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Chloroplasts originated from the endosymbiosis of ancestral cyanobacteria and maintain transcription and translation
machineries for around 100 proteins. Most endosymbiont genes, however, have been transferred to the host nucleus, and the
majority of the chloroplast proteome is composed of nucleus-encoded proteins that are biosynthesized in the cytosol and then
imported into chloroplasts. How chloroplasts and the nucleus communicate to control the plastid proteome remains an
important question. Protein-degrading machineries play key roles in chloroplast proteome biogenesis, remodeling, and
maintenance. Research in the past few decades has revealed more than 20 chloroplast proteases, which are localized to specific
suborganellar locations. In particular, two energy-dependent processive proteases of bacterial origin, Clp and FtsH, are central to
protein homeostasis. Processing endopeptidases such as stromal processing peptidase and thylakoidal processing peptidase are
involved in the maturation of precursor proteins imported into chloroplasts by cleaving off the amino-terminal transit peptides.
Presequence peptidases and organellar oligopeptidase subsequently degrade the cleaved targeting peptides. Recent findings
have indicated that not only intraplastidic but also extraplastidic processive protein-degrading systems participate in the
regulation and quality control of protein translocation across the envelopes. In this review, we summarize current knowledge of
the major chloroplast proteases in terms of type, suborganellar localization, and diversification. We present details of these
degradation processes as case studies according to suborganellar compartment (envelope, stroma, and thylakoids). Key
questions and future directions in this field are discussed.

Over 1 billion years of plastid evolution since the
endosymbiosis of ancestral cyanobacteria (Douzery
et al., 2004), chloroplast biogenesis has gained com-
plexity, with large sets of the endosymbiont genes be-
ing transferred to host nuclear genomes. While only
100 endosymbiont genes remain in the plastid genome,
with the corresponding proteins biosynthesized there,
the nuclear genes have often gained complexity by
duplication and diversification of the original endo-
symbiotic genes. This complexity raises numerous
questions regarding (1) at what level gene expression is
coordinately controlled, (2) what molecules coordinate
the cross talk between chloroplasts and the nucleus, (3)
how proteins get across membranes and become
imported into chloroplasts, and (4) how the stoichi-
ometries of nucleus- and chloroplast-encoded subunits
within individual chloroplast protein complexes such
as photosystems and Rubisco are strictly maintained.

Given these questions, chloroplast biogenesis has
remained a central subject in plant physiology for the
last few decades (Jarvis and López-Juez, 2013). In our
view, the aforementioned questions point to the im-
portance of protein homeostasis and posttranslational
modification, in which proteases play a dominant role.
Therefore, we focus on the major events of proteolysis
governed by chloroplast proteases, paying particular
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c The 20 known chloroplast proteases include two types, proces-
sive proteases and processing peptidases, that shape the chloro-
plast proteome.
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c Stromal proteases function in sequential preprotein maturation,
environment-dependent metabolic regulation, and mineral ho-
meostasis; thylakoid proteases are involved in protein maturation
and quality control of photosynthetic complexes.
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attention to what kinds of proteases are present and
how they exert their functions in chloroplasts.
In this review, we describe the major protease ma-

chineries and their intraorganellar functions in proteo-
lytic regulation of the intraplastid proteome landscape,
the latter of which is addressed as three case studies
covering the different chloroplast compartments (en-
velope, stroma, and thylakoids). More detailed de-
scriptions of each chloroplastic protease can be found in
previous reviews (Kato and Sakamoto, 2010; Clarke,
2012; Teixeira and Glaser, 2013; Kmiec et al., 2014;
Adam, 2015; Nishimura and van Wijk, 2015; van Wijk,
2015). In particular, readers are encouraged to refer to
the recent excellent review by vanWijk (2015), in which
the regulation of proteolytic machineries is thoroughly
described, not only in plastids but also in mitochondria
and peroxisomes.

OVERVIEW OF THE MAJOR PROTEASES
IN CHLOROPLASTS

More than 20 proteolytic machineries have been
identified in chloroplasts through biochemical, genetic,
bioinformatic, and proteomic approaches during the last
two decades (van Wijk, 2015). Figure 1 illustrates our
current understanding of chloroplast proteases. Most
chloroplast proteases originated from respective bacterial

prototypes. During plastid evolution, they have been
duplicated and diversified in terms of structure and
function (Box 1). Many are metalloproteases or Ser pro-
teases, and a few are Asp proteases. Genetic studies of
model plants have demonstrated the physiological im-
portance of these proteases (for review, see Kato and
Sakamoto, 2010). Due to space constraints, we outline
only the major intraplastid proteolytic machineries, with
emphasis on two major processive proteases, Clp
and FtsH.

Processive Proteases Clp and FtsH

Clp in the stroma and FtsH on thylakoid membranes
are the major conserved ATP-dependent multimeric
protease complexes catalyzing processive degradation
in their respective suborganellar compartments (Box 2).
Chloroplast Clp and FtsH both have two characteristic
domains of bacterial origin, namely an AAA+ (for
ATPase associated with various cellular activities) cha-
perone domain for substrate recognition and unfolding
and a proteolytic domain for degradation, which are
separated into individual subcomplexes for Clp or are
organized together within a single protomer for FtsH. In
the course of the evolution of photosynthetic organisms,
these proteolytic enzymes have been converted from
homomeric to heteromeric macromolecular complexes.
Despite the complicated heteromultimeric compositions

Figure 1. Intraplastid proteases in land plants. Land plant chloroplasts contain three types of proteolytic machines, namely
metalloproteases, Ser proteases, and Asp proteases, which are colored in orange, yellow, and blue, respectively.
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of these two enzyme complexes, their basic characteris-
tics are well studied, as described below. Another ATP-
dependent Ser protease is long filament phenotype
(Lon), which is formed by six to seven protomers, each
comprising an AAA domain and a protease domain
with a catalytic SK dyad (Rotanova et al., 2004). Arabi-
dopsis (Arabidopsis thaliana) possesses four Lon proteins,
one of which, LON4, is found in the thylakoid mem-
brane, although its precise function in chloroplasts has
not been elucidated (Ostersetzer et al., 2007).

