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Abstract

Obtaining pressure field data from particle image velocimetry (PIV) is an attractive technique in 

fluid dynamics due to its noninvasive nature. The application of this technique generally involves 

integrating the pressure gradient or solving the pressure Poisson equation using a velocity field 

measured with PIV. However, very little research has been done to investigate the dynamics of 

error propagation from PIV-based velocity measurements to the pressure field calculation. Rather 

than measure the error through experiment, we investigate the dynamics of the error propagation 

by examining the Poisson equation directly. We analytically quantify the error bound in the 

pressure field, and are able to illustrate the mathematical roots of why and how the Poisson 

equation based pressure calculation propagates error from the PIV data. The results show that the 

error depends on the shape and type of boundary conditions, the dimensions of the flow domain, 

and the flow type.
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1. Introduction

Accurate pressure and velocity measurements are critical for experimental fluid dynamics. 

Historically, flow velocity is measured using techniques including hot wire anemometry (Ho 

and Tai, 1998), and laser doppler velocimetry (Durst et al., 1981). More recently, digital 

imaging techniques such as Particle Image Velocimetry (PIV) (Willert and Gharib, 1991) 

and Particle Tracking Velocimetry (PTV) (Adamczyk and Rimai, 1988) have become 

effective techniques that continue to be improved. The ability of techniques like PIV to non-

invasively capture accurate data makes them very appealing. A natural extension of this 

approach is to non-intrusively quantify the pressure field using the Navier-Stokes equation 

and the velocity field from PIV measurements.
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Early efforts at noninvasive pressure estimates can be traced back to Schwabe (1935) and 

Imaichi and Ohmi (1983). However, due to the technical limitations of their imaging 

technique (i.e., low spatial and temporal resolution, etc.) and consequently large error in the 

velocity field measurement, the pressure calculations were not accurate enough to ensure 

quantitative confidence.

After more than 20 years of development, PIV has become a standard non-invasive velocity 

field measurement technique (Adrian, 2005). Continual improvement has led to high 

temporal and spatial resolution for modern PIV techniques and even time-resolved 

volumetric PIV (Elsinga et al., 2006; Belden et al., 2010; Scarano, 2012). Several groups 

have revisited velocity-field-based pressure calculation techniques and applied them to many 

different areas. De Kat and Van Oudheusden (2012) reported their work on applying high-

speed PIV to planar pressure calculations in a turbulent flow field. Stereoscopic and 

tomographic PIV systems were used to measure out-of-plane velocity components in a flow 

passing over a square pillar (Re=9,500). Van Oudheusden et al. (2007; 2008) extended the 

previous work to compressible flows. PIV data from an airfoil in a supersonic flow and 

shock wave boundary layer interactions were used to successfully estimate the 

corresponding pressure field.

More applications are outlined in Table 1. Most of these studies report the errors in the 

pressure field calculation by comparing the analytical, numerical and/or experimental 

results. Some studies (e.g., Villegas and Diez (2014)) provided an estimation of the error in 

the pressure field, based on the methods provided by Ragni et al. (2009), and De Kat and 

Van Oudheusden (2012), which gave serious attempts to translate the uncertainties in the 

velocity to pressure quantitatively. However, these studies did not provide analytical insights 

that could be used for error estimation before experiments.

Unfortunately uncertainties in the PIV-based velocity field measurement will always 

propagate to contaminate the resulting pressure field calculation. Researchers have noticed 

this issue and several techniques have been developed to reduce the errors in the resulting 

pressure field. One popular strategy is to average several pressure calculations along 

different integral paths by taking advantage of the scalar property of the pressure field (the 

integrated pressure value at an arbitrary location in the flow field is independent of the 

integral path). Baur and Köngeter (1999) directly integrated a simplified Navier-Stokes 

equation with an explicit scheme. They utilized time-resolved PIV data to determine the 

pressure of a turbulent flow passing over a wall. At each nodal point, four integrals were 

calculated from neighboring nodes and averaged to formulate the pressure estimation. 

However, they only commented on the accuracy of the PIV, not that of the pressure 

estimation.

A further reduction in the error accumulation from the uncertainties in PIV data was 

implemented by Liu and Katz (2006). They proposed an omni-directional integration 

scheme to directly integrate the pressure gradient from a virtual boundary outside the flow 

field. For an M × N mesh, the pressure value at each nodal point is integrated along 2(M + 

N) different paths, and the mean value of these 2(M + N) integrals is used as the estimation 

of the local pressure. This approach leads to significant cancellations if the error is truly 
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random. This method was validated using a synthetic flow and then applied to a cavity flow. 

This approach is likely the most capable of removing the most significant portion of the 

random error. Dabiri et al. (2013) proposed an algorithm that used the median of the 

pressure calculated by the Poisson solver along eight paths to estimate the local pressure at 

each point in the field. To reduce the uncertainties in the velocity field from the PIV, a 

temporal filter was utilized to cancel the inherent noise, and this approach was applied to the 

flow around free swimmers (e.g., jellyfish and lamprey). Taking advantages of the scalar 

property of the pressure field improves the accuracy of the pressure calculation, however, 

these studies provide little insight into how the error propagates from the velocity field to the 

pressure field.

In order to better understand the performance and error properties in the PIV-based pressure 

calculation, Charonko et al. (2010) reviewed and evaluated different factors (i.e., integral 

method, governing equations, spatial and temporal resolutions, and velocity field smoother) 

of calculation schemes used in the PIV-based pressure acquisition. Two unsteady synthetic 

flows with exact solutions and a set of PIV and pressure data from experiments were 

employed for benchmarking the pressure solvers with various error levels in the velocity 

fields. In their paper, the authors reported that the Poisson solvers are sensitive to all the 

aforementioned factors, but to varying levels (the resulting error can vary from less than 1% 

to more than 100%). They also report that the error in the pressure calculation is highly 

dependent on the flow type, which implies that there is no optimal method for every flow 

type. Their study provides several significant contributions to the community (e.g., pressure 

solver can be very sensitive to the error in the velocity field and the boundary), but it does 

not provide any rigorous physical or mathematical insight into the error propagation.

