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PPARγ has emerged as a master regulator of macrophage polarization and is the molecular target of the
thiazolidinedione drugs. Here we show that apigenin binds and activates PPARγ by acting as a modulator. Acti-
vation of PPARγ by apigenin blocks p65 translocation intonuclei through inhibition of p65/PPARγ complex trans-
location into nuclei, thereby decreasing NF-κB activation and favoringM2 macrophage polarization. In HFD and
ob/obmice, apigenin significantly reversesM1macrophage intoM2 and reduces the infiltration of inflammatory
cells in liver and adipose tissues, as well as decreases the levels of pro-inflammatory cytokines, thereby alleviat-
ing inflammation. Strikingly, apigenin reduces liver and muscular steatosis, decreases the levels of ALT, AST, TC
and TG, improving glucose resistance obviously. Unlike rosiglitazone, apigenin does not cause significant weight
gain, osteoporosis et al. Ourfindings identify apigenin as amodulator of PPARγ and a potential lead compound for
treatment of metabolic disorders.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Nutrient excess and adiposity leads to chronic low-grade inflamma-
tion, which is referred to as obesity-related inflammation (Xu et al.,
2003b). Obesity-related inflammation acts as a key pathogenic link
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betweenobesity andobesity-associatedmetabolic disorders, including in-
sulin resistance (Xu et al., 2003a), type 2 diabetes (Duncan et al., 2003)
and cancer (Howe et al., 2013). Thus, resolving the inflammation is one
potential strategy to treat metabolic syndromes. Thus far, several drugs,
such as metformin (Dinarello, 2010) and thiazolidinedione have been
proven to restrain low-grade inflammation and therefore to treat insu-
lin-resistance and correlated physiological functional disorders. However,
furthereffortsareneeded todevelopnewerandsafer therapeutics toame-
liorate obesity-related inflammation and reverse metabolic disorders.

PPARγ, which belongs to the PPAR family of ligand-inducible tran-
scription factors, has been well documented to play a central role in ad-
ipogenesis and low-grade inflammation. PPARγ is implicated in the
regulation of immunological events, playing an important role in medi-
ating the differentiation and activation of immune cells, aswell asmod-
ifying cytokine expression patterns and cell fates, thereby remodeling
the immune balance (Cipolletta et al., 2012). In particular, PPARγ has
been recognized as a pivotal anti-inflammatory regulator in atheroscle-
rosis primarily through regulating the differentiation and functional
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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polarization of macrophages (Bouhlel et al., 2007). Macrophages are
heterogeneous and plastic, and there are at least twomajormacrophage
populations: those in a predominantly M1-polarised pro-inflammatory
state and those in a predominantly M2-polarised anti-inflammatory
state (Chinetti-Gbaguidi and Staels, 2011). M1 cells are efficient pro-
ducers of effector molecules (ROS and NO) and inflammatory cytokines
(IL-1R, TNF, IL-6, etc.) and express typical phenotypicmolecules, such as
CD80 and CCR7. In contrast, the various forms of M2 cells share a dis-
tinct major signaturewith low IL-12, low IL-23, and high IL-10 and gen-
erally have high levels of scavenger, mannose, and galactose-type
receptors, and arginine metabolism within these cells is shifted to pro-
duction of ornithine and polyamines via arginase. M2 cells have been
shown to express high levels of certain genes, such as chitinase-like
Ym1, found in inflammatory zone (FIZZ)1 (Fizz1), arginase (Arg1) and
mannose receptor C type 1 (CD206); these have become classical
markers of M2 cells. M1 andM2 cells have distinct chemokine and che-
mokine receptor repertoires and therefore orchestrate different im-
mune responses (Mantovani et al., 2004). Manipulation of M1/M2
homeostasis has been shown to be an effective strategy for clinical
treatment of some inflammatory diseases. PPARγ activation can skew
macrophages towards an anti-inflammatory M2 phenotype, resulting
in inhibition of inflammation. Due to the role of PPARγ in macrophage
polarization and anti-inflammation, PPARγ ligands have been used to
treat metabolism-related inflammation and have shown significant
anti-inflammatory therapeutic activity. Full agonist of PPARγ refers to
a ligand which can bind to LBD domain with high-affinity and activate
PPARγ thoroughly. For example, administration of pioglitazone, a full
agonist of PPARγ, which can reduce the expression of IL-1β, IL-6,
MCP-1, and TNF-α in peritoneal macrophages (Dasu et al., 2009),
while rosiglitazone, another full agonist, upregulates the production of
the anti-inflammatorymolecule adiponectin, and thus decreases insulin
resistance (Yang et al., 2002).

