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Dicot leaves are composed of a heterogeneous mosaic of jigsaw puzzle piece-shaped pavement cells that vary greatly in size and
the complexity of their shape. Given the importance of the epidermis and this particular cell type for leaf expansion, there is a
strong need to understand how pavement cells morph from a simple polyhedral shape into highly lobed and interdigitated cells.
At present, it is still unclear how and when the patterns of lobing are initiated in pavement cells, and one major technological
bottleneck to addressing the problem is the lack of a robust and objective methodology to identify and track lobing events during
the transition from simple cell geometry to lobed cells. We developed a convex hull-based algorithm termed LobeFinder to
identify lobes, quantify geometric properties, and create a useful graphical output of cell coordinates for further analysis. The
algorithm was validated against manually curated images of pavement cells of widely varying sizes and shapes. The ability to
objectively count and detect new lobe initiation events provides an improved quantitative framework to analyze mutant
phenotypes, detect symmetry-breaking events in time-lapse image data, and quantify the time-dependent correlation between
cell shape change and intracellular factors that may play a role in the morphogenesis process.

The size, shape, and angle of leaves are important
adaptive traits in natural populations and key deter-
minants of yield in agronomic settings (Zhu et al., 2010).
Therefore, it is important to understand the cellular
events that collectively, at the levels of the tissues and
organs, lead to the formation of durable, lightweight,
and appropriately sized leaf blades for efficient light
capture (Walter et al., 2009). In Arabidopsis (Arabidopsis
thaliana), the growth properties of the epidermis may
have particular importance in terms of organ size con-
trol (Savaldi-Goldstein et al., 2007), and the growth
behaviors of the sectors of the epidermis and individual
cells can correlate with organ-level growth behaviors
(Zhang et al., 2011; Kuchen et al., 2012). In dicots, the
basic cellular unit of the epidermis is the jigsaw puzzle
piece-shaped pavement cell, the division and expansion
of which drive leaf expansion (Asl et al., 2011).

The biomechanics of pavement cell shape change
are complicated (Panteris and Galatis, 2005; Geitmann
and Ortega, 2009; Szymanski and Cosgrove, 2009;
Szymanski, 2014). Turgor pressure is the driving force for
cell expansion. However, the magnitude and directions
of cell wall tension forces are difficult to predict because
of the presence of adjacent neighboring cells both in the
plane of the epidermis and in the underlying mesophyll
tissue (Szymanski, 2014). The shape of the cell itself also
may influence the stress patterns in the wall, and regions
of high cell curvature are predicted to have increased
wall stress compared with other domains of the cell
(Sampathkumar et al., 2014). The growth trajectory or
strain response of the cell also is strongly influenced by
heterogeneity in the cellwall, and a current challenge is to
understand how differences in cell wall thickness and
local cellulose-dependent cell wall anisotropy might
contribute to polarized growth in this cell type (Panteris
and Galatis, 2005; Szymanski, 2014).

The developmental control of lobe initiation in cotyle-
dons and leaves also is poorly understood. In one early
model, lobe initiationwas proposed to direct organ shape,
with cell elongation and lobe initiation occurring inde-
pendently in populations of cells to influence organ
growth in length and width, respectively (Tsuge et al.,
1996; Fu et al., 2002). Other studies, which relied on cell
shape measurements from populations of unsynchro-
nized cells, detected correlations between cell size and
lobe number, implying a continuous process of cell ex-
pansion and lobe initiation (Qiu et al., 2002; Fu et al.,
2005). Neither of these models appears to be correct,
based on several recent studies that employ either long-
term time-lapse imaging of pavement cell morphogenesis
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(Zhang et al., 2011; Elsner et al., 2012) or cell population
analyses that analyzed cells from developmentally staged
leaves over time intervals spanning days (Andriankaja
et al., 2012) or weeks (Staff et al., 2012). The clear outcome
from these studies is that the frequency of lobe initiation
clearly depends on the developmental stage and location
on the leaf. However, in many instances, lobe initiation is
unpredictable. For example, a given cell’s anticlinal (per-
pendicular to the leaf surface) walls are in contact with
several neighboring cells. New lobes can form along ei-
ther one or several of these cell boundaries, and the factors
that define the probability of forming a new lobe at a
particular location are not known. Lobe initiation, there-
fore, is episodic, and morphogenesis appears to include
both anisotropic growth during lobe initiation and lobe
expansion as well as extended phases of symmetrical cell
expansion in which the cell size increases but the overall
geometry of the cell remains essentially unchanged
(Zhang et al., 2011).

One major limitation in the field is the lack of a robust
and objective method to identify new lobes. The discus-
sion above on the cellular and developmental control of
lobe formation is based largely on the subjective evalu-
ation of pavement cell segments as being either lobed or
unlobed. This has generated confusion and variability in
the literature with regard to detecting phenotypes and
comparing the severity of phenotypes among different
mutants. In some instances, the end points of a midline
skeleton of individual pavement cells have been used to
estimate lobe number (Le et al., 2006; Staff et al., 2012);
however, this method is not very accurate and appears to
underestimate lobe number. As an alternative, dimen-
sionless shape descriptors like circularity (4p 3 cell
area/perimeter2), a ratio that approaches 1 for more cir-
cular cells and gets smaller as cells become more lobed,
are used to test for differences among cells in the com-
plexity of their cell shape (Kieber et al., 1993; Le et al.,
2003; Djakovic et al., 2006; Le et al., 2006; Zhang et al.,
2008). Themajor weakness of this approach is that it does
not directly reflect lobe number, and there are many
equally plausible explanations in which reductions in
either lobe initiation or lobe expansion could lead to
similar differences in cell shape complexity. In this article,
we describe a highly useful convex hull-based MatLab
program termed LobeFinder that operates on cell pe-
rimeter coordinates extracted from images of pavement
cells and returns an array of useful cell shape data, in-
cluding a value for lobe number and a map of their po-
sitions. Based on median scores of manually identified
features from a diverse population of pavement cells,
LobeFinder predictions outperformed the alternative
method of binary image skeletonization and subjective
human scoring. The development, validation, limita-
tions, and uses of LobeFinder are described below.