In a recent work by Azijli et al. (2016), the uncertainty propagation of the PIV-based 

pressure calculation is discussed in a Bayesian estimation framework. The statistical error 

profile of the pressure field is estimated based on certain prior knowledge of the velocity 

field (e.g., divergence free or maximum/minimum of the velocity field), and an assumption 

that the distribution is Gaussian. Numerical and physical experiments were conducted to 

validate this Bayesian method, which provide a practical solution for error quantification. 

However, this method requires prior information of the flow field, and does not provide 

insight into how the error propagates from the flow field to the pressure calculation.

In this paper, we first clearly specify the error-contaminated Poisson problem raised by the 

pressure field calculation from noisy PIV experiments. In section 2 and 3 this engineering 

problem is translated into an applied mathematical one, specifically by obtaining bounds on 

solutions of a Poisson equation. In section 4, we present rigorous bounds on the error in the 

pressure calculation relative to the error inherent from the PIV measurements. Several 

typical cases are shown as examples. In section 5, we discuss the limitations and practical 

uses of this work. The analytical results introduced in this paper are not only error bounds 

that provide insight into the error propagation dynamics of the PIV-based pressure 

calculation, but they can also provide guidelines for experimental design. Moreover, a prior 
error estimation can be potentially predicted even before experiments based on the analysis 

presented herein.
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2. Problem statement

In general, there are two types of popular schemes to calculate the pressure field: i) directly 

integrate the pressure gradient derived from the Navier-Stokes equation (e.g., Liu and Katz 

(2006)); ii) solve the pressure Poisson equation (e.g., De Kat and Van Oudheusden (2012)), 

which is more commonly used. Here, we focus on how the error in the velocity data 

propagates to the pressure field through the latter scheme.

Rearranging the incompressible non-dimensionalized Navier-Stokes equation (all the 

variables and equations hereafter are non-dimensionalized) and applying divergence on both 

sides, the pressure Poisson equation reads

(1)

where p is the pressure field, u denotes the velocity field, Ω is the flow domain, and Re is the 

Reynolds number. When Re is large, the viscous term can be neglected (Van Oudheusden, 

2013; De Kat and Van Oudheusden, 2012). The vector function (f) of the velocity field (u) is 

called data (to avoid confusion, in this paper “data” is used as the term for the right hand 

side of a Poisson equation and its boundary conditions, while the experimental data (velocity 

vector field) from PIV is called experimental “results” or PIV “results” instead). With 

certain boundary conditions, for example,

(2)

and/or

(3)

the pressure field can be found by solving (1). Here, h and g are the data on the Dirichlet 

boundary (typically applied to the steady irrotational region of a flow with Bernoulli’s 

equation, especially in the far field) and Neumann boundary (commonly used on a wall 

boundary), respectively, which are functions of the velocity.

In engineering practice, experiments always introduce systematic bias and/or random errors, 

which are usually unknown, and thus called uncertainties in the PIV community. These 

uncertainties will lead to a contaminated pressure calculation (denoted by p̃). The 

uncertainties in the pressure calculation are also unknown, which can cause even more 

frustration. Regardless of the physical meaning, from now on in this paper we will call 

uncertainties error for convenience. If we denote the error in the data of the pressure Poisson 

equation as εf, then p̃ solves the equation with the error included
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(4)

Similarly, p̃ satisfies the error-contaminated boundary conditions:

(5)

and/or

(6)

where, εh and εg are the error on the Dirichlet and Neumann boundaries, respectively.

Based on this problem statement, we aim to answer a question rising from engineering 

practice — Question 1: How do the errors from the experimental results εf, εh and/or εg 

affect the errors in the contaminated pressure field p̃? Herein we address the error introduced 

by experiments only (e.g., random and systematic error from PIV experiments, unrealistic 

assumptions such as 2D modeling for 3D, quasi-steady, etc.), rather than numerical errors 

introduced by the Poison solver implementation (e.g., truncation error, etc.).

3. Modeling of the error propagation

We now present how to translate from an engineering problem (Question 1) to a tractable 

applied mathematical one (Question 3, see below).

Let’s consider εf, εh and εg as perturbations to the data of the Poisson equation. Perturbing 

the data (f, g, and/or h) is mathematically equivalent to propagating error from the data to 

the pressure field. This means that Question 1 can be rewritten as — Question 2: Whether 
and how the solution p continuously depends on the data f(u), g(u), and/or h(u)?

Assuming the uncertainty contaminated pressure field can be separated as p̃ = p+εp, where 

εp is the error in the calculated pressure field, and taking advantage of the linear property of 

the Laplace operator and subtracting equation (1) from (4) leads to

(7)

which is a Poisson equation with respect to the error in the pressure field. Similarly, the 

boundary conditions read

(8)

and/or

Pan et al. Page 5

Meas Sci Technol. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(9)

Since the error in the data (εf, εh, and εg) are unknown, we do not expect to calculate the 

error at every specific location in the pressure field (εp). However, it is possible to estimate 

the average error level of the pressure field over the entire domain with equation (7), (8) and 

(9). To measure the level of the error, we define the L2 norm in a domain, for example the 

error level in the pressure field as

(10)

where |Ω| is the length, area or volume of the domain, depending on the dimension of the 

flow field. In physical terms, the L2 norm defined in equation (10) measures the power of the 

errors per unit space, and thus we give it the term “error level” hereafter.