Clp

Clp is an ATP-dependent Ser-type protease complex
that comprises a chaperone subcomplex and a tetra-
decameric proteolytic core. The chaperone com-
plex is composed of ClpC1/C2/D, each presumably

constituting homooligomers, with ClpC1 as the ma-
jor chaperone. The ClpC/D structure consists of an
N-terminal region called the N domain as a sub-
strate/adaptor docking site, two ATPase domains in-
volved in substrate unfolding and translocation into the
core, and an IGF motif (for Ile-Gly-Phe) and an R motif
(named for its characteristic Arg residue), both required
for core docking, with ClpC but not ClpD containing a
uvrB/C motif of unassigned function (Nishimura and
van Wijk, 2015). ClpC/D can recognize substrates di-
rectly (Rosano et al., 2011; Bruch et al., 2012; Huang
et al., 2016), although recognition of a subset of proteins
is mediated by a dedicated binary adaptor consisting of
ClpS1 and ClpF (Nishimura et al., 2013, 2015). The basic
ClpS structure has an N-terminal extension for sub-
strate delivery to the chaperone and a C-terminal core
domain for substrate recognition and chaperone bind-
ing (Dougan et al., 2002; Zeth et al., 2002; Erbse et al.,
2006; Rivera-Rivera et al., 2014). ClpF is a plastid-
specific ClpS1-interacting protein with a tripartite
structure harboring a unique N-terminal domain for
adaptor-substrate-chaperone binding, a uvrB/C motif
for chaperone interaction, and a YccV-like domain of
unknown function, the last two of which likely are
derived from two distinct proteins of bacterial origin
(Nishimura et al., 2015). The ClpS prototype functions
in the N-end rule pathway, in which the half-life of a
protein correlates with the identity of its N-terminal
amino acid (Erbse et al., 2006; Varshavsky, 2011). The
presence of another substrate recognition and delivery
mechanism involving the binary adaptor in chloro-
plasts has been suggested (Nishimura et al., 2015).

The Clp core consists of two asymmetric rings, namely
the P ring containing catalytic subunits ClpP3/P4/P5/P6
in a 1:2:3:1 ratio and the R ring containing proteolytically
active ClpP1 (the only chloroplast-encoded subunit)
and proteolytically inactive ClpR1/R2/R3/R4 pro-
teins in a 3:1:1:1:1 ratio (Olinares et al., 2011). Clp core
assembly and stabilization require plant-specific ac-
cessory proteins ClpT1/2 (Peltier et al., 2004; Sjögren
and Clarke, 2011; Clarke, 2012; Kim et al., 2015). Loss-
of-function mutants for the ClpC1 chaperone and the
ClpPRT core showpale-green, seedling-lethal, or embryo-
defective phenotypes, whereas knockouts for two
adaptor proteins and ClpC2/D display no visible ef-
fects, underscoring their distinct contributions to plant
development.

FtsH

FtsH is a membrane-associated ATP-dependent zinc
metalloprotease complex whose protomer consists of
an AAA domain and a proteolytic domain containing a
metal-binding H-E-x-x-H motif (Ito and Akiyama,
2005). Land plants possess multiple FtsH orthologs.
Nine out of 12 Arabidopsis FtsH homologs are found in
the chloroplast, with the fourmajor isoforms (FtsH1/2/
5/8) all thylakoid localized via their single transmem-
brane domains. Interchangeability and functional re-
dundancy have been observed between FtsH5 and

Box 1. Evolutionary Diversification of Proteases in
Photosynthetic Organisms

Chloroplast proteases appear to have diverged into multiple
isoforms during the evolution of photosynthetic organisms. It is
noteworthy that primitive protease machineries in proteobacteria,
like those in Escherichia coli, are present as homooligomeric
assemblies. By contrast, the cyanobacterial proteases have
gained multiple paralogous components, leading to the
emergence of heterooligomeric structures. The complexity of
protease organization has much increased in land plants.
Representative examples include chloroplast FtsH, Deg, and
Clps (see table below). The FtsH diversification has produced
distinct heterohexameric protease complexes each localized at
different intraplastid compartments. The chloroplast Deg
proteases have acquired quite diverse domain organizations and
function at specific suborganellar locations. The evolution of
nonphotosynthetic organisms into photosynthetic organisms has
been accompanied by the occurrence of a proteolytically inactive
subunit in the stromal Clp core, although the physiological relevance
of this is not known. Furthermore, plastid- or plant-specific Clp
components have been generated through endosymbiosis. These
structural complexities and heterogeneities represent critically
important but difficult aspects of chloroplast protease studies.
Structural diversification is related to specific functions and,
thus, increased physiological importance. For instance, plastid Clp
is essential for plant survival, growth, and development, while the
proteobacterial prototype is nonessential. FtsH, Deg, and Clps
all have gained crucial roles in chloroplast biogenesis and
differentiation.

Box 1 Table. Multiplication of the prokaryotic-type protease subunits
through evolution

The numbers of protease subunits are indicated. For Clps, their
chaperones, adaptors, and accessary proteins are not counted.

Protease

Proteobacteria

(Escherichia

coli )

Cyanobacteria

(Synechocystis PCC

6803)

Chloroplast

(Arabidopsis)

FtsH 1 4 9
Deg 1 3 5
Clp 1 4a 9b

aA proteolytically inactive core subunit is included. bFour cat-
alytically inactive core components are included.
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FtsH1 (type A) and between FtsH2 and FtsH8 (type B;
Yu et al., 2004, 2005; Zaltsman et al., 2005), suggesting
that FtsH exists as a hexameric heterocomplex with two
types of isoforms. The stoichiometry of type A to type B
subunits in an FtsH complex is estimated as 2:4
(Moldavski et al., 2012), whereas the cyanobacterial
prototype comprises type A and B subunits in a 3:3 ratio
with an alternating arrangement (Boehm et al., 2012).
FtsH2 and FtsH5 are targeted to the thylakoid via the
TAT (for twin-Arg translocation) pathway and the SEC
(for secretion) pathway, respectively (Rodrigues et al.,
2011). Leaf variegation phenotypes are observed in
mutants for FtsH2 (also known as YELLOW VARIE-
GATED2 [VAR2]) and FtsH5 (VAR2; Fig. 2). FtsH2 and
FtsH5 are the most abundant and the second most
abundant FtsH isomers, respectively, reflecting the se-
verity of their loss-of-function phenotypes of leaf vari-
egation compared with the two other minor subunits,
whose knockouts show wild-type-like appearance

