan C, Chilvers M, Hogg C, Bush A, Lucas J. Diagnosing primary ciliary dyskinesia. 
Thorax. 2007; 62:656–657. [PubMed: 17687094] 

4. Leigh MW, Pittman JE, Carson JL, Ferkol TW, Dell SD, Davis SD, Knowles MR, Zariwala MA. 
Clinical and genetic aspects of primary ciliary dyskinesia/Kartagener syndrome. Genet Med. 2009; 
11:473–487. [PubMed: 19606528] 

5. Swisher M, Jonas R, Tian X, Lee ES, Lo CW, Leatherbury L. Increased postoperative and 
respiratory complications in patients with congenital heart disease associated with heterotaxy. J 
Thorac Cardiovasc Surg. 2011; 141:637–644.e3. [PubMed: 20884020] 

6. Thomas B, Rutman A, Hirst RA, Haldar P, Wardlaw AJ, Bankart J, Brightling CE, O’Callaghan C. 
High prevalence of respiratory ciliary dysfunction in congenital heart disease patients with 
heterotaxy. Circulation. 2012; 125:2232–2242. [PubMed: 22499950] 

7. Harden B, Tian X, Giese R, Nakhleh N, Kureshi S, Francis R, Hanumanthaiah S, Li Y, Swisher M, 
Kuehl K, Sami I, Olivier K, Jonas R, Lo CW, Leatherbury L. Increased postoperative respiratory 
complications in heterotaxy congenital heart disease patients with respiratory ciliary dysfunction. J 
Thorac Cardiovasc Surg. 2014; 147:1291–1298.e2. [PubMed: 23886032] 

8. Yiallouros PK, Kouis P, Middleton N, Nearchou M, Adamidi T, Georgiou A, Eleftheriou A, Ioannou 
P, Hadjisavvas A, Kyriacou K. Clinical features of primary ciliary dyskinesia in Cyprus with 
emphasis on lobectomized patients. Respir Med. 2015; 109:347–356. [PubMed: 25698650] 

9. Zahid M, Khalifa O, Devine W, Yau C, Francis R, Lee DM, Tobita K, Wearden P, Leatherbury L, 
Webber S, Lo CW. Airway ciliary dysfunction in patients with transposition of the great arteries. 
Circulation. 2012; 126:A15746.

10. Garrod AS, Zahid M, Tian X, Francis RJ, Khalifa O, Devine W, Gabriel GC, Leatherbury L, Lo 
CW. Airway ciliary dysfunction and sinopulmonary symptoms in patients with congenital heart 
disease. Ann Am Thorac Soc. 2014; 11:1426–1432. [PubMed: 25302410] 

11. Stannard WA, Chilvers MA, Rutman AR, Williams CD, O’Callaghan C. Diagnostic testing of 
patients suspected of primary ciliary dyskinesia. Am J Respir Crit Care Med. 2010; 181:307–314. 
[PubMed: 19910612] 

12. Dimova S, Maes F, Brewster ME, Jorissen M, Noppe M, Augustijns P. High-speed digital imaging 
method for ciliary beat frequency measurement. J Pharm Pharmacol. 2005; 57:521–526. [PubMed: 
15831215] 

13. Olm MAK, Kögler JE Jr, Macchione M, Shoemark A, Saldiva PHN, Rodrigues JC. Primary ciliary 
dyskinesia: Evaluation using cilia beat frequency assessment via spectral analysis of digital 
microscopy images. J Appl Physiol. 2011; 111:295–302. [PubMed: 21551013] 

14. Mantovani G, Pifferi M, Vozzi G. Automated software for analysis of ciliary beat frequency and 
meta-chronal wave orientation in primary ciliary dyskinesia. Eur Arch Otorhinolaryngol. 2010; 
267:897–902. [PubMed: 19924426] 

15. O’Callaghan C, Sikand K, Chilvers M. Analysis of ependymal ciliary beat pattern and beat 
frequency using high speed imaging: Comparison with the photomultiplier and photodiode 
methods. Cilia. 2012; 1:8. [PubMed: 23351965] 

16. Thomas B, Rutman A, O’Callaghan C. Disrupted ciliated epithelium shows slower ciliary beat 
frequency and increased dyskinesia. Eur Respir J. 2009; 34:401–404. [PubMed: 19648518] 

Quinn et al. Page 13

Sci Transl Med. Author manuscript; available in PMC 2016 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



17. Smith CM, Hirst RA, Bankart MJ, Jones DW, Easton AJ, Andrew PW, O’Callaghan C. Cooling of 
cilia allows functional analysis of the beat pattern for diagnostic testing. Chest. 2011; 140:186–
190. [PubMed: 21193531] 

18. Clary-Meinesz C, Cosson J, Huitorel P, Blaive B. Temperature effect on the ciliary beat frequency 
of human nasal and tracheal ciliated cells. Biol Cell. 1992; 76:335–338. [PubMed: 1305479] 