With the defined error level, Question 2 can be transformed into — Question 3: Whether and 
how ‖εp‖L2(Ω) is bounded by ‖εf‖L2(Ω), ‖εg‖L2(∂Ω), and/or ‖εh‖L2(∂Ω) for the Poisson problem 
given by equation (7), (8), and/or (9)?

From Question 1, to 2, and then 3, we have been able to transform a typical engineering 

problem to a well defined applied mathematical one: estimate the bounds of the solution to a 

Poisson boundary value problem (BVP) with respect to εp, which is actually a measure of 

the error in the pressure field.

4. Results

In this section we show that the error level can be bounded in the pressure field, given the i) 

geometry and ii) scale of the domain, iii) type of the boundary conditions, as well as the iv) 

error level in the data (in the field and on the boundary) utilizing the Poincare and Cauchy-

Schwartz inequalities (see Appendix A for details). The results are independent of the 

numerical scheme of the Poisson solver, i.e. the choice of the numerical scheme may 

introduce additional errors not accounted for in the present analysis. The results are general 

and thus work for any dimension of the domain (i.e., two-dimensional(2D) or three-

dimensional(3D) flow).

Bounds on the error for several cases with different boundary condition settings are 

discussed. These cases are not only typical in engineering practice but also convenient for 

unveiling the mathematical insights of the error propagation dynamics. Within each case 

study, we will validate the analytical results with numerical simulations first. Then the 

dynamics of the uncertainty propagation through the pressure Poisson equation will be 

discussed based on analysis from a flow field with more general geometry (i.e., rectangular). 

Finally, the physical interpretation of the mathematics and suggestions for engineering 

practice are addressed.

Pan et al. Page 6

Meas Sci Technol. Author manuscript; available in PMC 2017 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4.1. Dirichlet boundary case

Consider a domain with pure Dirichlet boundary condition, the error in the pressure field can 

be bounded as

(11)

where CD is the Poincare constant, which is related to the minimum positive eigenvalue of 

the BVP. Specifically, in engineering practice, the value of the Poincare constant is 

determined by the dimension, size, and shape of the domain, as well as the type of boundary 

conditions (Appendix C).

To validate inequality (11), we consider a steady 2D potential vortex in an L × L domain in 

Cartesian coordinates. The non-dimensionalized velocity field is u = −y, y ∈ (−L/2, L/2); υ = 

x, x ∈ (−L/2, L/2), where u and υ are the two components of the velocity field u in the x and 

y direction, respectively (see figure 2). Thus the pressure field is p = (x2 + y2)/2. The 

Dirichlet boundary conditions are defined as p = (y2 + L2/4)/2, x = ±L/2, and p = (x2 + 

L2/4)/2, y = ±L/2.

We construct artificial error for the data. To test the reliability of the underlying estimate, we 

consider a uniformly constant error, εf = 2−4, and εh = 2−4. The error level in the domain and 

on the boundary is specified identically (‖εf‖L2(Ω) = ‖εh‖L∞(∂Ω) = 2−4). Assuming the 

uncertainty in the data is constant is beneficial in two ways. First, in a physical sense, 

constant uncertainty is associated with systematic error (i.e., εf = 2−4 could be equivalent to 

u = −(1 − 2−6)y and υ = (1 − 2−6)x for the steady potential vortex used here). One of the 

most likely systematic errors is from slightly inaccurate calibration in real experiments, 

which can introduce considerable error in the data and consequently accumulate even more 

error in the pressure field. Second, a constant error field will lead to a constant error level, 

which will make the later analyses explicit. We are aware that different types of error, even 

with the same error level (e.g., different εf, yet same ‖εf ‖L2(Ω)), impact the error propagation 

differently, which is coupled with the profile of the velocity field. Some error in the data 

leads to larger error in the pressure field than others. The calibration error we choose herein 

yields large errors for the vortex case, making it favorable for validation of the error bound. 

However, how the type of error impacts the error propagation is out of the scope of this 

research and will be investigated in a future study.

We numerically solve the pressure Poisson equation with artificial error introduced (4), 

using an accurate second order (five point scheme with point-wise numerical error less than 

8.2 × 10−12) finite difference Poisson solver (similar to Reimer and Cheviakov (2013), but 

with LU-decomposition as a linear system solver). The error in the pressure field from the 

simulation is then compared with the analytical results inequality (11). We expect that the 

error from numerical simulations will be less than the prediction in (11), but generally 

follow similar trends. If the errors from the numerical simulations are close to the analytical 

prediction (i.e., slope and value), we say inequality (11) is validated and the bound is sharp.
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For the 2D square Dirichlet domain, the Poincare constant is CD = L2/2π2, and inequality 

(11) becomes

(12)

Figure 1 shows the comparison of numerical simulations and the analytical prediction. The 

numerical simulations are conducted based on equations 4 and 5, with the 2D potential 

vortex as the flow field and the constant artificial errors (introduced in the pressure Poisson 

equations in the field only (blue squares); on the boundary only (red triangles); and both in 

the field and on the boundary (black open circles)). Inequality (12) is represented by a black 

solid line and is the upper bound of the error. Clearly inequality (12) fits well with the 

simulation results when error is introduced to both the field and boundary.

In figure 1, when the length scale of the domain is large the uncertainty level in the pressure 

field is dominated by the error of the data in the field (blue squares are collapsed on black 

open circles), and proportional to the area of the domain (‖εp‖L2(Ω) ~ L2). When the domain 

is small, the error in the pressure field is dominated by the error on the boundary (red 

triangles are collapsed on black open circles), and independent of the length scale of the 

domain (‖εp‖L2(Ω) ~ L0). Intuitively this makes sense as smaller domains will be more 

influenced by their boundaries.