(Sakamoto et al., 2003; Zhang et al., 2010). ROS, in-
cluding superoxide radicals and hydrogen peroxide
(the former of which is shown in Fig. 2), are detected in
the green but not the white leaf areas, specifically in the
chloroplasts, of the var2 mutant grown even under
normal light conditions, indicative of its persistent
photooxidative stress (Kato et al., 2009). A series of
genetic studies in Arabidopsis identified trans-acting
factors suppressing var1/var2 leaf variegation; these
included Clp subunits, translation factors, a penta-
tricopeptide repeat protein, a pseudouridine synthase
homolog, a plastid transcriptionally active chromo-
some component, a prokaryotic-like peptide deformy-
lase, ribosomal proteins, circularly permuted GTPase
family proteins, and a sigma factor (Park and Roder-
mel, 2004; Miura et al., 2007; Yu et al., 2008, 2011; Liu
et al., 2010a, 2010b, 2013; Adam et al., 2011; Wu et al.,
2013; Powikrowska et al., 2014; Hu et al., 2015; Ma et al.,
2015; Qi et al., 2016). Several models have been pro-
posed to explain leaf variegation suppression, but the
precise mechanism remains elusive (Miura et al., 2007;
Yu et al., 2008).

Another set of FtsH isomers, FtsH7/9/11/12, is
present in the envelope (Fig. 1; Wagner et al., 2012).
FtsH7/9 share high sequence similarity and, therefore,
have been speculated to constitute a heteromeric pro-
tease complex. FtsH11 is involved in high-temperature
tolerance, which is reminiscent of its bacterial prototype
(Chen et al., 2006, 2007). High-light responses in the
ftsh11 mutant are normal, unlike the variegated mu-
tants defective in FtsH2/5. FtsH11 is a potential target
for an intramembrane protein degradation pathway
(Knopf et al., 2012). FtsH11 also is localized in mito-
chondrial inner membranes, where it seems to act in
parallel with FtsH4 (Urantowka et al., 2005). FtsH11 has
a unique N-terminal extension of unknown function.
Although the proteolytic domain of mitochondrial
FtsH11 faces the inner membrane space, similar to
FtsH4 and the yeast ortholog, its membrane topology in
the chloroplast is not known.

Box 2. Architecture and Action of the Processive Proteases

Three bacterial-like ATP-hydrolyzing protein-degrading
enzymes, Clp, FtsH, and Lon, catalyze processive degradation.
Their architecture consists of the AAA+ chaperone ring and the
barrel-shaped protease complexes (see fig. below). The catalytic
center is positioned inside the proteolytic chamber so as to avoid
nonspecific degradation of proteins. Substrate access to the
protease domain is governed by the chaperone machinery that
directly recognizes the protein substrate. The protein is then
unfolded and translocated continuously in an ATP-dependent
manner to and inside the protease chamber, where it undergoes
endoproteolytic cleavage. This chaperone-mediated energy-dependent
continuous supply of the substrate proteins allows for targeted
processive proteolysis. In Clp, the chaperone and the protease
domains are separated into two different assemblies, and
small peptide fragments can pass directly through a narrow
entrance pore to the protease chamber, where they are
degraded. However, folded proteins are unable to enter the
pore, and substrate access is controlled at the chaperone gate.
Such substrate access control and degradation mechanisms also
are found for the cytosolic ubiquitin-dependent proteasomal
degradation systems.

Box 2 Figure. Stucture of the archetypal processive protease. Side
view of the soluble domain structure of the hexameric FtsH protease
from a thermophilic bacterium Thermus thermophiles is shown as a
representative structure of the processive protease. Its characteristic
AAA1 unfoldase chaperone and protease domains are indicated.
The image of the FtsH structure (PDB ID: 4EIW) was obtained from
the Protein Data Bank of Japan (PDBj).

Figure 2. Leaf variegation in the Arabidopsis var2 mutant lacking
FtsH2. Four-week-old wild-type Columbia (Col) and var2 leaves are
shown, along with in situ detection of reactive oxygen species (ROS;
superoxide radicals) visualized by NBT staining (blue color). The right
two images show closeup views of variegated leaves where ROS is
confined to green sectors and chloroplasts. Images are from Kato et al.
(2009).
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The other chloroplastic isomer, FtsH6, is dispens-
able for normal growth under high light and natural
environmental stress conditions. However, its sub-
organellar location and precise function remain unclear
(Wagner et al., 2012; Lu, 2016).

Endopeptidase Deg Participating in Processive Proteolysis

Deg (originally termed DegP, for degradation of per-
iplasmic proteins; also known as high-temperature re-
quirement A) also is well known to function together
with the processive protease FtsH in chloroplasts (see
below). Deg is an ATP-independent Ser-type endopep-
tidase that harbors an N-terminal proteolytic domain
with an HDS catalytic triad and C-terminal PDZ (for
PSD-95/SAP90, disc large, and ZO-1) domain(s) in-
volved in protein-protein interaction (Schuhmann and
Adamska, 2012). Deg1/5/8 and Deg2/7 are present in
the lumenal and stromal sides of the thylakoid mem-
brane, respectively (Fig. 1). The number of PDZ domains
differs amongDegs: there is one inDeg1/8, two inDeg2,
four in Deg7, and none in Deg5 (Schuhmann and
Adamska, 2012). Monomeric Deg forms a trimer, with
each protomer connected via the protease domain, and
trimeric units assemble through interactions between the
PDZ domains into higher-ordered oligomers, including
hexamers (Clausen et al., 2002). For example, Deg1 un-
dergoes a conformational transition from its inert mon-
omer through the trimeric intermediate to the active
hexamer upon lumenal acidification (Kley et al., 2011).
Deg7 has a characteristic primary structure comprising
one active and one degenerated protease domain with
four PDZ domains. Its trimerization is mediated by the
degenerated protease domains (Schuhmann et al., 2011).
Deg2 possesses two PDZ domains (PDZ1 and PDZ2)
and forms a hexamer by dimerization of trimers through
interactions of the PDZ2 domain with the protease do-
main and with PDZ1, but the hexamer is quite rigid in
structure and rather inactive, whereas a higher-ordered
structure is suggested to represent the active state (Sun
et al., 2012). Proteolytically inactive Deg5 and proteo-
lytically active Deg8 together constitute a stable hetero-
hexameric complex in a 1:1 ratio (Sun et al., 2007).