RESULTS

Currently, quantification methods of lobe formation
are often focused on the localization of specific factors
related to cellular shape change, such as the distribution

of actin filaments, the presence of anticlinalmicrotubule
bundles, and qualitative descriptions of cell shape (Fu
et al., 2002, 2005). However, because there is no known
marker protein for lobe initiation, and because lobe
counting results vary greatly between laboratories and
among individuals (see below), there is a strong need
for a standardized computational approach to measure
the number and location of pavement cell lobes.

A number of commercial and open-source software
applications are available to quantify the geometry of cell
shapes. Thesemethods canbe broadly separated into two
categories: quantification of descriptive scalar properties
such as circularity, roughness, perimeter, area, etc. that
describe the shape by descriptive parameters (Russ, 2002;
Robert et al., 2008); and image-segmentation approaches
that we broadly define here as methods that reduce the
pixel information in the raw image into segments or a
reduced set of data points that have greater biological
meaning (Marcuzzo et al., 2008), such as converting an
image of a cell into segmented regions for nucleus, cy-
toplasm, Golgi, endoplasmic reticulum, etc. automati-
cally. These approaches offer a reduction in the size of the
data and a transformation of pixel intensity data into
classifications that directly inform the biology of the
problem. The Medial Axis Transform (Staff et al., 2012)
has been used to quantify pavement cell geometry. The
Medial Axis Transform uses the midline points of cells to
quantify cell shape differences by tracking the percentage
change in angles between linear segments of the branches
along the central axes or skeleton. A similar method for
tracking themidline of a cell is available as the FIJI plugin
AnalyzeSkeleton method (Arganda-Carreras et al., 2010;
Schindelin et al., 2012).

In the analysis of pavement cell shape, the most widely
used computational method to identify lobes is based on
the AnalyzeSkeleton algorithm that detects themidline of
irregularly shaped objects, categorizing the pixel proper-
ties of the surrounding area and choosing the best path to
detect areas of image continuity. Based upon the number
of neighboring pixels, some pixel points are ignored or
favored over others and a skeletonized representation of
the central axes of the cell’s shape and structure is formed.
In this method, individual cells are extracted manually
from a confocal image of a field of pavement cells (Fig. 1).
A midline skeleton is calculated from the binary image,
and the skeleton end points are extended to the cell pe-
rimeter, depending on themagnitude of the protrusion, to
map positions of predicted lobes. As shown in Figure 1,
the skeletonize method is not very accurate, and only
about half of the lobes that would be identified by a
trained scientist are accurately identified with this
method. Therefore, this method is useful in determining
generalized lobing events, usually well after a new lobe
has formed, but is unable to detect slight variations in
wall geometry that signify recent lobing events.

Outline of LobeFinder

To overcome the limitations of the previous methods
in identifying the position and number of lobes in

2332 Plant Physiol. Vol. 171, 2016

Wu et al.



pavement cells, we developed a new cell geometry
analysis approach named LobeFinder. LobeFinder op-
erates on user-supplied cell boundary coordinates that
are extracted from high-resolution confocal images of
pavement cells of various sizes and shapes. The algo-
rithm is based on a multistep process starting with a
convex hull of the cell boundary and a sequence of
processing events to robustly identify lobes (Graham,
1972). First, cell boundaries are segmented from the
original image. For our analysis of cell boundary vari-
ation and lobe detection, existing segmentation methods
utilizing gradient vector field SNAKEs or a related
approach (Ma andManjunath, 2000; Roeder et al., 2010)
were not sufficiently accurate, frequently merging cells
or creating additional cells from an irregularly shaped
lobe. The recently published semiautomated method
for pavement cell segmentation termed CellECT im-
proves the efficiency of three-dimensional pavement
cell segmentation and includes user input to reduce
errors (Delibaltov et al., 2016). In the future, CellECT
could be modified to output a single set of splined co-
ordinates that accurately depict the boundary of the
anticlinal cell wall. We anticipate that as cell segmen-
tation methods improve, LobeFinder will be integrated
into an image-processing work flow to enable high-
throughput cell phenotyping. However, at present,
manual segmentation is the only reliable method to
extract cell coordinates, and this can be easily achieved
using the polygon selection tool that is available in
ImageJ. The ImageJ segmentation tool is advantageous
because it allows the user to adjust the position of the
cell boundary points and add or delete points as
needed.
For this study, confocal imageswere at a resolution of

3.95 or 2.55 pixels mm21. After testing a range of sam-
pling densities along the cell perimeter, we found that
sampling frequencies of 0.5 to 1.5 points mm21 were
sufficient to yield accurate results for cell shape analy-
ses using LobeFinder because lobe detection was con-
sistent in this range. Sampling frequencies of one point

every 2 mm or less led to obvious mismatches between
the cell shapes in the raw image and the segmented
cells. We recommend sampling cell perimeters at
1 point mm21 and selecting the spline function within
ImageJ to smooth the manual tracing and provide a
high density of interpolated points.