When conducting PIV experiments, if the frame rate of the camera is fixed, one can 

customize the aspect ratio of the video, but the area of the interrogation windows is usually 

about the same due to best practices and the limitations of lighting and magnification (e.g., 

best practices of particles per pixel, particles per interrogation window, number of pixels of 

motion per time step, etc.). Thus, from an engineering perspective, it is important to discuss 

how to choose the aspect ratio when the number of pixels of the video is fixed. In order to 

study this physically, we vary the shape of the domain (alter the aspect ratio of only a 

rectangular shape due to physical restraints of the camera) to see how the error propagation 

dynamics is affected when the area of the domain is fixed.

Considering a 2D N × M rectangular domain (Fig. 2), inequality (11) leads to:

(13)

where α is the aspect ratio (α = N/M) of the domain, and A is the area of the domain (A = 

MN). Given the error level in the data, one can use inequality (13) to estimate the error level 

in the pressure field. If necessary, one can also adjust the parameter settings (aspect ratio 

and/or area of the domain) to reduce the error propagation.

Figure 3 illustrates how the aspect ratio and area of the domain affect the error propagation 

(assuming the uncertainty level of data is ‖εf‖L2(Ω) = ‖εh‖L∞(∂Ω) = 2−4). For each curve 

(fixing domain area A), the maximum appears at α = 1, which means a square PIV window 
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is the worst case scenario if a Dirichlet boundary condition is applied. When the domain is 

elongated (e.g., α → 0) and pressure on the boundary is known, the pressure field is mainly 

determined by the Dirichlet boundary conditions on the longer edges, and the contribution of 

the error in the field and the shorter edges becomes negligible. Thus, using an elongated 

flow field is encouraged when precise boundary conditions are accessible, especially on the 

long edges.

To compare the contributions of the uncertainty in the field and on the boundary, one can 

define a non-dimesional number (Rfb) which is the ratio of the coefficient of the errors in the 

field (‖εf‖L2(Ω), inequality (13)) and on the boundary (‖εh‖L∞(∂Ω), inequality (13)). For a 2D 

rectangular Dirichlet domain, Rfb reads

(14)

When Rfb ≪ 1, the error on the boundary tends to dominate the error in the pressure field, 

with limited budget or experimental accessibility, the best way to reduce the error in the 

pressure field would be to improve the error on the boundary. As an example, for small areas 

when A ~ 1, then Rfb ∈ (0, 1/2π2] ≪ 1, this relatively narrow interval implies that for a 

domain with nearly unit area, most error in the pressure field is likely contributed by the 

error on the boundary, while changing the aspect ratio will not affect the error in the pressure 

very much. However, because Rfb ~ A, the contribution of the error in the flow field 

increases quickly with larger domain areas.

One more comment on the Dirichlet boundary condition is that the error in the pressure field 

is due to the L∞ norm of the uncertainties on the boundary, which is the largest error on the 

boundary, rather than the average error level measured by the L2 norm. It suggests that one 

sharp and high error peak on the boundary may significantly increase the error propagation 

in the pressure field. Thus, one should try to avoid outliers on the boundaries if Dirichlet 

boundary conditions are applied.

4.2. Neumann case

For a domain with Neumann boundary conditions, we can obtain the error in the pressure 

field using similar analyses to section 4.1. Here, we assume a zero mean error of the data in 

the field (∫ εgdΩ = 0; see Appendix B for more details, and at the end of this section where 

the validity of this hypothesis is discussed), which is the compatibility condition of the 

Poisson equation with pure Neumann boundary conditions. The error in the pressure field 

can then be bounded as

(15)

where CN and CNB are the Poincare constants for the Neumann domain and the Neumann 

boundary, respectively.
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We now validate the bound introduced by inequality (15), similar to section 4.1, by 

considering a steady 2D potential vortex in an L × L domain. Inequality (15) becomes:

(16)

We construct the same flow as in Dirichlet case, of which the non-dimensionalized velocity 

field is u = −y, y ∈ (−L/2, L/2); υ = x, x ∈ (−L/2, L/2), where u and υ are the two 

components of the velocity field u in the 2D Cartesian system. Thus, f(u) = −2, and the 

pressure field is p = (x2 + y2)/2. To satisfy the compatibility condition of the Neumann 

boundary Poisson equation, the Neumann boundary conditions are ∇p · n = −1, x = y = 

−L/2, and ∇p · n = 1, x = y = L/2.

Similar to section 4.1, a constant artificial error is constructed: εf = 2−4, and εg = 2−4, the 

error level in the domain and on the boundary are constants (‖εf‖L2(Ω) = ‖εg‖L2(Ω) = 2−4).

Introducing the error to the field only, on the boundary only, and both in the field and on the 

boundary, simulations agree with the theoretical analyses (figure 4). Error in the pressure 

field scales as the square of the domain length (~ L2) for large scale flow fields; however, for 

smaller flow fields, error scales by the domain length (~ L). Comparing figures 1 and 4 

illustrates the different trends of the error bounds due to different boundary condition 

settings. In addition, the amplitude of the error bounds in the pressure are significantly 

different even though the error level of the data are identical for each domain with varying 

length scale. A more detailed comparison can be found in the discussion section and figure 

7.