Processing Proteases

Most plastid proteins are encoded in the nuclear ge-
nome and biosynthesized in the cytosol as preproteins
bearing N-terminal transit peptides, followed by trans-
envelope protein import TIC/TIC channels (Jarvis and
López-Juez, 2013). Imported preproteins are subjected
to sequential proteolytic processing for transit peptide
cleavage and maturation. Many thylakoid proteins,
including photosynthetic proteins of the thylakoid
membrane, are subsequently sorted to their proper lo-
cations through bacterial-like SEC, TAT, and signal
recognition particle (SRP) pathways. Their N-terminal
bipartite transit peptides, which consist of a thylakoid

transfer signal (TTS) following the transit peptide, also
are cleaved by limited proteolysis (Celedon and Cline,
2013).

Stromal processing peptidase (SPP) is a metal-
loendopeptidase that removes transit peptides from
preproteins with broader substrate specificity (Richter
and Lamppa, 1998). Transit peptide degradation in-
volves one or two isoforms of the presequence peptidase
(PreP1/2), which belongs to a metalloendopeptidase
family (Stahl et al., 2002; Bhushan et al., 2003, 2005;
Moberg et al., 2003). Organellar oligopeptidase (OOP)
is another zinc metalloprotease that participates in
targeting peptide degradation. OOP degrades peptides
with lengths of eight to 23 amino acid residues but fails
to act on folded proteins, consistent with its catalytic
cavity size, as in the case of PreP1/2 (Kmiec et al., 2013,
2014). The OOP-null mutant phenotype is wild type
like, but genetic interaction with the prep1 prep2 double
mutant is observed, indicating complementary func-
tions for OOP and PreP1/2 (Kmiec et al., 2013).

Arabidopsis has three isoforms of the plastidic type I
signal peptidase I family, namely Plsp1 and Plsp2A/B
(Hsu et al., 2011). Thylakoidal processing peptidase
(TPP) is the integral membrane protease with a lumen-
facing Ser/Lys-type proteolytic domain, and it cleaves
TTSs off preproteins (Chaal et al., 1998). Plsp1 functions
as the TPP in maturation of a subset of the SEC/TAT
substrates and is necessary for proper thylakoid for-
mation (Endow et al., 2010; Shipman-Roston et al.,
2010; Midorikawa et al., 2014). Plsp1 also is targeted to
the envelope, where it participates in TOC75 precursor
processing (Inoue et al., 2005; Shipman and Inoue,
2009). The biochemical properties and physiological
functions of Plsp2A/B are currently unclear.

C-terminal processing protease, a monomeric Ser-
type protease that cleaves off a C-terminal extension for
maturation of the D1 precursor protein, is another type
of processing peptidase in the thylakoid lumen
(Anbudurai et al., 1994; Fujita et al., 1995; Oelmüller
et al., 1996; Satoh and Yamamoto, 2007; Che et al.,
2013). Its basic structure contains a PDZ domain for D1
C-terminal binding and a protease domain with an SK
dyad for proteolysis (Liao et al., 2000).

CASE STUDIES OF PROTEOLYTIC REGULATION OF
CHLOROPLAST PROTEINS

Following the above overview of the major protease
machineries in the chloroplast, we here present three
case studies of proteolytic regulatory processes based
on their intraorganellar compartments, namely the en-
velopes (case 1), stroma (case 2), and thylakoid mem-
branes (case 3). In case 1, recently discovered regulation
and quality control mechanisms of protein import
across the outer and inner envelopes by the actions of
extraplastid as well as intraplastid protein degradation
machineries are illustrated. Case 2 describes multiple
proteolytic events involving the stromal processive
protease or the processing peptidases. Examples of
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environmentally responsive proteolysis also are in-
cluded. Finally, in case 3, proteolytic functions in thy-
lakoid protein biogenesis, homeostasis, and quality
control are exemplified. These proteolytic events are
graphically summarized in Figure 3.

Case 1: Regulation and Quality Control of Protein Import
across the Envelopes (26S Proteasome and Clp)

Proteolytic Reorganization of Protein Import Machinery by
the Cytosolic Ubiquitin-Proteasome System

Jarvis and coworkers demonstrated that the ubiquitin-
proteasome system regulates protein import across the
chloroplast outer envelope through the degradation of
TOC components. Genetic screening for the suppressors
of a TOC33 knockout mutant (plastid protein import1
[ppi1]) identified a RING-type ubiquitin E3 ligase, SUP-
PRESSOR OF PPI1 LOCUS1 (SP1; Ling et al., 2012). SP1

has a cytosolically exposed RING finger domain for
ubiquitination and two transmembrane domains for
integration into the outer envelope, where it recognizes
TOC components, including TOC75, TOC159, and
TOC33, through its intermembrane space domain. SP1
ubiquitinates these client proteins for proteasome-
mediated proteolysis (Fig. 3). The TOC complexes use
different receptor isoforms for the recognition of distinct
sets of preproteins (Paila et al., 2015). Therefore, SP1
functions in plastid proteome remodeling through re-
organization of the TOC constituents, thereby regulating
organellar differentiation in response to environmental
context. The sp1 mutant shows inefficient deetiolation
upon illumination and delayed chloroplast-to-
gerontoplast transition during dark-induced senes-
cence, whereas the SP1 overexpressor exhibits enhanced
deetiolation and senescence (Ling et al., 2012). Whether
the TOC reorganization involving the ubiquitin-
proteasome system accounts for proteomic changes

Figure 3. Proteolytic regulation of intra-
plastid proteome homeostasis. The
scheme shows multiple events in the
regulation of chloroplast protein ho-
meostasis, which involves not only
intraplastidic but also extraplastidic
protein degradation machineries. a.a.,
Amino acids.
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during the other plastid differentiation stages deserves
future investigation.