Ongoing work at developing ligands and modulators of PPARγ is
focused on harnessing its anti-inflammatory properties. In recent
years, some PPARγ agonists with anti–inflammatory effects (pioglita-
zone, Sitagliptin metformin/rosiglitazone combination) have already
completed clinical trials. However, even with such promising therapeu-
tic activity, the side effects of thiazolidinedione (TZD) drugs include car-
diovascular failure, liver toxicity, bone fractures and potential
carcinogenesis, these have greatly limited their clinical use (Lehrke
and Lazar, 2005). Therefore, much attention has recently been paid to
further optimization of the PPARγ ligands' structures to decrease or ab-
rogate their side effects. In particular, exploration of natural compounds
represents one promising strategy for developing new, safer ligands or
modulators of PPARγ (Doshi et al., 2010). Apigenin (Api, 4,5,7-
trihydroxyflavone) is a naturally occurring plant flavonoid abundant
in various fruits and vegetables (Havsteen, 2002). It has lately gained at-
tention as a beneficial and healthy compound because of its various bi-
ological effects and low intrinsic toxicity. Moreover, Api has been
demonstrated to possess distinct anti-inflammatory activity in chronic
inflammation (Choi et al., 2014) and skin inflammation (Byun et al.,
2013). Api is also an inhibitor of NAD + ase CD38 and improves meta-
bolic syndrome (Escande et al., 2013). In addition, Nicholas et al. has
found that Api can specifically modulate NF-kB in macrophages by sup-
pression the phosphorylation of p65 (Nicholas et al., 2007). It is note-
worthy that Api might be a ligand of PPARγ via structure-based virtual
screening (Salam et al., 2008a, Mueller et al., 2008). Hence, further
study of Api and the underlyingmechanisms related to the PPARγ path-
way has potential therapeutic implications. In the current study, we
identify Api as an effective ligand of PPARγ in macrophages. Important-
ly, Api can significantly attenuate obesity-related inflammation and
metabolic disorders in high-fat diet-induced mice and ob/ob mice. Fur-
thermore, unlike Rosi, a full ligand-type agonist of PPARγ, Api does not
exhibit some adverse effects, such as obvious weight gain, osteoporosis,
the increase of small adipocytes in white adipose tissue (WAT) and the
accumulation of triglycerides in the serum of obese mice.
2. Materials and Methods Results

2.1. Reagents

Api (5,7-dihydroxyflavone, PubChem CID: 5281607, purity N 99%,
chemical structure shown in Fig. 1a, purchased from Zelang biotechnol-
ogy company (Nanjing, China) was dissolved in 100% DMSO. The final
DMSO concentration in cell culture did not exceed 0.1% throughout
the study. Rosi (PubChem CID: 77999) and GW9662 (PubChem CID
644213) were purchased from Sigma (St. Louis, MO). DMEM and
RPMI1640 media were purchased from Gibco (Grand Island, NY). Peni-
cillin and streptomycin, HRP-conjugated Goat Anti-Mouse IgG (H+ L),
FITC-coupled secondary antibody (be), Cy3-labeled Goat Anti-Mouse
IgG (H + L), neutral red, CCK-8 and MTT are from Beyotime (Haimen,
Jiangsu, China). TNF-α, IL-10, CCL2 and IL-1β ELISA assay kits were pur-
chased from eBioscience (San Diego, CA). Alanine/aspartate amino-
transferases (ALT/AST) assay kits, TC, TG, glucose and insulin kit were
from Jiancheng Biology Institution (Nanjing, Jiangsu, China). Lipofecta-
mine 2000 was purchased from Invitrogen (Carlsbad, CA). PPRE-Luc
plasmid and dual-luciferase reporter assay systemswere from Promega
(Madison, WI, USA).

2.2. Mice Treatment

Male C57BL/6Jmice (3–4weeks old) andmale ob/obmicewere pur-
chased from Animal Genetics Research Center of Nanjing University
(Nanjing, China) and housed in a specific-pathogen-free (SPF) facility.
Mice, starting at 3–4weeks old,were randomly divided into four groups
(n = 9 per group). Mice were fed for 16 weeks with either a normal
chow diet (ND) consisting of 4.5% fat or a high-fat diet (HFD)
(D12492, 60% fat, 20% carbohydrate, 20% protein, total 5.24 kcal/g; Re-
search Diets Inc., New Brunswick, NJ). 19 weeks year-old HFD mice
were grouped and injected with Api (10 mg/kg, 30 mg/kg or 50 mg/
kg) (Liu et al., 2005, Dou et al., 2013), 10mg/kgRosi or vehicle alone (sa-
line containing 0.1% DMSO) intraperitoneally daily for 21 days. Mice
wereweighed daily until sacrificed under anesthesia using diethylether.
In addition, three month-old male C57BL/6J ob/ob mice were injected
with 30mg/kgApi or vehicle alone (saline containing0.1%DMSO) intra-
peritoneally daily for 21 days. Animal welfare and experimental proce-
dures were followed in accordance with the Guide for Care and Use of
Laboratory Animals (National Institutes of Health, the United States)
and the related ethical regulations of Nanjing University.

2.3. Isolation and Purification of Peritoneal Macrophages

Normal resident peritoneal cells of the Male C57BL/6J mice treat-
ed with Api (10 mg/kg, 30 mg/kg or 50 mg/kg), 10 mg/kg Rosi or ve-
hicle alone for 21 days were obtained by peritoneal washing with
20 mL Dulbecco's PBS (D-PBS) containing 2% FBS and 40 mg/mL gen-
tamicin. After centrifugation at 350g for 5 min, red blood cells were
lysed in ACK buffer and mononuclear cells were re-suspended in
complete medium (DMEM, 10% FBS, 2 mM L-glutamine, 100 units/
mL penicillin and 100 units/mL streptomycin) and incubated at
37 °C for 2 h in plastic culture plates. Then, the non-adherent cells
were removed, and the adherent cells were cultured in completeme-
dium with different stimuli.