We also consider the more general case of a rectangle, 2D N × M field with area A, and 

aspect ratio α. Inequality (15) then becomes

(17)

Figure 5 shows an illustration of the error bound in the pressure field when the Neumann 

boundary conditions are applied. For a domain with fixed area, the square domain with α = 1 

leads to minimum error propagation. However, when an elongated domain is used, the error 

in the pressure may not be bounded when α → 0 or ∞, because the error in the pressure 

field is dominated by the error on the longer boundaries. Thus, in engineering practice, a 

square domain is recommended for Neumann boundary conditions. If an elongated domain 

must be used, precise Neumann boundaries should be applied to the longer boundaries, or a 

smaller domain should be used to reduce the error accumulation.

Similar to section 4.1 we compare the coefficients of inequality (17) and formulate the 

contribution ratio as
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(18)

A fixed domain area, for example A ~ 1, yields a relatively wide interval compared with the 

Dirichlet case . The implication is that the aspect ratio can be easily used 

to control the contribution from the field and boundary, depending on the specific practices 

of the experiments. On the other hand, , meaning that the contribution ratio is 

proportional to the length scale of the domain, and thus not as sensitive as Dirichlet 

boundary conditions to the scale of the domain.

The last comment on the pure Neumann boundary case is about the derivation of the error 

bound in the pressure field, and more details can be found in the appendix. The inequality 

(15) is obtained based on the weak or unrealistic assumption (i.e., the mean value of error in 

the data field is zero). Systematic error in the experiments is not necessarily a mean zero 

field (e.g., Gaussian errors). This could conflict with the compatibility condition and 

eventually render the Poisson solver intractable. Once the compatibility condition is not 

satisfied by the data, the solution to the Poisson equation does not even exist. One can 

usually get some results (we would rather not call them solutions) from a numerical Poisson 

solver even if the compatibility condition is not satisfied, however, the results highly depend 

on the numerical scheme, resolution, and convergence criteria of the numerical solver. Thus, 

pure Neumann boundary conditions should be avoided if possible, unless the PIV 

experiments have reasonably high accuracy, or the engineering application allows Neumann 

boundaries only. This tricky, but important message is brought up by very few in the 

literature (e.g., Neeteson et al. (2015) mention this but don’t explain why it happens). This 

may be the reason why most researchers use Dirichlet or mixed boundaries; although, 

technically, if one can use Dirichlet BCs, Neumann BCs are also an option. We did an 

exhaustive literature review for the related papers published in major journals and 

conferences in the last five years, and found that by default the community by in large 

utilized Dirichlet BCs whenever possible and shied away from Neumann BCs (see table 1). 

Two studies used pure Neumann BCs, however, they either have no accessibility to Dirichlet 

boundaries (e.g., internal flows of Löhrer et al. (2015)), or a relatively small domain is used 

for an external flow without a confident far field assumption (e.g., (Villegas and Diez, 2014). 

The above statement is based on an assumption that the error level in the Neumann and 

Dirichlet boundary are comparable and small. However, unlike Neumann boundary 

conditions, which can always be imposed using PIV results, Dirichlet boundary conditions 

can typically be imposed only in irrotational regions using the Bernoulli equation. Any 

improper application of the Bernoulli equation may lead to highly uncertain (or even 

erroneous) Dirichlet boundary conditions and make the application of the Dirichlet 

boundaries unfavorable. This is indeed a dilemma that requires researchers to pay close 

attention to when designing an experiment; requiring that accurate boundary conditions (no 

matter what type) are imposed.
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4.3. Mixed boundary conditions

We see complicated and distinctly different error propagation dynamics simply from the 

boundary conditions even for these simple 2D domains. However, in engineering practice, 

mixed boundary conditions are more common due to the limitations and/or applications of 

the experiments (table 1). We now focus on the coupled dynamics of how the geometry and 

boundary conditions impact the error propagation in more complicated situations (e.g., a 

rectangular domain with two Dirichlet boundaries, and two Neumann boundary conditions 

on the opposite edges of the domain, respectively).

Consider a flow in a 2D rectangular domain (N × M), with mixed boundary condition (p = h, 

y = ±N/2; and ∇p · n = g, x = ±M/2). This physically means that the aspect ratio can be 

viewed as the relative amount of the boundary dictated by a Neumann condition to that given 

by a Dirichlet condition. The mixed boundary condition case can be decomposed into three 

parts, one that incorporates the error in the bulk of the domain, one for the error on the 

Neumann part of the boundary, and a third that accounts for the error on the Dirichelt part of 

the boundary. The analysis of the the error from the boundary terms is inherently difficult to 

estimate. However, for a sufficiently large convex domain we would expect the error in the 

interior of the domain to dominate the boundary error, and the analysis of the contribution of 

the error from the field is already enough to lend itself rich physical insight. We again 

estimate the error in the pressure field using our previous analysis:

(19)

The inequality is plotted in figure 6 and shows that for a domain with constant area a larger 

aspect ratio (i.e., more influence from Neumann boundaries) results in large error 

propagation with a trend that is as fast as the pure Neumann case. This implies that if a 

mixed boundary condition is utilized in a rectangular domain, Dirichlet conditions should be 

used on the longer sides of the boundary to mitigate the error propagation.

5. Discussions

We have shown that the upper bound of the error in the pressure field is related to the type of 

boundary conditions, geometry and the scale of the flow domain. The results include the 

explicit dependence on the geometry (the shape and boundary of the domain is incorporated 

in the Poincare constant), dimension (2D or 3D), and numerical scheme of the Poisson 

solver. One can use these results to design and minimize the error in an experiment before it 

is performed. For example, one can adjust the aspect ratio, area of the domain, and the type 

of boundary conditions to reduce the error propagation from the velocity field to the pressure 

field based on the reasoning outlined in section 4.