Interestingly, genetic studies have suggested the
involvement of SP1 in abiotic stress responses
through proteolytic regulation of the protein-import
apparatus (Ling and Jarvis, 2015). The Arabidopsis
genome encodes two SP1 homologs, SP1-LIKE1/2
(SPL1/2), both of which are outer envelope proteins.
SPL1 is the closest homolog of SP1, but its over-
expression failed to complement the sp1 mutation,
likely due to distinct target specificity (Ling et al.,
2012). Potential ligands for these E3 ligases include
other outer envelope proteins such as enzymes in-
volved in lipid metabolism, regulators for chloroplast
division/movement, and an envelope-associated
PHD transcription factor mediating retrograde signal-
ing (Huang et al., 2013).

Quality Control of Protein Import by Clp

A portion of the ClpC chaperone present in chloro-
plasts is associated with the inner envelope mem-
branes, where it is found in complexes with the protein
translocation machinery (Akita et al., 1997; Nielsen
et al., 1997; Kouranov et al., 1998). The N-terminal do-
main of ClpC is important for its envelope localization
(Chu and Li, 2012). The ClpC protein associates with
TIC110 but not with TIC40/55 (Flores-Pérez et al.,
2016). Recently, it has been demonstrated that, along
with ClpC chaperones, the ClpPR core also is attached
to envelope membranes, whereas ClpD is localized
exclusively in the stroma (Sjögren et al., 2014; Fig. 3).
Through quantitative analysis of the ClpC-ClpPR stoi-
chiometry, all envelope ClpC proteins (30% of total
ClpC) are presumed to function together with the
proteolytic core. Clp is unlikely to be involved in the
maintenance of the TIC machinery itself (Sjögren et al.,
2014). Rather, it seems to participate in a protein quality
control mechanism for surveying preproteins being
released from the TIC complex, in particular during
transit peptide processing and subsequent refolding,
to ensure the integrity of the chloroplast proteome
(Sjögren et al., 2014). Indeed, the protein import effi-
ciency is reduced in mutants for the proteolytic core as
well as the chaperones. In addition, mutated Clp cha-
perone that is defective in protease core interaction fails
to import proteins efficiently despite its normal enve-
lope association (Flores-Pérez et al., 2016). Clp chape-
rones have the intrinsic ability to bind the N-terminal
transit peptide as well as to renature nonnative proteins
(Rosano et al., 2011; Bruch et al., 2012). ClpC interac-
tions with the transit peptide and mature regions of
preproteins being imported were detected recently
(Huang et al., 2016). These observations suggest the
involvement of the Clp system in clearing unprocessed
or misfolded proteins generated during import. Alter-
natively, proteins being imported could aggregate and
become stuck in the import channel. Such protein ag-
gregates would have to be removed proteolytically for
efficient protein translocation.

Comparative leaf proteomic studies of the Clp
core mutants have shown a drastic loss of photo-
synthetic machineries that consist of numerous
nucleus-encoded, imported proteins (for review, see
Nishimura and van Wijk, 2015). Systematic down-
regulation of plastid-encoded proteins for photosyn-
thesis but not for other functions such as translation,
transcription, and fatty acid biosynthesis have been
observed in the Clp core mutant. This fact is explain-
able by the accelerated degradation of plastid-encoded
partner proteins that cannot assemble with nucleus-
encoded photosynthetic proteins because of their
inefficient import. Because a lack of functional pho-
tosynthetic complexes engenders severe phenotypes
from chlorosis to albinism that resemble the Clp cha-
perone or core mutant phenotypes, the major function
of plastid Clp, in terms of effects on growth and
development, might be to eliminate aggregated,
misfolded, or unprocessed preproteins of such pho-
tosynthesis machineries during protein import into
the chloroplast (for a more extensive discussion, see
Nishimura and van Wijk, 2015).

Case 2: Protein Degradation in Stroma-Facing
Compartments (SPP, PrePs, OOP, and Clp)

Sequential Proteolytic Events for Preprotein Processing and
Transit Peptide Removal

The aberrant accumulation of peptides generated by
protein degradation or preprotein processing can affect
plastid function and physiology and, therefore, must be
removed. Upon arrival in the stroma, SPP binds with a
broad spectrum of specificity to the transit peptides and
removes them by a single endoproteolytic reaction,
with subsequent release of the mature proteins but not
the transit peptides (Richter and Lamppa, 1999, 2002).
Recent proteome analysis showed that a substantial
number of stromal proteins have multiple distinct N
termini, implying the presence of multistep N-terminal
processing mechanisms or simply reflecting SPP’s im-
precise site specificities (Rowland et al., 2015). The
cleaved transit peptides are subjected to additional
trimming into smaller fragments by SPP and are de-
graded further by PrePs and OOPs in the stroma
(Teixeira and Glaser, 2013; Fig. 3). Transit peptides are
26 to 146 amino acids long (Zybailov et al., 2008).
Structural and biochemical studies have reported that
PreP1 degrades various peptide substrates of 10 to
65 amino acids (Moberg et al., 2003; Ståhl et al., 2005),
whereas OOP cleaves peptide fragments ranging from
eight to 23 amino acids (Kmiec et al., 2013). Conse-
quently, both proteases are able to function in transit
peptide degradation, with OOP acting in parallel or
downstream to PreP. Furthermore, given the sizes of
the degradation products generated by the proteases
such as Clp and FtsH, PrePs and OOP can function
downstream of these proteolytic machineries. However,
whether and how the transit peptides are degraded
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in vivo by PrePs and OOP (together with the other
proteases) await further investigation.