Following extraction of the cell perimeter by seg-
mentation, the center of mass of each cell is calculated
and moved to the origin. The overall cell size is nor-
malized and scaled by a constant factor to calculate lobe
numbers (Fig. 2A). Following analysis, the outputs are
rescaled back to micrometers for the outputs reported
in the graphical user interface (GUI). This allows the use
of the same relative metrics and LobeFinder settings to
determine if a lobe is present for cells of different ages
and sizes. The normalization step also allows raw im-
ages at multiple different resolutions to be processed in
LobeFinder. To remove artifacts introduced by the un-
even sampling of perimeter points during manual cell
segmentation and reorientation, the cell perimeter data
are approximated by a cubic spline interpolation.

The output of the preprocessing steps is a cell pe-
rimeter that is scaled, aligned with the center of mass,
smoothed and resampled (cubic spline interpolation),
and ready for further analysis. To acquire the minimal
polygon that surrounds the entire set of coordinates
that define the cell boundary (Fig. 2B), we employ the
MatLab function convhull, which returns the coordi-
nates of the convex polygon (hull) that contains all the
coordinate points of the cell set. The convex hull pro-
vides two important features for further analysis: first,
it provides information for the minimum convex set
that encompasses the entire cell; and second, it provides
a convenient coordinate system onto which the cell
boundary properties are easily mapped (Fig. 2B, mid-
dle). Both of these outputs will serve to subsequently
identify key points and structures.

Pavement cells do not typically produce an outline
where all of the extrema at the lobe tips are located
precisely on the hull. For example, in Figure 2B (upper

Figure 1. The AnalyzeSkeleton processing tech-
nique of lobe identification does not accurately
identify pavement cell lobes. Left, Representative
confocal images of early stage cotyledon pave-
ment cells. Middle, Calculated midline skeletons
of the corresponding pavement cells. Right,
Summary of the accuracy of the AnalyzeSkeleton
method. Green squares indicate correctly identi-
fied lobe points based on the extensions of the
skeleton end points, and red arrows indicate
missed lobe points compared with voting results.
Bar = 20 mm.
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right), the convex hull produces a line that does not
separate regions 4 and 5 by the lobe that is located be-
tween the regions, since the lobe does not land on the
hull itself. To adjust the hull, the distance between the
cell and the hull is calculated and plotted on an axis of
position versus distance (Fig. 2B). Using the orthogonal
distance to the convex hull to the cell perimeter, the
local minima are retrieved, and the convex hull is then
refined to capture the interior local minima points. To
determine whether there are interior lobe points be-
tween adjacent points on the convex hull, we use the
program PeakFinder (Yoder, 2011) to determine both
local and absolute extrema between hull(i) and hull(j),
points on the cell periphery coincident with the hull.
PeakFinder identifies the location of the missed lobes,
and the hull used to encapsulate the cell is modified to
contact the lobe point (Fig. 2B, step 2). These additional
processing steps capture the majority of interior lobes

that would otherwise bemissed, since they do not lie on
the hull surrounding each cell. The resulting hull is
termed the refined hull because it no longer conforms to
the strict definition of a convex hull. The distance to the
refined hull (DTRH) plots contain highly useful infor-
mation on the local patterns of growth. Therefore, the
cell and its refined hull are rescaled back to their real
dimensions, and the DTRH coordinates are available to
be exported within the LobeFinder program. In rare
instances, there are relatively large pavement cells in
which a cell lobe is bulbous. In these instances, the path
of the cell perimeter doubles back on itself on one axis,
creating multiple solutions for the DTRH plot. In this
subregion of the cell, the PeakFinder routine uses only
the smallest distance value, and this can lead to erro-
neous hull refinements and lobe calls. This morphology
is rare in our data set, but a bulbous morphology is
the default state in the crenulated boundary of many

Figure 2. Overview of the LobeFinder logic andwork flow. A, Cell perimeter positions aremanually segmented from raw images,
scaled, and resampled. Bar = 20 mm. B, A convex hull, defined as the minimal polygon that encloses the entire given cell pe-
rimeter, is computed (step 1), then the perimeter is scanned for missed lobe points (the extrema between segments 4 and 5) using
the PeakFinder algorithm within MatLab (step 2). The optimized values for thresholds (dTH and lTH) for rule-based lobe geometry
and spacing are used to identify putative lobe points (step 3); then, groups of lobe points are merged, and the final set of predicted
lobe positions is extracted (step 4).

2334 Plant Physiol. Vol. 171, 2016

Wu et al.



monocot leaf epidermal cells. For these species, Lobe-
Finder would likely perform well in analyzing early
events associated with lobe initiation but likely would
fail to accurately count the lobes of fully expanded cells.
Following adjustment of the convex hull, the goal of

the algorithm is to identify which of the points on the
cell perimeter correspond to the positions of the pro-
trusions. Additionally, not every point on the hull cor-
responds to a physical lobe on the pavement cell, and to
some extent, the identification of a lobe on the cell is
subjective in nature, with different individuals identi-
fying different lobe positions and numbers. One design
goal of the algorithm is to mimic the expert observer’s
approach to identify the geometric features, albeit by an
objective computer algorithm. This goal informed the
design of the geometric parameters for lobe geometry
and spacing that were developed to optimize lobe
identification. For each data point in the set of convex
hull points (Fig. 2B, step 3), the distance between
neighboring points is calculated. This distance between
hull points determines if the algorithm should consider
adjacent lobe points as part of the same lobe. To cull
points on the hull and leave only those that are identi-
fied as the center of a lobe, two parameters (d and l) for
the initial identification of lobes are used: the scaled
spacing distance between lobe points (d) and a ratio of
the height (distance between hull and cell boundary) to
the width (distance of hull segment) between prospec-
tive lobe points (l). The distance between a lobe point
and the convex hull is zero; however, there must be a
region between lobes where the distance is nonzero and
above some threshold value. This module of the pro-
gram calibrates LobeFinder to reduce the number of
misleading or incorrect lobe points on the convex hull.
This calibration is effective in most cases. However,
because the parameters are tuned to be sensitive for
small deviations in boundary shape, cells with rela-
tively simple shapes with extended domains of the cell
boundary that are close to the threshold values for d
and l are most likely to have false positives.