2.4. Isolation and Purification of Adipocyte Tissue Macrophages

Epididymis fatwas excised andminced in Hanks' Balanced Salt Solu-
tion (HBSS; Invitrogen) containing calcium, magnesium and 0.5% BSA.
Collagenase (Type II; Sigma-Aldrich, St Louis, MO) was added to a
final concentration of 1 mg/mL and tissue suspensions were incubated
at 37 °C for 20–30minwith constant shaking. The resulting cell suspen-
sions were filtered through a 100-μm filter and centrifuged at 500g for
10 min to separate floating adipocytes from the SVC-containing pellet.



Fig. 1.Api attenuates obesity-related inflammation. (a) The chemical structure of Api and Rosi. (b–c)HFD-fedmice treatedwith the vehicle (0.1%DMSO), indicated doses of Api for 21days,
the effects of Api or Rosi on bodyweight and the statistical analysis at 21st day, (n=9). All values are expressed as mean± SEM. Statistical analysis is based on one-way ANOVA followed
by a Dunnett's test. **P b 0.01 compared with vehicle. (d) Representative H&E staining showed adipose tissue morphology of the HFD-fed mice treated with the vehicle (0.1% DMSO),
indicated doses of Api for 21 days, original magnification ×400, n = 6. Arrows indicated the inflammatory cells in adipose tissue (n = 9). (e) Quantification of the infiltration of
inflammatory cells into adipose tissue from the HFD-fed mice treated with the vehicle (0.1% DMSO), indicated doses of Api for 21 days, for five to eight sections/400× field, five to six
fields/gland/mouse, score according to the grade of lesion, slight (0.5), mild (1), moderate (2), severe (3), profound severe (4) and normal (0), (n = 6). All values are expressed as
mean ± SEM. Statistical analysis is based on one-way ANOVA followed by a Dunnett's test. **P b 0.01 compared with vehicle. (f–i) Inflammatory cytokine IL-12, TNF-α, IL-6 and IL-1β
in the serum of HFD-fed mice treated with the vehicle (0.1% DMSO), indicated doses of Api for 21 days were measured by ELISA assays according to manufacturer's instructions
(n = 9). All values are expressed as mean ± SEM. Statistical analysis is based on one-way ANOVA followed by a Dunnett's test. *P b 0.05, **P b 0.01, ***P b 0.001 compared with vehicle.
(j–l) 3 month years old male ob/ob mice were injected vehicle (0.1% DMSO) or 30 mg/kg Api for 21 days, the CCL2, IL-1β and IL-10 in the serum were measured by ELISA assays
according to manufacturer's instructions (n= 6). All values are expressed as mean ± SEM. Statistical analysis is based on the Student's t-test. *P b 0.05, **P b 0.01 compared with vehicle.
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The SVC was rinsed with PBS for two times and centrifuged at 500g for
10min. The pellet cells resuspended in FACS buffer at a concentration of
7 × 106 cells/mL for fluorescence activated cells sorting or purification
or for culture and live confocal microscopy studies. First the cells were
labeled with mouse CD11b MicroBeads (MACS, 130-049-60) are pur-
chased from Miltenyi Biotech. Then the cell suspension is loaded onto
a MACS column. The magnetically labeled CD11b+ cells are retained
on the column. The unlabeled cells run through and this cells fraction
is depleted of CD11b+ cells. After removal of the Colum from the mag-
netic field, the magnetically retained CD11b+ cells can be eluted as
the positively selected cell fractions. For RNA isolation, isolated cells
were homogenized in QIAzol Lysis Reagent (Qiagen).
2.5. Hematoxylin and Eosin (H&E) and Immunological Histological Chem-
istry (IHC) Detection

After the mice were sacrificed, the livers, skeletal muscles and adi-
pose tissues were removed and subsequently fixed in phosphate-buff-
ered 10% formalin, and embedded in paraffin blocks. A section from
each paraffin block was stained with hematoxylin and eosin (H&E) to
examine the pathologic structures of the tissues and to score the inflam-
mation cells infiltration for five to eight sections/400× field, five to six
fields/gland/mouse, score according to the grade of lesion, slight (0.5),
mild (1), moderate (2), severe (3), profound severe (4) and normal
(0), (n = 6). Images were obtained from fluorescence microscopy.

Image of Fig. 1
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The expression of CD68 (novus, A-5)was assessed by IHC staining of ad-
ipose tissue sections with antibody against the mouse CD68 antigen.

2.6. Cytokine Assay by ELISA

The TNF-α, IL-10, CCL2, IL-12 and IL-1β concentrations in 200 μL
serum, the adiponectin concentration in 10 μL serum or the superna-
tants of 1 million macrophages were assessed using a standard sand-
wich ELISA according to the instruction manual.