Regulation of Metabolic Pathways

Chlorophyllide a oxygenase (CAO) is a key enzyme
converting chlorophyll a to chlorophyll b during chlo-
rophyll biogenesis. CAO protein stability is subject to
negative feedback regulation in response to chlorophyll
b metabolite levels (Yamasato et al., 2005). CAO degra-
dation involves the Clp system (Nakagawara et al.,
2007). CAO is localized in thylakoid and inner envelope
membranes (Eggink et al., 2004), where it is accessible to
Clp. A short degradation signal, the CAO degron, is lo-
cated in the N-terminal domain of CAO (Sakuraba et al.,
2007, 2009). A plausiblemodel for metabolite-dependent
CAO degradation has been proposed; in the model, the
CAO degronwould be located within the interior region
in the absence of chlorophyll b but would be exposed to
the exterior through a structural change in the presence
of chlorophyll b such that the degron could be recog-
nized by the protease (Sakuraba et al., 2009).
Glutamyl-tRNA reductase (GluTR) catalyzes the ini-

tial step generating Glu-1-semialdehyde from glutamyl-
tRNA (Glu-tRNA) during tetrapyrrole biogenesis.
GluTR is recognized directly through its N-terminal
region by the ClpF-ClpS1 binary adaptor system aswell
as by ClpC chaperones for proteolysis (Nishimura et al.,
2015; Apitz et al., 2016). GluTR is localized in the stroma
and thylakoids. Its thylakoid localization is mediated in
part by GluTR-binding protein (GBP; Czarnecki et al.,
2011). GluTR abundance in the thylakoid is reduced in
the absence of GBP, suggesting an accelerated desta-
bilization of GluTR. A possible mechanism has been
proposed in which Clp-dependent proteolysis and
GBP-assisted stabilization together fine-tune GluTR
accumulation to optimize chlorophyll and heme bio-
synthesis (Apitz et al., 2016). Glu-tRNA is a substrate
not only for GluTR in the tetrapyrrole pathway but also
for chloroplast ribosomes in translation; these two en-
zymes consume it competitively. The observation that
the ClpS1-null mutant is sensitive to a translational
inhibitor has led to the inference that ClpS1 can mod-
ulate chloroplast protein biosynthesis by regulat-
ing Glu-tRNA flux through GluTR degradation
(Nishimura et al., 2013; Nishimura and vanWijk, 2015).
Degradation of a key metabolic enzyme, deoxy-

xylulose 5-phosphate synthase (DXS), in the methylery-
thritol 4-phosphate pathway for isoprenoid biosynthesis
is regulated by metabolite levels (Guevara-García et al.,
2005; Han et al., 2013). Furthermore, inactive DXS is
likely recognized by a J protein, J20, which functions as
an adaptor delivering misfolded or damaged client
proteins to Hsp70 chaperone for either refolding or
proteolysis depending on intracellular contexts (Pulido
et al., 2013). The decision of dysfunctional DXS refolding
versus degradation is proposed to involve the actions
of stromal ClpB3 and ClpC1 chaperones; ClpB3 may
function together with Hsp70 in DXS reactivation, while
ClpC1 likely recognizes the enzyme for proteolysis

(Pulido et al., 2016). Regulatory mechanisms of the
nonfunctional protein fate decision involving multiple
molecular chaperones deserve further investigation.

Several metabolic enzymes in the shikimate path-
way of aromatic amino acid biosynthesis, includ-
ing chorismate synthase, are potential targets for
ClpS1-dependent proteolysis, perhaps suggesting the
involvement of plastid Clp in the multistep regulation
of various metabolic pathways (Nishimura et al., 2013;
Nishimura and van Wijk, 2015). During plastid differ-
entiation from etioplasts to chloroplasts in leaves,
multiple enzymes in amino acid metabolism are de-
creased considerably in abundance, whereas Calvin
cycle enzymes and thylakoid proteins accumulate to
higher levels (Kleffmann et al., 2007). Possible in-
volvement of the Clp system in this selective protein
reduction awaits experimental verification.

Regulation of Metal Homeostasis

The copper transporter PAA2/HMA8 is an integral
thylakoid membrane protein that delivers copper ions
to plastocyanin (PC) in the lumen (Abdel-Ghany et al.,
2005). PAA2/HMA8 abundance is down-regulated in
response to high copper concentrations (Tapken et al.,
2012). This copper-induced down-regulation involves
proteolysis by the stromal Clp system rather than
thylakoid-located FtsH protease (Tapken et al., 2015).

How the Clp system recognizes and degrades
PAA2/HMA8 remains an important question. Genetic
studies showing that its proteolytic regulation requires
the ClpC chaperone and the ClpPR core but not the
adaptor protein ClpS1 suggest that the chaperone di-
rectly recognizes the substrate depending on the copper
level. PAA2/HMA8 has eight transmembrane domains,
with the N-terminal domain, three internal loop struc-
tures, and the C-terminal tail exposed to the stromal side
(Bernal et al., 2007). In particular, the N-terminal domain
contains a metal-binding motif, which potentially
induces a conformational change in response to ele-
vated copper levels. This change might well trigger
PAA2/HMA8 recognition by the Clp chaperone, simi-
lar to its CAO recognition. Another copper transporter,
PAA1/HMA6, is present in the inner envelope mem-
brane (Shikanai et al., 2003). Its accumulation is unaf-
fected by high-copper conditions (Tapken et al., 2012).
It is noteworthy that some of the ClpS1 targets isolated
through affinity purification are metal-binding or
metal-related proteins (Nishimura et al., 2013).

Case 3: Thylakoid Protein Biogenesis, Homeostasis, and
Quality Control (Plsp1, Deg, and FtsH)

Regulation and Quality Control of Lumenal Targeting
Peptide Removal

After import, most if not all lumenal proteins are
sorted from stroma through thylakoid-localized SEC/
TAT/SRP machineries to the thylakoid lumen. Protein
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sorting requires TTS, which must be removed by TPP
for protein assembly, posttranslocational release from
the membrane, and, therefore, proper thylakoid for-
mation (Inoue et al., 2005; Shipman-Roston et al., 2010;
Midorikawa and Inoue, 2013).