LobeFinder Optimization and Evaluation

The principal method for the identification of
lobes and lobing segments in pavement cells relies on
observer-based inspection and identification of lobing
events. An important research goal is to standardize
pavement cell phenotyping and to create an objective
computational method that can accurately quantify
cellular geometry and be applied to time-lapse data and
large ensembles of images to efficiently calculate pop-
ulation statistics. Therefore, it is necessary to ensure
that the algorithm produces consistent and accurate
observations.
As an initial test of the sensitivity of the output to

variability in an individual’s choice of boundary points
for cell segmentation, three pavement cells of varying
sizes and shapes were manually segmented three times
and analyzed using LobeFinder. For each of these
cells, the area, perimeter, and circularity values for the

technical replicates were either identical or differed by
a fraction of 1%. For the technical replicates, the
LobeFinder outputs for lobe number were more varia-
ble, with the coefficients of variation for lobe number
varying between 0.06 and 0.1. This level of variabilty in
the measurement of lobe number was much less than
that observed when multiple individuals used subjec-
tive criteria to score an identical cell. For example, in our
test population of pavement cells (Supplemental Fig.
S1), the coefficient of variation for lobe number ranged
from 0.03 to 0.21, with 10 of the 15 cells having a coef-
ficient of variation greater than 0.1. In the LobeFinder
program, variability in lobe number most often oc-
curred along relatively straight cell perimeter segments
with one tracing including a very small feature that was
absent in another. The cause for this is discussed further
below, but this result makes clear the importance of
accurate sampling along the cell perimeter.

Fifteen randomly selected pavement cells (Supplemental
Fig. S1) from a time-lapse data set were used to more
thoroughly compare the accuracy of LobeFinder with
that of existing methods. The cells had sizes that ranged
from 280 to 1,588 mm2 and circularity values that ranged
from 0.32 to 0.81. We evaluated how well LobeFinder
outputs of lobe number and lobe position would agree
with the scores generated by researchers with experience
in the analysis of pavement cell shape. For each of the
images (examples shown in Fig. 3), six experienced
pavement cell scientists visually inspected 8.5-3 11-inch
printouts of each cell and identified lobe locations for
each raw image. These data were used to determine the
accuracy of lobe point position detection and to calculate
the number of lobes present for each cell (Fig. 3, C andD).
A few of the cells used in the calibration of LobeFinder
are shown in Figure 3A. The complete set of images
(Supplemental Fig. S1) and a summary of the cell and
convex hull properties (Supplemental Table S1) are
provided in “Supplemental Data.” A summary of the
LobeFinder and voter results is shown in Figure 3, E and
F. We next benchmarked LobeFinder and the existing
skeletonizemethod against the imagesmanually curated
by members of the two laboratories. The subjective na-
ture of the manual scoring of lobe number is evident in
the plots of lobe number (Fig. 3, E and F), withmany cells
having four or more features that were ambiguous.
Therefore, the median lobe number from the manually
curated data was used as a standard for comparison.

Overall, the skeletonize method greatly under-
estimated lobe numbers (Fig. 3E). Following an initial
calibration to optimize the threshold values of d and
l, the LobeFinder outputs for lobe number closely
matched the median lobe numbers from the manually
curated images (Fig. 3F). The LobeFinder lobe number
error was 5.7 times lower than that of the skeletonize
method (Fig. 3G). The accuracy of the manual lobe
counts was similar to that of LobeFinder when aver-
aged across all individuals (Fig. 3G); however, for a
given cell, there was considerable spread in the lobe
counts among the individuals (Fig. 3F). For example,
the error rate among the individuals differed by more
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than 20% for eight of the 15 cells, even though each of
the six individuals was similarly trained to score the
presence of lobes. This observation reinforces the strong
need for objective methods for the quantitative analysis
of cells with highly variable shapes and sizes.

Two different types of features were typically
identified as a lobe. First, there were instances of an
undulation along a cell perimeter segment that was
independent of a three-way cell wall junction. This is

the classic example of interdigitated growth among two
adjacent cells, and we define these features as type I
lobes. A second class of cell protrusions, defined here as
type II lobes, were instances in which a protrusion was
located at a three-way cell wall junction. These tripartite
junctions form during cytokinesis, and in some, but not
all, cases, the cell can grow asymmetrically at this lo-
cation, generating a protrusion with a shape that often
is indistinguishable from type I lobes. However, the