We can illustrate how one might use this information by using a simple example to present 

how to choose boundary conditions. Assume a square domain is used in a PIV experiment 

and the error level in the data and on the boundary is given and plotted in figure 7. We 

introduce the same error to the data in the field and the boundary for the pure Dirichlet and 
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pure Neumann cases (‖εf‖L2(Ω) = 2−3, ‖εh‖L2(∂Ω) = ‖εg‖L2(∂Ω) = 2−3), and compare them to 

cases where the error on the boundary is smaller (‖εf‖L2(Ω) = 2−3, ‖εh‖L2(∂Ω) = ‖εg‖L2(∂Ω) = 

2−4) as shown in figure 7 to illustrate the effect of lowering the error on the boundaries for 

both pure cases. We can now use figure 7 to illustrate how to choose boundary conditions 

when both Neumann and Dirichlet BCs are accessible. When the domain is large (e.g., L > 

10) and the error on the boundaries is large (‖εh‖L2(∂Ω) = ‖εg‖L2(∂Ω) = 2−3, solid lines in 

figure 7), the Neumann boundary conditions yield about twice the error of the Dirichlet 

boundary. Thus, choosing Dirichlet boundary conditions is best when the the domain is 

large. However, when the domain is small (e.g., L < 10), the Neumann BCs yield smaller 

error. If Neumann BCs are the only choice, one can either improve the experiments with 

more accurate boundary conditions (e.g., green dashed line, L < 3.8, comparing with the red 

solid line), or use a smaller domain (e.g., blue solid line, L < 1.3). However, in practice, the 

scale of the non-dimensionalized flow field is usually large (L > 1), thus the best choice is 

accurate Dirichlet BCs with a small flow domain (purple dashed line). Even for these very 

simple cases it is complicated to choose the proper BC settings, thus we suggest that users 

plot their flown figure like figure 7 to design/optimize their flown experiments. A detailed 

users guide is beyond the scope of this paper and we leave it as the work of a future study.

In this paper, we limited the discussion of the error propagation from the data to the pressure 

field (denoting as ‖f(u)‖ → ‖p‖), but the error propagation from the velocity field to the data 

(denoting as ‖u‖ → ‖f(u)‖) was not covered due to the greatly increased difficulty of finding 

solutions.

Mathematically, to bound ‖f(u)‖ with ‖u‖ is not an easy task due to the nonlinear terms in the 

Navier-Stokes equation (e.g., u · ∇u) making the 2D solution inherently complicated. On 

the other hand, even the linear terms (e.g., ∂u/∂t) are not bounded terms without additional 

assumptions. The 3D version of the propagation of error from the velocity field to the data is 

related to the well-posedness of the 3D Navier-Stokes equation, which is a Millennium Prize 

Problem. Physically, a great variety of errors introduced by experiments make this problem 

even more complicated. For example, particle slip likely introduces high frequency high 

amplitude local errors; inaccurate calibration introduces low frequency low amplitude global 

errors, etc. These different types of error introduce different and complicated error 

propagation phenomena, which we do not fully understand. For these reasons we do not 

expect to make significant progress in this area, at least in 3D. So far, we can only 

qualitatively explain why the profile of the error and profile of the velocity field are coupled 

and together dominate the connections between ‖εf‖ and ‖εu‖.

Instead of a full solution to ‖u‖ → ‖f(u)‖, we can attempt to calculate the error propagation 

from the velocity vector field to the data field. These first steps of calculation can provide 

qualitative intuition of the error propagation in the whole pressure calculation process:

(20)

where εu is the error vector in the velocity field. Depending on the dimension and non-

dimensional numbers in the Navier-Stokes equations (e.g., Reynolds number Re, etc.), 
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equation (20) can be very long, however, the 2D convection term alone should be enough to 

illustrate the physics. Assuming that εu is sufficiently small, we can neglect the second order 

terms in the error (e.i., (∂εu/∂x)2, and (∂ευ/∂y)2) to approximate (20) as:

(21)

where u and υ are the velocity components, and εu and ευ are the velocity error in the x and 

y direction, respectively. Recalling that ‖εf‖L2(Ω) is the source of the error from the velocity 

field that appears as data in the pressure field calculation (e.g., inequalitites (11) and (15)), 

‖εf‖L2(Ω) is calculated by integrating  over the whole domain. Utilizing the Cauchy-

Schwarz inequality and applying index notation to (21) we arrive at

(22)

Noticing that the first term, ‖∂ui/∂xj‖L2(Ω), in (22) is actually the gradient of the velocity 

field, we are be able to obtain some qualitative sense of the reason why the type of the flow 

affects the error propagation. Physically this means that the velocity gradient directly 

influences the error level, so for spatially accelerating flow fields the error will inherently be 

larger. This preliminary discussion is supported by experimental results and physical 

intuition outlined by Charonko et al. (2010). Similarly, for the error on the boundary, the 

error in data for the 2D case can be bounded as

(23)

where ‖εg‖L2(∂Ω),i is the component i (i = 1, 2) of the error on the boundary of the data field. 

Inequality (23) shows that the error of the data on the boundary is related to the velocity and 

velocity gradient, as well as the error and the gradient of the error, which is even more 

complicated than the case for the error inside the domain (22). We will leave this issue for 

future studies.