Plsp1 is the TPP that functions in cleaving off TTS in
the lumen (Shipman and Inoue, 2009). Knockout of
Plsp1 causes the accumulation of processing interme-
diates of the SEC substrates, PC and OE33/PsbO, and
the TAT substrate, OE23/PsbP (Shipman-Roston et al.,
2010; Albiniak et al., 2012). The absence of Plsp1 and the
elimination of TPP cleavage sites seem not to affect the
SEC pathway itself but impede substrate release from
the membrane; indeed, PC and PsbO intermediates are
stuck in the thylakoid membrane despite their proper
membrane targeting (Shackleton and Robinson, 1991;
Frielingsdorf and Klösgen, 2007; Midorikawa and
Inoue, 2013). It is noteworthy that precursor PsbO is
stably present in a 440-kD complex that is not fully
characterized but is redox sensitive, protease tolerant,
and distinct from the PSII or SEC machinery, whereas
unprocessed PC is prone to light-driven proteolysis by
unknown protease(s). The PC degradation activity
must bemetal independent but is dependent on stromal
proteins, the proton motive force across the thylakoid,
and ATP hydrolysis. Thylakoid-retained PC cleavage
intermediates are exposed in part to the stroma
(Midorikawa and Inoue, 2013), potentially allowing
the access of stromal proteases, as in the case of
PAA2/HMA8 for Clp (Tapken et al., 2015). The PsbP
intermediate is detected as a monomer in the stroma
when Plsp1 is missing (Shipman-Roston et al., 2010;
Midorikawa and Inoue, 2013) but exists within the
membrane, presumably through an association with
the TAT machinery, when its TPP processing site
is abolished (Frielingsdorf and Klösgen, 2007;
Midorikawa and Inoue, 2013). An earlier report has
shown that TAT-dependent substrates can be returned
to the stroma and that disruption of the TPP sites of the
TAT substrates causes their unprocessed intermediates
to accumulate in the thylakoids, where they are likely to
be trapped in the sorting machinery (Di Cola and
Robinson, 2005). A possible function of thylakoid Plsp1
in preventing reverse translocation has been proposed
(Midorikawa and Inoue, 2013). Interestingly, a lumenal
protein lacking the lumenal target peptide is prone to
mislocalization in stroma, where it is readily degraded
(Halperin and Adam, 1996). This observation repre-
sents an example of a lumenal protein quality control
mechanism.

PSII Repair Cycle on the Thylakoid Membrane

Excess light exposure generates ROS, which can
cause irreversible inactivation of photosynthetic ma-
chineries. The main target of photodamage is the D1
subunit of the PSII reaction center. D1 protein turns
over very rapidly through a cyclical mechanism called
the PSII repair cycle. Photodamaged PSII core complex
migrates from grana to stromal thylakoids, where it is

partially disassembled, enabling protease to access D1
for degradation. Following the insertion of de novo-
synthesized D1, PSII is reassembled and migrates
back into the grana (Chi et al., 2012; Nath et al., 2013;
Yoshioka-Nishimura and Yamamoto, 2014).

FtsH and Deg proteases act in a cooperative manner
in D1 degradation, in which lumenal and stromal Deg
isomers function prior to FtsH (Kato et al., 2012; Fig. 3).
D1 has five transmembrane-spanning helices (A–E).
Deg5/8 and possibly Deg1 endoproteolytically cleave
damaged D1 at a lumen-facing loop connecting the
transmembrane helix domains C and D (CD loop),
whereas Deg7 and Deg2 is likely to be responsible for
the respective cleavage events occurring at stroma-
exposed loops between transmembrane helices B and
C and transmembrane helices D and E (Haussühl et al.,
2001; Kapri-Pardes et al., 2007; Sun et al., 2007, 2010;
Kato et al., 2012). D1 fragments resulting from cleavage
at the lumenal CD loop are detected predominantly
during high-light exposure (Kato et al., 2012), consistent
with Deg activation through the oligomerization trig-
gered by light-dependent lumenal acidification (Kley
et al., 2011). D1 fragmentation by lumenal Deg can be
initiated through disruption of the manganese cluster
of the oxygen-evolving complex by blue light, fitting
with the two-step model for photoinhibition (Kato
et al., 2015), in which the manganese cluster in the
oxygen-evolving complex is primarily damaged and
the PSII reaction center is then inactivated by
chlorophyll-absorbed light energy (Hakala et al., 2005;
Ohnishi et al., 2005). Whether Deg functions before,
during, or after PSII migration remains unknown. Deg-
generated D1 fragments are degraded further through
FtsH-dependent processive proteolysis. The four major
isoforms FtsH1/2/5/8 together function in this pro-
cess, but whether FtsH6 is involved is not known. FtsH
can initiate D1 degradation even in the absence of the
Deg proteases, possibly by pulling the stroma-oriented
N-terminal tail of the D1 subunit, but the degradation
efficiency is enhanced in the presence of Deg proteases
(Kato et al., 2012). In cyanobacteria, the D1 N-terminal
tail is exposed outside the PSII complex. The absence
of this N-terminal tail inhibits D1 degradation, likely
because of failure in N-terminal recognition by FtsH
(Komenda et al., 2007).

The repair cycle of photodamaged PSII is modulated
through its reversible phosphorylation. The PSII core
proteins D1, D2, CP43, and PsbH can be phosphory-
lated; the phosphorylation sites are all located in their
stroma-facing N termini (Puthiyaveetil and Kirchhoff,
2013). The phosphorylation and dephosphorylation of
these proteins require the thylakoid-associated Ser/Thr
kinase STATE TRANSITION8 (STN8; Bonardi et al.,
2005) and the stroma/thylakoid-localized PROTEIN
PHOSPHATASE 2C-TYPE PSII CORE PHOSPHA-
TASE (PBCP; Samol et al., 2012). Lack of STN8 results
in enhanced Deg-dependent D1 fragmentation under
high-light conditions (Kato and Sakamoto, 2014),
whereas PBCP defects cause delayed D1 degradation
in high light (Samol et al., 2012). Levels of smaller,
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intermediary D1 fragments are correlated with ROS ac-
cumulation, suggestive of their cytotoxicity. These ob-
servations have led to the idea that PSII phosphorylation
prevents excessive D1 degradation to avoid the accu-
mulation of cytotoxic cleavage intermediates. Further-
more, given that phosphorylation of PSII core proteins
can promote PSII migration and disassembly through
structural remodeling of the thylakoid membrane to fa-
cilitate D1 access to the proteases (Kirchhoff, 2013), it is
plausible that PSII phosphorylation fine-tunes the repair
cycle by balancing D1 presentation and degradation
(Kato and Sakamoto, 2014). How PSII phosphorylation
modulates D1 proteolysis requires further investigation.