Figure 3. Evaluation of LobeFinder accuracy using a calibration data set and parameter optimization. A, Example of a raw image
containing five cotyledon pavement cells in the calibration data set. Bar = 20 mm. B, Outlines of extracted cells showing the cell
boundary and the unrefined convex hull. C and D, Example output of LobeFinder for two cells in which the correctly identified
(green squares) andmissed (red arrow) lobes are marked. E, Comparison of the skeletonizemethodwith manually curated results.
The light blue circles are the median values from manual lobe identification results for each cell, with individual independent
values in small dark blue dots, and red boxes are lobe numbers predicted by the skeletonize method. The dark blue bars plot the
absolute value of the differences between the lobe number count from the skeletonize method and the median value from the
manual results. F, Comparison of the LobeFinder methodwith manually curated results. The symbols and bars are as described in
E, but here, the red boxes are the lobe numbers predicted by LobeFinder. The dark blue bars are the absolute value differences
between the lobe number count from LobeFinder and the median value from manual results. G, Comparison of the percentage
errors of the LobeFinder, skeletonize, and manual scoring methods that were calculated using the median lobe number as the
correct value for each cell.
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growth mechanism that generates a type II lobe may
resemble intrusive growth (Jura et al., 2006), in which
one cell expands asymmetrically at the interface of two
adjacent cells. This form of asymmetric growth likely
differs from that which generates lobes that are inde-
pendent of tripartite junctions. There is certainly a need
to distinguish between these different types when one
analyzes phenotypes and gene function. Currently, this
is a weakness of LobeFinder, because the program op-
erates on the coordinates of individual cells and infor-
mation on the cell wall patterns of its neighboring cells
is lost. At present, if a user wishes to distinguish type I
and type II lobes, one can use the graphical output from
LobeFinder to identify the subset of lobes that fall on
three-way cell wall junctions. In the future, we hope to
use a semiautomated cell segmentation program like
CellECT (Delibaltov et al., 2016) to simultaneously ex-
tract cell coordinates from fields of cells and track the
positions of three-way cell wall boundaries.
To quantitatively evaluate the performance of the

algorithm for lobe location, we compared the positions
of the predicted lobes against the manually determined
lobes within a specified tolerance (0.025 radians). If
LobeFinder identified the proper location within the
tolerance, it was identified as a true positive (TP;
Supplemental Fig. S2). If a predicted LobeFinder point
was not within 0.025 radians of a manually identified
point, it was considered a false positive (FP). Missed
lobe points were defined as false negatives (FN).We did
not calculate true negatives, since this would be an
ambiguous number to determine and it would not in-
form the evaluation of the method. Related to these
quantities, we also calculated the sensitivity [TP/(TP +
FN)] and the false discovery rate (FDR) [FP/(TP + FP)].
Both of these measures are used to determine the ef-
fectiveness of the algorithm.
A high sensitivity and a low FDR are the primary

objectives for the application of LobeFinder as a tool for
the reliable and automated measurement of cell shape
properties. Nine different combinations of the param-
eters d and l were tested that covered a wide range of
parameter values. The highest parameter values yiel-
ded decreased sensitivity and increased false positives;
however, there was a fairly broad range of parameter
combinations that yielded a sensitivity of approximately
0.8 and an FDR of approximately 0.25 (Supplemental
Fig. S2). This indicates a relatively lowdependence of the
algorithm on the specific parameters. The optimized
parameter combinations yielded an average sensitivity
of 0.95 or higher and an average FDR of less than 0.2
(Supplemental Fig. S2).

Identification of New Lobes in Time-Lapse Images of
Pavement Cells

The lobe number, shape, and size properties of pave-
ment cells were analyzed in populations of cells at
different intervals of cotyledon development. We ap-
plied the LobeFinder program to identify lobes in three
time-lapse data sets of pavement cell growth. The first

data set represents early growth from 38 h after ger-
mination (HAG) to 56 HAG. This slightly overlaps with
the second data set from 48 to 120 HAG. The third data
set covers 72 to 120 HAG. Data sets 2 and 3 were part of
a previous analysis of pavement cell growth (Zhang
et al., 2011), and the raw images were reanalyzed here
using LobeFinder. Example cells from these three dif-
ferent data sets are shown in Figure 4, A to C. Each
showed combinations of symmetrical lateral expansion,
with data sets 1 and 2 including more cells that initiated
new lobes during the time interval. For example, in the
cell that is representative of the 72- to 120-HAGdata set,
we observed no change in lobe number over the course
of time, but it increased in size (Fig. 4C, left to right). In
contrast, the cell in the 48- to 120-HAG data set initiated
five new lobes (Fig. 4B, left to right), while the cell in the
38- to 55-HAG data set added three new lobes in the
time span of 27 h (Fig. 4A, left to right). There is a great
deal of variability in pavement cell size and lobe
number as a function of cotyledon and leaf develop-
ment (Elsner et al., 2012; Staff et al., 2012). As a result, in
the relatively small windows of time analyzed here,
there are examples in which lobe number and cell area
are not strictly correlated with developmental time
(Table I; Supplemental Table S1). However, differences
in lobe initiation rates of individual cells within the time
intervals were apparent. Overall, the average number
of new lobes per cell was about 2.5 for the 38- to
55-HAG and 48- to 120-HAG populations and 0.5 for
the 72- to 20-HAG population (Table I). The percent-
ages of cells in all data sets that grew new lobes were
33% for 72 to 120HAG, 93% for 48 to 120HAG, and 80%
for 38 to 55 HAG (Table I). These LobeFinder outputs
and the average number of lobes per cell at each time
point (Table I) indicate that lobing events are prevalent
in early stages of growth and that lobing events slow
down at some point between 56 and 72 HAG. These
results are consistent with the conclusions of a previous
study (Zhang et al., 2011).

Additional scalar metric outputs from LobeFinder
also correlate with different phases of pavement cell
growth; however, they do not directly inform the gen-
eration of new lobes. Specifically, for example, the cir-
cularity of the individual cells decreases between the
two time points (Table II), likely due to the increased
expansion of lobes that are initiated primarily in the
first 2.5 d after germination. This would also explain the
observed decreases in the convexity (ratio of hull pe-
rimeter to cell perimeter) and solidity (ratio of hull area
to cell area) of pavement cells. Overall, the identifica-
tion of lobing events and the scalar metrics are consis-
tent with the existence of a permissive developmental
window for active lobe formation early in cotyledon
development.