2.7. Cell Viability Assay and Cell Death Assay

1.0 × 104 ANA-1 or RAW264.7 macrophage cells were seeded in 96-
well plates, and the next day (at 65–75% confluence) cells were treated
with various concentrations (1–100 μM) of Api for 24 h, in a set of four
replicates including a control (0.1%DMSO). Adherent cellswere assayed
by MTT assay while suspension cells were assayed by the CCK-8 meth-
od. Api-induced cell death was determined by staining cells with
Annexin V-FITC (AnV) and propidium iodide (PI). The cells were then
collected and analyzed on a FACS Calibur cytometer using Cellquest
software (Becton Dickinson) and a total of 10,000 cells per sample
were analyzed in a diparametric plot (FL1 for log FITC and FL3 for log
PI) to determine the percentage of phosphatidylserine (PS)-external-
ized AnV + PI− (high FITC/low PI) apoptotic cells and PI+ (low FITC/
high PI-plus-high FITC/high PI) necrotic cells.

2.8. Cell Models and Treatment

ANA-1 cells and RAW264.7 cells (China Center for Type Culture Col-
lection)were cultured in the RPMI1640 and DMEMmedia, respectively,
supplemented with 10% fetal bovine serum, 2 mM L-glutamine,
100 units penicillin and 100 units streptomycin. In order to mimic the
macrophage phenotype of obese mice in vivo, we established two cell
models (M1 and M2) in vitro as shown below.

2.8.1. M1 Model
The M1 activation of macrophages was induced by LPS (500 ng/mL)

for 24 h. Then the effect of Api on the function and the expression of M1
markerswere assayed after treatmentwith Api (7.5 μM)or Rosi (10 μM)
in the presence or absence of LPS.

2.8.2. M2 Model
The M2 macrophage cell model was induced by IL-4 (10 ng/mL) in

cell lines and murine peritoneal macrophages for 24 h, in conjunction
with treatment with Api (7.5 μM) or Rosi (10 μM) prior to various
assays.

2.9. Co-culture Adipocyte and Macrophage

3T3-L1 adipocyteswere cultured in DMEMand added 0.5mM IBMX,
1 μMdexamethasone, 10 μg/mL insulin for 48 h to induce mature. Then
macrophages were placed into a well containing mature adipocytes.
24 h after co-culturing, macrophages and adipocytes were collected
separately for various assays.

2.10. Surface Marker Analysis

Primary peritoneal macrophages, ANA-1 cells and RAW264.7 cells
were treated with IL-4 or LPS in the presence or absence of Api for
24 h. Cells were analyzed using Anti-mMGL1/2 PE conjugated Goat
IgG (FAB4297P) are bought from R&D company. Anti-mouse CD80
(B7-1) PE (clone: 16-10A1), PE-conjugated anti-mouse CCR7 (clone:
4B12), anti-mouse MHC Class II (I-A) PE (cone: NIMR-4) and corre-
sponding isotype controls were purchased from eBioscience (San
Diego, CA).
2.11. Reactive Oxygen Species (ROS) Generation

ROS productionwas examined by DCFH-DA probe (Beyotime, China,
noS0033). After the stimulation medium was removed, cells were
washed twice with 2 mL warmed D-PBS, after which 1 mL D-PBS con-
taining 10 μM DCFH-DA was added to the cells and incubated for
20 min at 37 °C. Cells were then washed with D-PBS and subjected to
flow cytometry analysis.

2.12. Phagocytosis Assays

Phagocytosis assays were conducted using fluorescent red latex
beads (1 μMdiameter, L-2778, Sigma-Aldrich). Latex beadswere opson-
ized with complete medium (10% FBS in PRMI 1640) for 1 h at 37 °C be-
fore the experiments. Opsonized beads were added to Api-treated cells
at a ratio of 10:1 and incubated at 37 °C for 2 h. Phagocytosis was
stopped with the addition of 1 mL ice-cold sterile PBS. Cells were har-
vested and washed in ice-cold PBS three times, and then subjected to
the flow cytometry analysis. For each experiment, the data was ana-
lyzed on a FACS Calibur cytometer using Cellquest software (Becton
Dickinson, Franklin Lakes, NJ, USA). Dead cells were excluded by for-
ward and side scatter characteristics. Statistics presented are based on
10,000 events gated on the population of interest.

2.13. Detection of the Phagocytosis by Neutral Red Dye Uptake

Phagocytosis of macrophages was measured by the neutral red up-
takemethod as described (Weeks et al., 1987). Briefly, the primarymac-
rophages (1 × 106 cells/mL) frommicewere incubated in a 96-well flat-
bottomed microtiter plate 100 μL/well for 2 h at 37 °C in a 5% CO2 hu-
midified incubator. After discarding the supernatant, 100 μL of 0.1% neu-
tral red solution in PBS was added. Following 1 h incubation of the cell
plates at 37 °C, each well was carefully rinsed three times with PBS
and 100 μL cell lysis buffers [100% ethanol and 0.1 M acetic acid (1:1
v/v)] was added overnight at 4 °C. Optical density was measured at a
wavelength of 490 nm. The absorbance represented the phagocytosis
capacity of the macrophages.