Proteolytic Remodeling of the Photosynthetic Machineries
in Response to Environmental Stimuli

In the unicellular alga Chlamydomonas reinhardtii, FtsH
participates together with Clp and unidentified lumenal
proteases in the selective degradation of the cytochrome
b6/f complex and its biogenesis factors upon nitrogen
starvation (Wei et al., 2014). Their mechanisms of action in
cytochrome b6/f degradation, however, are apparently
different, because destabilization of the cytochrome b6/f
complex triggered by biogenesis and assembly problems is
blocked in the absence of FtsHbut not in the absence ofClp
(Majeran et al., 2000; Malnoë et al., 2014). The nitrogen-
depletion-stimulated cytochrome b6/f degradation is pre-
sumably controlledbya signalingpathway involvingnitric
oxide (Wei et al., 2014). FtsH-dependent cytochrome b6/f
degradation is found in sulfur-starving algal cells as well
(Malnoë et al., 2014). In addition, algal FtsH participates in
PSII destruction during phosphorus-starvation and sulfur-
starvation conditions, presumably through a proteolytic
mechanism similar to the repair cycle (Malnoë et al., 2014).
The aforementioned macronutrient-responsive prote-

olytic regulation mechanisms involving algal FtsH and
Clps might well be conserved in land plant chloroplasts.
Furthermore, the observations that a lack of stromal Clp
induces the up-regulation of thylakoid-localized FtsH
and SppA proteases (Rudella et al., 2006) and that the
loss of FtsH engenders the up-regulation of other chlo-
roplast proteases, including Clp and SppA, and the re-
cruitment of stromal Clp to the thylakoid (Kato et al.,
2012) suggest that they playmutual compensatory roles,
thereby implying conservation of their coordinated ac-
tions in the remodeling of the photosynthetic apparatus
upon stress.

FUTURE PERSPECTIVES

Complete Sets of Substrates, Degron, and Substrate
Recognition Mechanisms?

Specific degradation signals, namely degrons, are nec-
essary for chaperones and/or adaptor proteins of the
proteolytic systems to recognize protein substrates for
destruction (e.g. ClpS), but such degron sequences are
poorly understood in plastids (see Outstanding

Questions). A recent study has identified a novel
N-terminal degron for FtsH-driven proteolysis in bacteria
(Bittner et al., 2015), raising the question ofwhether such a
target recognition mechanism is conserved in chloro-
plasts. Meanwhile there have been several well-known
examples of proteolytic regulation of specific chloroplast
proteins. Specifically, light-harvesting antenna size has
long been known to be strictly regulated in response to
elevated light intensities, and apoproteins of LHCII are
thought to be proteolytically degraded (Jansson, 1994).
However, the responsible protease is unknown. Com-
prehensive substrate identification is necessary for deter-
mination of a common sequence signature or regulatory
motif. Using substrate-trapping approaches, multiple
substrates for Clp and FtsH proteases have been isolated
in bacteria and in mammalian mitochondria (Flynn et al.,
2003; Neher et al., 2003; Westphal et al., 2012; Bhat
et al., 2013; Feng et al., 2013; Graham et al., 2013; Bittner
et al., 2015). Trapping strategies use mutated, inac-
tive forms of the protease or chaperone domains. By
substituting catalytically active with catalytically inactive
degradation machineries fused to a specific tag, the
in vivo substrates are confined within and purified in
complexes with protease assemblies from the cell. Similar
methodologies are worth pursuing for identification of
substrates for chloroplast proteases.

Regulatory Circuits Involving Multiple Proteases to
Optimize Interorganellar Proteostasis

Chloroplast proteases can function in a compen-
satory manner (see “Outstanding Questions”). FtsH
protease has long been known to interact genetically
with the Clp system (Park and Rodermel, 2004; Yu
et al., 2008; Wu et al., 2013). Knowledge of this in-
teraction is based on the observation that the loss of
Clp chaperone or protease core suppresses the leaf
variegation phenotype resulting from the lack of
FtsH2, a major component of the FtsHmachinery. It is
particularly interesting that ClpC2 is not the major
ClpC chaperone but its reduction is somehow suffi-
cient for the suppression of a variegated leaf pheno-
type resulting from FtsH2 loss of function, despite the
fact that ClpC1 is abundantly present in the sup-
pressor mutant (Park and Rodermel, 2004). More
importantly, the Clp chaperone and proteolytic core
are both up-regulated and recruited to the thylakoid
membrane in the mutant lacking FtsH2, suggesting
their complementary roles for FtsH deficiency (Kato
et al., 2012). FtsH isomers are up-regulated in the Clp
core mutant, consistent with their functional com-
pensation (Rudella et al., 2006). Similar responses to
the Clp core defect have been observed for PrePs
(Zybailov et al., 2008). These findings suggest that the
proteases share a common substrate recognition
mechanism or that they can recognize identical sub-
strates in a distinct manner. Further experimentation
is needed to examine these proposed compensatory
mechanisms.
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Furthermore, dual targeting proteases could po-
tentially regulate proteome homeostasis in both or-
ganelles (see “Outstanding Questions”). FtsH11, Lon4,
PrePs, and OOP are targeted to both mitochondria and
chloroplasts (Moberg et al., 2003; Kmiec et al., 2013).
Given that the distribution of a dual-targeted pro-
tein is altered by organellar stress and dysfunction
(Nargund et al., 2012), allocation of these protease and
peptidase machineries between the chloroplast and
mitochondrion could be regulated at the protein im-
port step, depending on the status of organellar pro-
tein homeostasis. For the coordinated biogenesis and
the maximum function of two organelles, reprogram-
ming of the nuclear transcriptome by proteases in both
organelles might contribute to the optimization of
interorganellar proteomes.
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