Another output from LobeFinder that is useful for
cell analyses is a plot of the distance from the refined
hull to the cell boundary, which provides a graphical
representation of the magnitudes and directions of cell
shape change near the cell periphery. This is due to the
fact that, as lobes expand, their height and width
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increase, leading to corresponding changes in the
DTRH plots. At the distal tips of cell protrusions, the
DTRH is zero and corresponds to a lobe point of
the cell of interest in the LobeFinder output. The shape of
the cell boundary between lobes is captured by the con-
tour of the DTRH, which is at a local maximum at the
most concave position between lobes. Therefore, in a

time-lapse experiment, the DTRH plots reflect the local
growth behaviors of the adjacent protruding cell and the
shape change at the interface between the two cells. In
Figure 4, D to F, the DTRHwas plotted for each cell at the
two different time points. The position along the hull is
plotted on the x axis, and this is scaled to the hull length of
the initial time point to enable the DTRH values from

Figure 4. LobeFinder can be used to detect new lobes and quantify growth patterns in time-lapse images. A to C, Examples of raw
images of pavement cellswithmanually segmented cell shapes at three different intervals of cotyledon development. A, Pavement
cell at 38 (left) and 55 (right) HAG. B, Pavement cell at 48 (left) and 120 (right) HAG. C, Pavement cell at 72 (left) and 120 (right)
HAG. The blue boxes indicate the detection of new lobes and their location in the images and on the DTRH plots. D to F, DTRH
plots for pavement cells that were rescaled to their original size. The x axes of these plots are the scaled distance along the convex
hull perimeter at the two different time points to enable visual comparisons of similar relative positions along the cell boundary at
the two time points. The blue line is theDTRHat the initial time point, and the dotted green line is theDTRHat the final time point.
The time points in D to F correspond to those of A to C, respectively, and are shown in the legend for each plot. The blue dots and
red boxes on the x axis identify lobe locations in the initial and final time points, respectively. Bars = 20 mm.

Table I. Lobe number quantification for cotyledon pavement cells at different developmental stages using LobeFinder

For 38 to 55 HAG, n = 10 cells; for 48 to 120 HAG, n = 12 cells; and for 72 to 120 HAG, n = 12 cells.

Parameter
38 to 55 HAG 48 to 120 HAG 72 to 120 HAG

38 h 55 h 48 h 120 h 72 h 120 h

Averaged lobe number 9.60 6 2.68 12.10 6 2.99 8.27 6 2.89 10.87 6 2.59 11.17 6 2.89 11.67 6 2.46
Percentage with lobe initiation 80 93 33
Average new lobes per cell 2.50 6 2.46 2.60 6 1.68 0.50 6 2.07
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different time points to be compared at similar relative
positions along the hull perimeter. During the 72- to 120-
HAG interval (Fig. 4F), growth is highly symmetrical and
lobe initiation is rare (Zhang et al., 2011). The corre-
sponding DTRH plots were consistent with this result,
because the contours of the plots at the two time points
were highly symmetrical with well-aligned peaks. It is
important to note that the peak widths for the later time
points are compressed because the x axis is scaled.
However, as shown previously (Zhang et al., 2011),
pavement cell growth during this phase is not perfectly
symmetrical, and there were subregions of the DTRH
plots that were not symmetrical (Fig. 4F), indicating that
some localwarping of cell shape occurred during growth.
The paired DTRH plots for cells that form new lobes (Fig.
4, E and F) reflected a composite growth behavior. In
some regions of the cell-cell interface, growth appeared
symmetrical, with proportional increases in peak height
and width at similar relative positions. The DTRH plots
also revealed an obvious contribution of polarized growth
to the shape change, because new peaks were detected.
In addition, many of the peaks were shifted in position
along the hull perimeter, reflecting symmetry breaking
during lobe initiation and the accumulation of local
warping during the growth interval.

DISCUSSION

LobeFinder is a novel convex hull-based tool to
quantify the local boundary characteristics of a closed
geometric shape and identify key features such as
pavement cell lobes. The ability of LobeFinder to con-
sistently and accurately identify and position lobes
within a pavement cell is an important advance, be-
cause currently there is no reliable method to quantify
the convoluted shape of pavement cells. Manual defi-
nition of lobe number (Fu et al., 2005; Xu et al., 2010) or a
feature such as the pavement cell neck width (the
shortest distance across the cell between two indenta-
tions; Lin et al., 2013) is subjective and variable. Varia-
tion in human scoring is amajor problem:we document
here significant variability in lobe number scoring, even
among well-trained individuals (Fig. 3, E and G). The
lack of standardized phenotyping methods can con-
tribute to differing conclusions regarding whether a
particular mutant has a pavement cell phenotype (Xu
et al., 2010; Gao et al., 2015). Manual cell scoring is also
time consuming. It requires careful inspection of the cell
boundary and the manual annotation of each feature in
the image file that is scored as a lobe. Skeletonization of

segmented, binary images of cells can identify pave-
ment cell protrusions (Staff et al., 2012), and in some
instances, it can be used to detect significant differences
between mutant and wild-type plants (Le et al., 2006).
However, the skeletonize technique is very inaccurate
and tends to miss approximately 40% of all lobes (Fig.
3G). LobeFinder has amuch greater accuracy compared
with the skeletonize method and performs with an ac-
curacy that is only achieved by averaging the votes of
several individuals with extensive experience in pave-
ment cell analysis (Fig. 3G).