2.14. Quantification of Nitrite in Cell Culture Supernatants

Cell culture supernatants frommacrophages that had been cultured
with or without the indicated stimuli were analyzed. The concentration
of nitrites was assayed in duplicate by a standard Griess reaction
(Guevara et al., 1998).

2.15. Western Blotting

Total protein concentration of serumwas determined by Pierce BCA
assay. The immunoblot experiments were performed as previously de-
scribed (Bao et al., 2007). The total protein (50 μg/lane)was electropho-
resed on 10% SDS-polyacrylamide gels and then electro-transferred
onto a poly vinylidene fluoride membrane. Antibody against NF-κB
p65 (Santa Cruz Biotechnology, Inc., no sc-8008), PPARγ (Santa Cruz
Biotechnology, Inc., no sc-7273), IκBα (S36) polyclonal antibody
(Bioworld Technology, Inc. no BS3601) and IκBα (phospho-S32/S36)
polyclonal antibody (Bioworld Technology, Inc. no BS4105) p-p65 poly-
clonal antibody (Bioworld Technology, Inc. no BS4737) were used, and
the intensities of the bands were quantified by Image J software.

2.16. ALT/AST Activity Assay

ALT and AST levels in serum from C57BL/6J mice, which are general-
ly associated with hepatic steatosis and/or inflammation (Sheth et al.,
1997), were assayed using ALT and AST activity assay kits. The absor-
bance at 510 nm was obtained with a micro-plate reader model 680
(Bio-Rad Laboratories, Hercules, CA, USA).
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2.17. Isothermal Titration Calorimetry (ITC)

ITC experiments on the alpha subtypewere performed at 25 °x using
a MicroCal ITC200 microcalorimeter (MicroCal Inc., Northampton, MA,
USA). Protein was extensively dissolved in a buffer of PBS (pH = 7.4)
and the PBS buffer was used to dilute the Api stock solutions (185 mM
in DMSO). DMSO was added to the protein solution in the same per-
centage of the ligand solution (below 0.05%). Protein solution
(9.25 μM) was added to the sample cell and the ligand solution (10
times more concentrated than the protein) was injected into the cell
in 19 aliquots of 20 μL for 4 s (the first injection was 0.4 μL for 0.8 s)
with delay intervals between injections of 180 s. Reference titration of
ligand into buffer was used to correct for heat of dilution. The syringe
stirring speedwas set at 1000 rpm. The thermodynamic datawere proc-
essed with Origin 7.0 software provided by MicroCal. To correct for any
discrepancies in the baseline outlined by the software, a manual adjust-
ment was performed.

2.18. Quantitative Real-Time PCR

Total RNAwas extracted frommacrophages and reverse-transcribed
to cDNA using the BioTeke supermoIII RT Kit (Bioteke Corporation, Bei-
jing, China). The mRNA expression of mouse PPARγ, CD36 and Arg1
(both PPARγ-targeted genes), the M1 markers such as CCL3, IL-12β,
NOS2, IL-6, IL-12, CCR2 and the M2 markers such as Arg1, CD206,
Ym1, Fizz1 were detected by quantitative RT-PCR, which was per-
formed with the iCycler thermocycler system and iQ5 optical system
(Bio-Rad) using SYBR green I dye (Bio-Rad). Threshold cycle numbers
were obtained using iCycler thermocycler system software version 1.0.
PCR cycling conditions as follows: 1 cycle of 94 °C for 5 min followed
by 40 cycles of 94 °C for 30 s, 60 °C for 30 s, and 72 °C for 45 s. The
primers used are listed in Table s5. Relative mRNA expression of target
genes was obtained by normalizing to the control group and the level
of β-actin using the 2−ΔΔCt method (Livak and Schmittgen, 2001).

2.19. Construction of N-Domain Deletion Mutants of PPARγ Expression
Plasmids

Vectors pcDNA3.1 (−)-PPARγ2 (aa1–505), pcDNA3.1 (−)-PPARγ2-
DBD-AF2 (aa137–505), pcDNA3.1 (−)-PPARγ2-hinge-AF2 (aa211–
505) and pcDNA3.1 (−)-PPARγ2-LBD (aa319–505) were constructed.
The PCR primers are shown in Table s5.

2.20. Site-Directed Mutagenesis

The mutants K263R, K265R, L340F and S342T were generated using
Plenti-hPPARγplasmid as a template bypolymerase chain reactionwith
a site-directedmutagenesis kit. The primers listed in Table s5were used
for Lys to Arg at positions 263 and 265, and Leumutated to Phe, Sermu-
tated to Thr at positions 240 and 342 separately. The changes in the nu-
cleotide bases are underlined. The site-specific mutations and absence
of any spurious mutations were confirmed by DNA sequencing at
Genscript Company.