We have intentionally made the results of this work unrelated to any specific numerical 

scheme. The error bound derived here may be saturated by the worst case scenario with the 

best numerical implementation. This means that if we solve the pressure equation perfectly 

with an exact numerical scheme, given a certain level of error in the velocity field, the error 

in the pressure field will be below the error bound. On the other hand, the numerical error is 

not considered here, and one may expect larger error than the bounds if the numerical solver 

is not implemented properly.
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One more note on the the non-dimensionalization of the problem may help with practical 

implementation. The characteristic length scale of the flow field is exactly the characteristic 

length (L*) of the Reynolds number, Re = ρuL*/μ, where ρ and μ are the density and 

dynamic viscosity of the fluid. The pressure can also be related to the characteristic length 

scale through the non-dimensionalization. For instance, the pressure or error in the pressure 

can be non-dimensionalized by either a dynamic pressure (P* = 1/ρU*2, useful for large Re 
flows), or by a length scale and viscous stresses (P* = L*/μU*, useful for viscous flows), 

where U* is the characteristic velocity of the flow. Thus, the predicted absolute error in the 

pressure field with real units should be Ep = ‖εp‖L2(Ω)P*. If we define relative error as Ep/P* 

× 100%, we will see that ‖εp‖L2(Ω) actually has physical meaning as a measurement of the 

relative error of the pressure field. Finally, it isn’t necessary to work with the non-

dimensionalized Navier-Stokes equation and the pressure Poisson equation as we did here, 

rather one could re-derive these error bounds dimensionally, but the conclusions would 

remain the same yet be more difficult to interpret.

At last, under the framework proposed in this paper, we try to connect two popular 

categories of methods for PIV-based pressure field calculation: i) pressure Poisson equation 

based methods, which work with Laplacian of the pressure field derived by applying 

divergence on a rearranged Navier-Stokes equation (e.g., De Kat and Van Oudheusden 

(2012)); and ii) Navier-Stokes equation based methods, which directly integrate the pressure 

gradient in the Navier-Stokes equation (e.g., Dabiri et al. (2013) and Liu and Katz (2006)). 

One may notice that the derivation from the incompressible Navier-Stokes equation to (1) 

according to the statement of the problem is not based on any additional assumptions. This 

implies that the analysis and the results of the pressure Poisson equation (1) in this paper 

holds for the Navier-Stokes equation based methods too. For example, a large domain 

accumulates more error in the pressure field from inaccurate velocity measurement, and 

Dirichlet BCs tends to yield less error than Neumann BCs, etc. The rigorous validation of 

this point is beyond the scope of this paper, and we sincerely welcome discussion and 

collaboration on this topic in future studies.

6. Conclusions

In this paper, we have analyzed the error propagation dynamics inherent in the calculation of 

the pressure Poisson equation from velocity data common to many PIV experiments. We 

emphasize that this work sets up a framework for analyzing the power/level of the error in 

the pressure field. The framework is based on a natural idea that the error in the pressure 

estimation is a combination of the true value and the error; and the measure of these error 

can be well defined with their L2 & L∞ norm. Under this framework, we directly analyze 

the error in the data as non-negligible perturbations to the pressure Poison equation, and 

have been able to unravel the dynamics that affect error propagation, namely: the shape, 

area/volume, and boundary conditions of the flow domain, as well as error level in the field 

and on the boundary. These factors are coupled and make the error propagation dynamics 

intrinsically complicated even for the fairly simple domains we used in the examples. Based 

on the error bounds we derived (Inequalities (11) and (15)), particular comments can be 

made for each specific application. However, there are several general conclusions that we 

would like to emphasize again here: i) The error propagation is dominated by the error 
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inside the data domain when the domain is large, while the error in the pressure calculation 

is impacted more by the error on the data boundary when the domain is small. ii) The type of 

boundary conditions significantly and fundamentally affect the error propagation. iii) 

Particularly, domains with pure Neumann boundary conditions need to satisfy the 

compatibility condition, which can prove difficult in PIV and may restrict its application.

This work lays out guidelines for designing experiments (velocity field measurements) that 

can be used to calculate the pressure field via the pressure Poisson equation. In engineering 

practice, the techniques presented can be used to develop a priori error estimations of the 

pressure field to inform the practical side of experiments and minimize the error propagation 

inherent in calculating pressure fields from velocity fields.
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Appendix A. Inequalities and notation

Before proceeding we note that in addition to the definition of the L2 norm, we have also 

made use of the L∞ or sup norm, defined by:

(A.1)

We only require three inequalities for the results obtained here, i.e. for bounds on the L2 

norm of the error. Similar calculations can be performed to obtain bounds on the L∞ norm 

of the error, but the analysis is far more complicated and hence is omitted. We also point out 

that these inequalities are valid only when both sides are finite, i.e. the relevant functions live 

in the appropriate function spaces. For further details on such inequalities, we refer to 

standard textbooks such as (Foias et al., 2001).

a. Cauchy-Schwarz:

(A.2)

b. Poincare:

(A.3)

where C is the Poincare constant that depends both on the boundary 

conditions and the geometry of the domain. C can also be thought of as the 

square of the reciprocal of the smallest eigenvalue of the Laplace operator 
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acting on the domain with the same boundary conditions as those 

prescribed to f.

c. Minkowski (triangle inequality):

(A.4)

Appendix B. Error bounds in L2 space

Appendix B.1. Dirichlet case

Using the principle of superposition and the linearity of the Poisson pressure equation, we 

can rewrite the solution to equation (7) and (8) as εp = εp(ℒ) + εp( ), where

(B.1)

and

(B.2)

Equation (B.1), which is harmonic, satisfies the maximum principle:

(B.3)

where |Ω| refers to the area or volume of the region Ω.

Now multiplying (B.2) by εp( ) and integrating over the entire domain, we have

(B.4)

Integrating by parts equation B.4 yields
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(B.5)

Substituting homogeneous BCs to equation (B.5), we have

(B.6)

This can be rewritten as

(B.7)

Applying Poincare and Cauchy–Schwarz inequalities (B.7) yields

(B.8)

where, CD is the Poincare constant for the Dirichlet boundary value problem.