The availability of an accurate method to directly
identify pavement cell lobes is important because scalar
shape descriptors such as circularity are sensitive to
multiple features of a cell geometry and do not contain
information on the local cell features that are most
useful for understanding cell growth behavior. For
example, differences between cells in their scalar
descriptors could reflect differences in lobe number,
reduced lobe expansion, or altered diffuse growth in the
midregion of the cells. This point is important because
it is often assumed that any mutant with a reduced
perimeter-to-area ratio has a lobe initiation defect.
LobeFinder directly analyzes the local geometry of the
cell and identifies lobes. In this regard, it is a powerful
phenotyping tool that can be used to compare popu-
lations of cells and cell shape over time. However, the
LobeFinder program is not perfect, and because of the
local shape and spacing thresholds that are used for
lobe detection, there are instances, most often along
extended domains of low curvature, in which false
positives occasionally are reported. Overall, Lobe-
Finder has great potential for the community, and we
anticipate that LobeFinder, provided as a user-friendly
program in MatLab (Supplemental Fig. S3), will allow
others to use this program to analyze mutants and ob-
jectively test for direct effects on lobe initiation.

A major advantage of LobeFinder is that it creates a
coordinate system to quantify local growth behaviors at
the interface of two cells. Alternative approaches to lobe
detection, such as quantification of the local curvature
of the cell perimeter using variation in the tangent to the
cell boundary as a function of cell perimeter, could
operate on splined images to identify regions of local
curvature that accurately identify lobes. However, this
strategy would not generate a coordinate system to
analyze growth. Here, we use LobeFinder and plots of
the DTRH in time-series data to illustrate a method to
quantify local growth behaviors of an irregularly shaped
cell (Fig. 4). For example, the DTRH plots could be

Table II. Cell shape descriptors of cells analyzed with LobeFinder

Feature
38 to 55 HAG 48 to 120 HAG 72 to 120 HAG

38 h 55 h 48 h 120 h 72 h 120 h

Circularity 0.60 6 0.09 0.46 6 0.11 0.62 6 0.10 0.49 6 0.11 0.45 6 0.13 0.42 6 0.12
Roundness 0.69 6 0.06 0.63 6 0.06 0.70 6 0.09 0.64 6 0.09 0.63 6 0.08 0.61 6 0.07
Convexity 0.93 6 0.04 0.85 6 0.07 0.94 6 0.03 0.87 6 0.06 0.84 6 0.10 0.82 6 0.10
Solidity 0.86 6 0.03 0.79 6 0.05 0.85 6 0.06 0.80 6 0.06 0.77 6 0.06 0.75 6 0.05
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analyzed further in time-lapse experiments to generate
spatial maps of how the magnitude and direction of
growth at the interface of two cells change. These plots
clearly indicate the timing, location, and pattern of
polarized growth along the interface of interdigitating
pavement cells. Importantly, these plots do not reveal
the subcellular patterns of growth that explain the
shape change. To solve this problem, convex hull-based
growth analysis coupled with the use of fiducial marks
on the cell wall to track growth patterns (Zhang et al.,
2011; Elsner et al., 2012; Staff et al., 2012) could provide
improved methods to analyze the subcellular hetero-
geneity in polarized growth. While this article was
being written, a report appeared in which externally
applied particles were used to track the growth patterns
of the outer wall in fields of developing pavement cells
(Armour et al., 2015). The utility of externally applied
particles to analyze the growth of the anticlinal wall is
uncertain. However, the combined use of DTRH plots,
high-density cell wall marking, and time-lapse imaging
has the potential to reveal how the polarized growth of
individual cells and cell clusters can operate at broader
spatial scales to dictate the growth patterns of leaf
sectors and even whole organs (Zhang et al., 2011;
Kuchen et al., 2012; Remmler and Rolland-Lagan,
2012).

LobeFinder also has immediate applications in terms
of more quantitatively dissecting the molecular control
of lobe initiation. Hull-based methods and the DTRH
plots establish a perimeter coordinate system onto
which the temporal and spatial patterns of lobe for-
mation can be graphed (Fig. 4). This is a boon for further
analysis, such as the correlation of spatial geometric
features with the localization of the cell wall and in-
tracellular signaling and structural factors that are
believed to control symmetry breaking. Specifically,
LobeFinder can provide the convex hull coordinate
system to test for correlations between the local accu-
mulation of proteins such as auxin efflux carriers (Fu
et al., 2005; Xu et al., 2010) or microtubules (Panteris
et al., 1993; Qiu et al., 2002; Panteris and Galatis, 2005;
Ambrose et al., 2007; Kirik et al., 2007; Zhang et al.,
2011) and lobe initiation. In this manner, an array of
GFP-tagged proteins can be tested to determine those
whose localization and activity at the cell cortex specify
symmetry-breaking events.

Currently, the greatest limitation for LobeFinder is
that it operates on cell coordinates from manually
segmented cells. Manual segmentation is a reliable, but
time-consuming, process, presenting a major bottle-
neck for high-throughput phenotyping. As discussed
previously, the use of individual, segmented cells also
makes it impossible to distinguish between type I and
type II lobes, which complicates one’s ability to test
for alterative genetic control mechanisms and differing
contributions of the lobe types to cell expansion. The
obvious solution is an automated cell segmentation
program that accurately extracts cell boundary coor-
dinates and marks three-way cell wall junctions in the
data set. Currently, there is no existing segmentation

method to accurately extract pavement cell coordinates
from fields of cells and track three-way junctions.
However, the development of watershed-based cell
segmentation coupled with user-guided validation in a
program like CellECT (Delibaltov et al., 2016) has the
potential to be integrated with LobeFinder to create a
more robust and efficient cell analysis pipeline.