2.21. Expression of Recombinant PPARγ-his

The cDNA coding sequence for the PPARγ protein (mouse, NCBI ac-
cession NP_035276) including SacI/Xbal was amplified by PCR, and
then inserted into a pCzn1 plasmid in frame to the C-terminal of
6 × his tag. The inserted PPARγ in pCzn1-PPARγ was sequenced.
PPARγ-his was expressed in Arctic Express™ transformed with the
pCzn1-PPARγ expressionplasmid. A culturewas grown in Luria–Bertani
(LB) medium containing 50 μg/mL ampicillin at 37 °C until the OD600
nm was 0.6–0.8, at which point isopropyl-β-d-thiogalactopyranoside
(IPTG) (0.5 mM, final) was added to induce protein expression.
2.22. Purification of Recombinant PPARγ-his

Cells were harvested 12 h later and resuspended in Lysis buffer con-
taining 20 mM Tris-HCL, 1 mM phenylmethylsulfonyl fluoride (PMSF)
and bacteria protease inhibitor cocktail (pH 8.0), then sonicated 100
times for 12 s. Samples were centrifuged for 20 min at 10,000g and 4 °
C. Precipitated material (inclusion bodies) containing PPARγ-his was
washed three more times by resuspending the material in 20 mM Tris,
1 mM EDTA, 2 M Urea, 1 M NaCl, 1% Triton X-100 (pH 8.0), followed
by centrifugation. Pellets from the final washwere resuspended in buff-
er A [20mMTris (pH 7.9), 5mMDTT and 8MUrea] and proteinwas ex-
tracted by overnight nutation at 4 °C. After centrifugation to remove the
remaining insoluble material, samples containing PPARγ-his were
aliquoted and stored at−80 °C. PPARγ-his can be further purified by di-
alysis and Ni-NTA–agarose affinity chromatography. Recombinant
PPARγ-his was eluted by 250 mM imidazole using the protocol as de-
scribed elsewhere. The purification was identified by Coomassie Bril-
liant Blue staining or western blotting by using PPARγ antibody (Santa
Cruz Biotechnology, Inc., no sc-7273).

2.23. Electrophoretic Mobility Shift Assay (EMSA)

The EMSAmethod was used to characterize the binding activities of
PPARγ transcription factors in nuclear extracts using the LightShift™
Chemiluminescent EMSA Kit (Thermo Fisher Scientific, Waltham, MA,
USA) as described by the manufacturer. Ana-1 cells were pretreated
with Api (1 μM, 5 μM, 10 μM) or DMSO (10 μL/L) and 0.5 μg/mL LPS
for 24 h and then the nuclear contents were extracted. Double-stranded
oligonucleotides containing either the consensus transcription factor
binding site for the PPRE sense (5′-CAAAACT AGGTCAAAGGTCA-3′) or
the PPRE antisense (5′-TGACCTTTGACCT AGTTTTG-3′) labeled at the
3′-end with biotin were synthesized from Promega. The nuclear pro-
tein-biotin-labeled oligonucleotide complexes were separated from
free biotin-labeled oligonucleotide by electrophoresis through 10%
ploy-acrylamide gels and then transferred to a nylon membrane
(Roche Applied Science). The biotin end-labeled DNA was detected
using the Streptavidin-Horseradish Peroxidase Conjugate and Chemilu-
minescent Substrate. Cold competition was done by adding a 100-fold
excess of specific unlabeled double-stranded probe to the reaction
mixture.

The ALT/AST, TC, TG, glucose and insulin levels were assayed accord-
ing to manufacturer's instructions. Arg1 activity was analyzed using the
previously described method (Yang et al., 2012).

2.24. PPARγ Gene-Reporter Luciferase Assay

HEK293 cells were transfected with pIRES-hPPARγ/PPRE-Luc and
pRL-control using Lipofectamine 2000 transfection reagent. As an inter-
nal control reporter, the plasmid pRL containing Renilla luciferase cDNA
was used. After 24 h, luciferase activities weremeasured using the dual-
luciferase reporter assay system. Renilla luciferase activity was normal-
ized to firefly luciferase activity.

2.25. Molecular Modeling of Api in the PPARγ-Binding Site

The crystal structure of human PPARγ was obtained from the RCSB
protein databank (PDB code: P37231). Autodock 4.2 and PyRx 0.5 pro-
grams were employed for virtual screening and the docked models
were analyzed using PyMOL. We used Perl scripts to identify the polar
and apolar interactions of the amino acid residue side chainswith a dis-
tance of 4.0 Å between atoms.

2.26. RNA Extraction, Illumina Sequencing and Analysis

The peritoneal macrophages were isolated from the 19 weeks old
ND and HFD mice firstly and lysed using Trizol reagent. RNA content
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and quality were assessed with an Agilent 2100 Bio analyzer, and RNA
integrity was confirmed by electrophoresis on 1% agarose gels contain-
ing formaldehyde. Total RNA from three biological replicates were
pooled to generate one lane for each cDNA library construction. After
extracting the total RNA from the samples, mRNA extracts (∼20 μg
RNA) were pooled and enriched using oligo (dT) magnetic beads.
After adding the fragmentation buffer, the mRNA was cleaved into
short fragments of about 200 bp. The first strand cDNAwas synthesized
by random hexamer-primer using the mRNA fragments as templates.
Then the buffer, dNTPs, RNase H and DNA polymerase I were added to
synthesize the second strand. The double strand cDNA was purified
with QiaQuick PCR extraction kit and washed with EB buffer for end re-
pair and single nucleotide A (adenine) addition. Finally, sequencing
adaptors were ligated to the fragments. The required fragments were
purified by agarose gel electrophoresis and enriched by PCR amplifica-
tion. The library products were ready for sequencing analysis via
Illumina HiSeq™ 2000, which was performed by “HuaDa Gene”. Clean
reads were mapped to reference sequences using OAPaligner/
SOAP2·The gene expression level was calculated by using RPKM
(reads per exon kilo base per million mapped sequence reads)
(Mortazavi et al., 2008). If there was more than one transcript for a
gene, the longest one was used to calculate its expression level and
coverage.