19. Salathe M. Regulation of mammalian ciliary beating. Annu Rev Physiol. 2007; 69:401–422. 
[PubMed: 16945069] 

20. Raidt J, Wallmeier J, Hjeij R, Onnebrink JG, Pennekamp P, Loges NT, Olbrich H, Häffner K, 
Dougherty GW, Omran H, Werner C. Ciliary beat pattern and frequency in genetic variants of 
primary ciliary dyskinesia. Eur Respir J. 2014; 44:1579–1588. [PubMed: 25186273] 

21. Quinn, S.; Francis, R.; Lo, C.; Chennubhotla, C. Novel use of differential image velocity invariants 
to categorize ciliary motion defects. Biomedical Sciences and Engineering Conference (BSEC); 
Knoxville, TN. 15 to 17 March 2011; 

22. Saisan, P.; Doretto, G.; Wu, YN.; Soatto, S. Dynamic texture recognition. Proceedings of the 2001 
IEEE Computer Society Conference on Computer Vision and Pattern Recognition; 2001. 

23. Doretto G, Chiuso A, Wu YN, Soatto S. Dynamic textures. Int J Comp Vis. 2003; 51:91–109.

24. Zhao G, Pietikainen M. Dynamic texture recognition using local binary patterns with an 
application to facial expressions. IEEE Trans Pattern Anal Mach Intell. 2007; 29:915–928. 
[PubMed: 17431293] 

25. Lu, Z.; Xie, W.; Pei, J.; Huang, J. Dynamic texture recognition by spatio-temporal multiresolution 
histograms. Seventh IEEE Workshop on Application of Computer Vision, WACV/MOTIONS’05; 
Breckenridge, CO. 5 to 7 January 2005; 

26. Chen J, Zhao G, Salo M, Rahtu E, Pietikamen M. Automatic dynamic texture segmentation using 
local descriptors and optical flow. IEEE Trans Image Process. 2013; 22:326–339. [PubMed: 
22851258] 

27. Huang, J.; Huang, X.; Metaxas, D.; Axel, L. Dynamic texture based heart localization and 
segmentation in 4-D cardiac images. 4th IEEE International Symposium on Biomedical Imaging: 
From Nano to Macro; Arlington, VA. 12 to 15 April 2007; 

28. Brieu N, Navab N, Serbanovic-Canic J, Ouwehand WH, Stemple DL, Cvejicb A, Grohera M. 
Image-based characterization of thrombus formation in time-lapse DIC microscopy. Med Image 
Anal. 2012; 16:915–931. [PubMed: 22482997] 

29. Sun, D.; Roth, S.; Black, MJ. Secrets of optical flow estimation and their principles. Proceedings of 
the 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition 
(CVPR 2010); San Francisco, CA. 13 to 18 June 2010; 

30. Te Pas SF, Kappers AM, Koenderink JJ. Detection of first-order structure in optic flow fields. 
Vision Res. 1996; 36:259–270. [PubMed: 8594824] 

31. Brown B. Invariant properties of the motion parallax field due to the movement of rigid bodies 
relative to an observer. Opt Acta. 1975; 22:773–791.

32. Hyndman, M.; Jepson, AD.; Fleet, DJ. Higher-order autoregressive models for dynamic textures. 
British Machine Vision Conference; Warwick. 2007. 

33. Oppenheim, AV.; Schafer, RW.; Buck, JR. Discrete-Time Signal Processing. Prentice-Hall Inc; 
Upper Saddle River, NJ: 1999. 

34. Smith CM, Radhakrishnan P, Sikand K, O’Callaghan C. The effect of ethanol and acetaldehyde on 
brain ependymal and respiratory ciliary beat frequency. Cilia. 2013; 2:5. [PubMed: 23531143] 

35. MacCormick J, Robb I, Kovesi T, Carpenter B. Optimal biopsy techniques in the diagnosis of 
primary ciliary dyskinesia. J Otolaryngol. 2002; 31:13–17. [PubMed: 11881766] 

36. Papon J, Coste A, Roudot-Thoraval F, Boucherat M, Roger G, Tamalet A, Vojtek AM, Amselem S, 
Escudier E. A 20-year experience of electron microscopy in the diagnosis of primary ciliary 
dyskinesia. Eur Respir J. 2010; 35:1057–1063. [PubMed: 19840971] 

37. Plesec TP, Ruiz A, McMahon JT, Prayson RA. Ultrastructural abnormalities of respiratory cilia: A 
25-year experience. Arch Pathol Lab Med. 2008; 132:1786–1791. [PubMed: 18976016] 

38. Ravichandran, A.; Chaudhry, R.; Vidal, R. View-invariant dynamic texture recognition using a bag 
of dynamical systems. IEEE Conference on Computer Vision and Pattern Recognition, CVPR 
2009; Miami, FL. 20 to 25 June 2009; 

Quinn et al. Page 14

Sci Transl Med. Author manuscript; available in PMC 2016 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



39. Nilsback, ME.; Zisserman, A. Automated flower classification over a large number of classes. 
Sixth Indian Conference on Computer Vision, Graphics & Image Processing (ICVGIP’08); 
Bhubaneswar. 16 to 19 December 2008; 

40. Bouguet, JY. Pyramidal Implementation of the Affine Lucas Kanade Feature Tracker. Intel 
Corporation; Santa Clara, CA: 2001. 

41. Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, 
Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay É. 
Scikit-learn: Machine learning in Python. J Mach Learn Res. 2011; 12:2825–2830.

42. Fu, SC.; Kovesi, P. Robust extraction of optic flow differentials for surface reconstruction. 2010 
International Conference on Digital Image Computing: Techniques and Applications (DICTA); 
Sydney, New South Wales. 1 to 3 December 2010; 

Quinn et al. Page 15

Sci Transl Med. Author manuscript; available in PMC 2016 August 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. Properties of CM
(A) Schematic (hand-drawn) diagrams of CM subtypes to aid clinical diagnosis. (B) Stacked 

frames indicate still frames of the video of the CM biopsy, and the black box indicates the 

ROI selected by the clinician. (C) Yellow arrows on the images from (B) indicate direction 

and magnitude of optical flow for a small region of the video for each pair of frames. (D) 

Changes in the optical flow are used to compute the elemental components. Red arrows, 

optical flow at frame t; green arrows, optical flow at frame t + 1; blue arrows, optical flow at 

frame t + 2. (E) Elemental components of rotation (top left), deformation (top right, bottom 

right), and divergence (bottom left; excluded from analysis), shown here in a template form. 

Deformation is a vectorial quantity requiring two templates for measurement.
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Fig. 2. Digital representations of pixels in ciliary biopsy videos
(A) Single frame of a video of normal and abnormal CM with three pixels identified: blue 

(proximal to cell wall), red (distal from cell wall), and black (background). See movies S1 to 

S9 for examples of normal and abnormal CM. (B) Time series of gray-level pixel intensities 

over 100 frames at each of the three respective pixel locations in (A). (C) Time series of 

rotation over 100 frames at each of the respective pixel locations in (A). (D) Time series of 

deformation amplitude over 100 frames at each of the respective pixel locations in (A). a.u., 

arbitrary units.
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Fig. 3. CM AR representations
(A) Top five principal components of CHP rotation data and the percentage of the overall 

variance in the CM data explained by each component. The top q principal components are 

used to compute the AR motion parameters. (B) One-dimensional rotation signal from a 

single pixel of normal (left) and abnormal (right) CM as the original signal (darkest blue/

red) is reconstructed using an increasing number of principal components. Darker lines 

indicate larger q (shown: q = 2, q = 5, and q = 10).
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Fig. 4. CM histogram representations and results
(A) Time domain histograms of ciliary rotation and deformation magnitudes from normal 

(blue) and abnormal (red) CM. The time series in Fig. 2 was projected onto the vertical axis 

and normalized. (B) Frequency domain histograms of ciliary rotation and deformation time 

series from normal and abnormal CM. A fast Fourier transform was used on the rotation and 

deformation time series, the dominant frequency at each pixel was computed from the 

Fourier response, and histograms of these frequencies for rotation and deformation were 

plotted.
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Fig. 5. CM AR model results
(A) CM is visualized using the first three dimensions of the subspace of the AR model for 

normal and abnormal CM. This motion is governed by the AR coefficients. Passage of time 

is indicated by hue, darkening with each discrete time increment. (B) Histograms show the 

distributions of values taken by normal and abnormal AR motion in each of the first three 

PCA dimensions.
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Table 1
Description and breakdown of data sets

Both data cohorts consisted of a mix of patients for whom their CM was assessed manually as either normal or 

abnormal; these assessments were used as ground truth for validating our framework. Multiple video samples 

were generated for each patient, and from these videos, multiple ROIs were selected for analysis. CHD, 

congenital heart disease.

Diagnosis Individuals Videos ROIs

Children’s Hospital of Pittsburgh

 Healthy controls 27 76 114

 PCD controls 5 38 96

 CHD/TGA with abnormal CM 17 56 121

 Total 49 170 331

Children’s National Medical Center

 PCD controls 4 25 58

 Heterotaxy with normal CM 17 65 139

 Heterotaxy with abnormal CM 10 31 65

 Total 31 121 262
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Table 2
Classification accuracy, sensitivity, and specificity on both data cohorts, with each 
proposed method

We compare the performance of our methods to two baseline methods: classification using the histogram 

method on the gray-level pixel intensities in lieu of computing optical flow, and using CBF.

Method Data set Accuracy (%) Sensitivity (%) Specificity (%)

Proposed methods

 Histogram CHP 93.88 95.24 92.86

 AR (rotation) CHP 88.64 80.00 95.83

 AR (deformation) CHP 86.36 76.19 95.65

 Histogram CNMC 86.67 91.67 83.33

 AR (rotation) CNMC 83.33 83.33 83.33

 AR (deformation) CNMC 70.00 59.09 100.00

Baseline methods

 Histogram (intensities) CHP 72.73 63.16 80.00

 CBF CHP 52.27 35.00 58.33
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