Combining (B.3) and (B.8), and using the Minkowski inequality we have

(B.9)

Appendix B.2. Neumann BCs

Similar to the Dirichlet case, the Poisson equation with non-homogeneous Neumann BCs 7 

and 9 can be solved by superimposing a Poisson equation with homogeneous BCs

(B.10)

and a Laplace equation with non-homogeneous BCs

(B.11)
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Solutions of (B.10) exist only when the compatibility condition

(B.12)

is satisfied, which means the mean value of the error in the data is assumed zero. With this in 

mind, we multiply B.10 with εp( ) and integrate over the entire domain, integrating by parts 

and using the homogeneous boundary conditions to arrive at:

(B.13)

Applying the Cauchy–Schwarz and Poincare inequalities, we see that

(B.14)

where CN is the Poincare constant for these boundary conditions and ε̄
p( ) = ∫Ωεp( )dS, the 

mean of the pressure field. The compatibility condition on the boundary condition allows us 

to assume that εp̄( ) vanishes, and thus ‖εp( )‖L2(Ω) can be bounded as

(B.15)

A similar approach to (B.11) yields

(B.16)

Using the Poincare inequality twice on the domain and boundary, respectively,

(B.17)

Assuming ‖ε̄
p(ℒ)‖L2(Ω) vanishes, and combining (B.15) and (B.17) we have
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(B.18)

where, CNB is the Poincare constant for the specified boundary conditions. We note that the 

constant on the boundary is due to the compatibility condition, i.e. the error on the boundary 

is mean zero.

Appendix C. Calculation of the Poincare constants

For a smooth and bounded domain, the optimal (minimum) Poincare constant for the 

Laplace operators is the reciprocal of the first eigenvalue of the BVP problem. As examples, 

we list the exact Poincare constant for the simple cases illustrated in the paper. For the pure 

Dirichlet BC case in M × N domain, the first eigenvalue is λ1 = π2/M2 + π2/N2, and thus the 

Poincare constant is . Similarly, for the pure Neumann 

boundary case, the optimal Poincare constant is CN = max (M2/π2, N2/π2), and for the 

boundary, CNB = 2 (M + N)/π. The exact optimal Poincare constant calculation is generally 

difficult for an arbitrary domain, however, Rayleigh quotient and Rayleigh quotient iteration 

can be employed to numerically estimate the optimal Poincare constant. See (Gould, 1995) 

for one approach to estimating the eigenvalues of such operators.
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Figure 1. 
Error level in the pressure field versus the width of the flow field for the Dirichlet case. The 

data points illustrate the error level when artificial error is introduced in the field only (blue 

square), on the boundary only (red triangle), and both in the field and on the boundary (black 

open circle). The black solid line is the bound of the error of the pressure field based on 

inequality (12).
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Figure 2. 
N × M Domain Ω with aspect ratio α and area A.
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Figure 3. 
Error level in the pressure field versus aspect ratio of rectangular flow domains with various 

areas. The lines are plotted from inequality (13), with ‖εf‖L2(Ω) = ‖εh‖L∞ = 2−4; and A = 1/4, 

1, 4, 16, where the lines mark the upper bound of the inequality.
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Figure 4. 
Error level in the pressure field versus the length scale of the flow field for the Neumann 

case. The data points illustrate the error level when artificial error is introduced in the field 

only (blue square), on the boundary only (red triangle), and in both field and on boundary 

(black open circle), respectively. The black solid line presents the bound of the error of the 

pressure field.
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Figure 5. 
Error level in the pressure field versus aspect ratio of rectangular flow domains with various 

areas. The lines are plotted from equation 13, with ‖εf‖L2(Ω) = ‖εh‖L∞ = 2−4; and A = 1/4, 1, 

4, 16.
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Figure 6. 
Error level in the pressure field versus aspect ratio of rectangular flow domains with various 

areas. The lines are plotted from inequality (19), with ‖εf‖L2(Ω) = 2−4; and A = 1/4, 1, 4, 16. 

The inset shows the boundary condition settings for the N × M domain.
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Figure 7. 
Bounds of the L2-norm of error in a pressure field. The red and blue curves indicate the 

highest possible uncertainty level in the pressure field with the same level of error 

introduced in the data (2−3 on boundary and in field) for Dirichlet and Neumann cases, 

respectively. The purple and green dashed lines show Dirichlet and Neumann case with the 

same uncertainty level as other cases in the flow field, but with less error (2−4) on the 

boundaries.
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Table 1

Types of boundary conditions used in recent studies

Papersa Type of BCs Application

Neeteson et al. (2015)b Dirichlet Sphere moving in water

Löhrer et al. (2015) Neumann Flow around moving flexible structure

Villegas and Diez (2014) Neumann Rotating airfoils

Blinde et al. (2015) Mixed Transonic air flow

Oren et al. (2014) Mixed Intraglottal flow

Lignarolo et al. (2014) Mixed Wake after wind-turbine

de Kat and Ganapathisubramani (2013) Mixed Turbulent jet

Novara and Scarano (2013) Mixed Jet flow in water

Pröbsting et al. (2013) Mixed Turbulent boundary layer

Nila et al. (2013) Mixed Water slamming

Albrecht et al. (2013) Mixed Aerodynamic load on airfoil

Ghaemi and Scarano (2013) Mixed Turbulent boundary layer

Ghaemi et al. (2012) Mixed Turbulent boundary layer

Koschatzky et al. (2011) Mixed Aeroacoustics

Moore et al. (2011) Mixed Aeroacoustics

Violato et al. (2011)
and many more

Mixed Rod-airfoil flow

a
We only count the papers that utilize the pressure Poisson approach.

b
This paper tested both Dirichlet and Neumann boundaries for comparison.
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