All reads were realigned to the NCBI m37 version of the mouse ge-
nome assembly using the Bowtie short read alignment program consid-
ering the 25 chromosome assemblies. Only uniquely mapping reads
were used in this analysis. Differentially expressed genes (DEGs) be-
tween two samples were identified under the strict algorithm as de-
scribed by Audic et al. (Audic and Claverie, 1997). The p-value
corresponded to differential gene expression test. The False discovery
Rate (FDR) method was used to determine the threshold of p-value in
multiple tests. A FDR ≤ 0.001 and an absolute value of log2-Ratio ≥ 1
were used as the thresholds to judge the significance of gene expression
difference.
2.27. Indirect Immunofluorescence and Microscopy

Cells were rinsed in ice-cold PBS followed by 15min incubationwith
4% paraformaldehyde at room temperature. Cell were then briefly
rinsed with PBS, incubated for 5 min with 0.2% Triton-100, and washed
3 times, 5 min every time with PBS. Nonspecific binding sites were
blocked with 5% BSA for 1 h. Primary antibodies PPARγ (81B8) Rabbit
mAb (Cell Signaling Techn no#5468) and NFκB p65 (F-6) (Santa Cruz
Biotechnology, Inc., no SC-8008) were diluted at 1:200, and incubated
overnight at 4 °C. Following incubation in cells were washed 3 times,
5 min every time with PBST, and incubated with FITC-coupled second-
ary antibody (be) and Cy3-labeled Goat Anti-Mouse IgG (H + L)
(Beytotime, China, diluted at 1:500) for 1 h at RT. Nuclei staining was
performed by incubating the cells with DAPI (Beyotime, China) before
mounting the processed coverslips onto ethanol-cleaned glass slides
using Dabco mountant. The specimens were viewed with an inverted
confocal microscope (Olympus, Japan). Image analysis was done with
Image J software.
Fig. 2. Api restores the M1/M2 status in obese mice. (a–c) The expression of surface markers M
treatedwith the vehicle (0.1%DMSO), indicated doses of Api for 21 dayswasmeasured (left) and
test (n=9). All values are expressed asmean± SEM. *P b 0.05, **P b 0.01, ***P b 0.001, ns, no sig
CD80 and MGL1/2 of mouse primary peritoneal macrophage isolated from ob/ob mice treated
data was quantified (right) by using the Student's t-test (n=9). All values are expressed as me
expression of M1 andM2macrophage markers in the adipose tissuemacrophages (ATMs) from
CCL4, Arg1 and Ym1 were measured by using qRT-PCR, and normalized to vehicle group and th
one-way ANOVA followed by a Dunnett's test (n = 9). *P b 0.05, **P b 0.01, ***P b 0.001, ns,
macrophage markers, CCR2, CCL3, CCL4, TNF-α and M2 markers MMP-9, Arg1, Ym1 and CD20
21 days were measured by using qRT-PCR, and normalized to ob/ob (vehicle) group and the
based on the Student's t-test. *P b 0.05, **P b 0.01, ***P b 0.001 compared with vehicle.
2.28. Statistic Analysis

All of the quantification of the flow datawas based on the analysis of
at least three times from at least threemice. The data were expressed as
the mean ± standard error of mean (SEM). The statistical analysis was
performed by the Student's t-test when only two value sets were com-
pared. A one-way ANOVA followed by a Dunnett's test was used when
the data involved three or more groups, as indicated in the Figure leg-
ends. All of the statistical tests and graphical presentation were per-
formed using the Prism 5.0 software (GraphPad, San Diego, CA).
P b 0.05, P b 0.01 or P b 0.001 were considered statistically significant
and indicated by *, ** or ***, respectively.
3. Results

3.1. Api Attenuates Obesity-Related Inflammation.

Accumulating evidence suggests that obesity causes chronic low-
grade inflammation (Ouchi et al., 2011). In order to investigate the
mechanisms for obesity-induced inflammation, 3–4 weeks male
C57BL/6 J mice were fed with a high fat diet (HFD) for 16 weeks, con-
sequently leading to a significant increase in body weight compared
with control mice (Fig. S1a). The fat/body weight index has been sig-
nificantly increased by HFD fed for 12 weeks compared with normal
diet (ND) mice (Fig. S1b). Consistent with the increase in body
weight, the level of the pro-inflammatory cytokine TNF-α (Fig. S1c)
and the chemokine CCL2 (Fig. S1d) in the serum of HFD-fed mice
was significantly increased in a time-dependent manner, suggesting
that continual HFD feeding triggers sustained inflammation along
with obesity development. Therefore, 16 weeks HFD-fed mice can
be used to screen small molecules that may regulate the obesity-re-
lated inflammation.