We show here that LobeFinder is an effective new
tool for pavement cell phenotyping and growth anal-
ysis. We believe that this algorithm has a broader utility
for the quantification of many lobed cell types (Panteris
and Galatis, 2005) and the analysis of objects with
closed and highly irregular geometric shapes at any
spatial scale. For example, there is great interest in the
quantitative analysis of leaf shape, and the complex
boundary shapes of many types of leaves could be an-
alyzed with LobeFinder. In this context, LobeFinder,
could complement other leaf shape analysis programs
like LeafProcessor (Backhaus et al., 2010). Similar hull-
based methods could operate on projected images of
shoots and roots to analyze whole-plant architecture
over time. We also believe that LobeFinder could have
broad applications in other fields, such as human medi-
cine and environmental science. For example, the pro-
gression of irregularly shaped tumors could be quantified
over time and correlated with other features such as
tumor location or drug treatment regimes. The local
spatial dynamics of spreading plumes of contamination,
floods, and the retraction of glaciers could be similarly
analyzed and tested for cross correlations with any
variable of interest. Our efforts will focus on the use and
integration of LobeFinder within a completely auto-
mated image-analysis platform, with the goal of accel-
erating discovery in the field of leaf morphogenesis.

MATERIALS AND METHODS

Annotation and Use of the LobeFinder Program

TorunLobeFinder, start an instanceofMatLabon theworkstation (PC,MAC,
or Linux) and change theworking directory to the install location of LobeFinder.
The script and all functions that make up LobeFinder are located in oneMatLab
m-file: LobeFinder_GUI.m. To run LobeFinder, first create a directory to which
all regions of interest (ROIs) of cell perimeter coordinates obtained by manual
segmentation are saved. Start the LobeFinder GUI by typing LobeFinder_GUI
at the MatLab workspace prompt and, Enter. . This will open an instance of
the LobeFinder GUI in a separate window (Supplemental Fig. S3). To import
files, click on the Open Folder button to select the folder that contains the ROI
files. At this point, one can select the checkboxes for the types of data output
files to be generated (CSV, Figures, or MatLab file) as well as the resolution of
the images from which the ROIs were extracted. Once the folder and options
have been selected, click on the Run button to start the ROI processing. The total
number of ROI files being processed will be shown in the image number box on
the GUI. To view the results from the LobeFinder processing, select the image
number from the image number box. This will populate the GUI with the
measured parameters as well as an image of the refined hull, the cell boundary,
identified lobe points, and DTRH plot. Moving the cursor over the perimeter of
the cell will allow its corresponding position on the DTRH plot to be seen.
Depending on the output options selected, a new folder in the directory of
LobeFinder will be created ([Output]_NameOfInputFolder) with up to three
folders (CSV, FIG_cell, and FIG_dtrh). The CSV folder contains one MatLab
mat-file Lobe_result.mat, which contains all results and geometric scalar
properties for each ROI in the directory, a CellDescriptors.csv file containing all
single-value measurements such as area, perimeter, etc. for all ROIs, and
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individual DTRH_[nameOfROI] files containing xy values for DTRH plots.
FIG_cell and FIG_dtrh folders will contain images of cells and DTRH plots as
displayed in the LobeFinder GUI. ROILobeFinder is available for download at
the Dryad Digital Repository (http://doi.org/10.5061/dryad.cs78t).

Plant Material and Growth Conditions

Arabidopsis (Arabidopsis thaliana) seeds were grown on one-half-strength
Murashige and Skoog medium with 1% Suc and 0.8% Bacto agar under con-
stant illumination at 22°C. Seedswere treatedwith a 6-h light pulse, cold treated
for 3 d, and then placed in the growth chamber. Germination was checked 36 h
after plating, and only seedlings with a barely visible radicles were used for
further analysis.

Time-Lapse Imaging of Lobe Initiation

For time-point imaging, cell outlines were detected using a tubulin:GFP
marker for data sets 2 and 3 as described previously (Zhang et al., 2011). For data
set 1, from 38 to 55 HAG, 10 cells were analyzed. For data set 2, from 48 to
120 HAG, 12 cells were analyzed. For data set 3, from 72 to 120 HAG, 12 cell
were analyzed. For data set 1, the PIN7:GFP (Blilou et al., 2005) plasma mem-
brane marker was used. The seedlings were mounted in water using a petro-
leum jelly gasket to form a chambered microscope slide. After initial imaging,
the slides were returned to the growth chamber until the next imaging session.
Samples were imaged using a Bio-Rad 2100 laser scanning confocal microscope
mounted on a Nikon Eclipse E800 stand. Images were obtained with a 603 1.2
numerical aperture water objective. Samples were excited with a 488-nm laser,
and fluorescence signal was collected using a 490-nm long-pass dichroic and a
500- to 550-nm band-pass emission filter. Selected planes from confocal image
stacks were converted to maximum intensity projects and were traced with the
polygon selection tool in FIJI 4.0 (Schindelin et al., 2012). The coordinates from
the ROIs from the manually segmented cells were used as the input for Lobe-
Finder.

Supplemental Data

The following supplemental materials are available.

Supplemental Figure S1. Examples of raw confocal images of pavement
cells and skeletonization results for the 15 cells that were used to vali-
date LobeFinder.

Supplemental Figure S2. Sensitivity and accuracy analysis of LobeFinder
performance.

Supplemental Figure S3. Snapshot of the graphical user interface of Lobe-
Finder.

Supplemental Table S1. Morphological properties of pavement cells mea-
sured using LobeFinder.
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