Api, a natural plant flavonoid, has been reported to inhibit the se-
cretion of IL-1β and TNF-α as well as regulate the synthesis of pros-
taglandin and NO in vitro (Ha et al., 2008). However, the in vivo
effect of Api on obesity-related inflammation and its potential as an
anti-inflammatory agent is still unknown. To address this question,
the 16 weeks HFD male C57BL/6J mice was used, with or without in-
traperitoneal Api treatment. Meanwhile, Rosi (Rosi) was used as a
positive control. As shown in Fig. 1b and c, the body weight of HFD
mice in the Rosi-treated group increased, but was not affected by
Api even at different doses. However, the fat/body weight index of
HFD mice was not affected by Api or Rosi (Fig. S2a). Histological ex-
amination and IHC staining indicated that adipose tissues of HFD
mice were infiltrated with inflammatory cells, and higher dosage of
Api administration inhibited their infiltration (Fig. 1d–e, Fig. S3).
The levels of pro-inflammatory cytokines IL-12, TNF-α, IL-6as well
as IL-1β (Fig. 1f–i) were significantly reduced by 30 mg/kg or
50 mg/kg Api in a dosage-independent manner. In addition, the che-
mokine CCL2 in mouse serum (Fig. S2b) were all reduced by 30 mg/
kg Api. Together, these results indicate that both 30 mg/kg and
50 mg/kg Api can efficiently inhibit HFD-induced inflammation in a
dosage-independent manner, and 30 mg/kg dosage is required for
HCII, CD80 and MGL1/2 of mouse primary peritoneal macrophage isolated from HFDmice
the flowdatawas quantified (right) byusing on one-wayANOVA followed by aDunnett's
nificant difference comparedwith vehicle. (d–f) The expression of surfacemarkersMHCII,
with the vehicle (0.1% DMSO), 30 mg/kg Api for 21 days was measured (left) and the flow
an± SEM. *P b 0.05, **P b 0.01, ***P b 0.001 compared with vehicle. (g–h) Relative mRNA
HFDmice treated with the vehicle (0.1% DMSO), indicated doses of Api for 21 days, CCL3,
e level of β-actin. All values are expressed as mean ± SEM. Statistical analysis is based on
no significant difference, compared with vehicle. (i–j) Relative mRNA expression of M1
6 in the ATMs from ob/ob mice treated with the vehicle (0.1% DMSO), 30 mg/kg Api for
level of β-actin (n = 9). All values are expressed as mean ± SEM. Statistical analysis is



68 X. Feng et al. / EBioMedicine 9 (2016) 61–76
the inhibition of inflammation. Moreover, the expression of IL-12,
CCL2 as well as IL-1β in the adipose tissue of HFD mice were signifi-
cantly reduced by Api (Fig. S4), suggesting that Api affected the pro-
duction of inflammatory cytokines in adipose tissue.

To further confirm the anti-inflammatory effect of Api in another
obesity-animal model, ob/ob mice were intraperitoneally treated
with Api (30 mg/kg bw). Consistent with the results from HFD-fed
mice, Api also caused a significant decrease in CCL2 and IL-1β levels
and an increase in IL-10 concentration compared to the control
group (Fig. 1j–l). Taken together with the above results, this suggests
that Api can effectively attenuate obesity-related inflammation in
vivo.
Fig. 3. PPARγ is necessary for Api regulating M1/M2 status. (a) RAW264.7 cells transfected W
simultaneously for 24 h, followed by qRT-PCR with indicated probes (below graphs). Data in
SEM. Statistical analysis is based on one-way ANOVA followed by a Dunnett's test. *P b 0.05,
4 + 7.5 μM Api simultaneously for 24 h, and then subjected to qRT-PCR, the data analysis a
ANOVA followed by a Dunnett's test. *P b 0.05, **P b 0.01, ***P b 0.001. (c) RAW264.7 cells t
LPS + 7.5 μM Api simultaneously for 24 h, followed by qRT-PCR with indicated probes (bel
expressed as mean ± SEM. Statistical analysis is based on one-way ANOVA followed by a Dun
IL-4 or10 ng/mL IL-4 + 7.5 μM Api simultaneously for 24 h, then subjected to qRT-PCR, the da
one-way ANOVA followed by a Dunnett's test. *P b 0.05, **P b 0.01, ***P b 0.001.
3.2. Api Restores the M1/M2 Status of Macrophages Both In Vivo and In
Vitro

Macrophage infiltration into adipose tissue, which can be induced by
increased adiposity, triggers local inflammation and insulin resistance.
Macrophage M1/M2 status plays a fundamental role in this process
(Olefsky and Glass, 2010). To elucidate the mechanism for Api attenua-
tion of obesity-related inflammation, we first detected the macrophage
phenotypes in the HFD-fed mice. As shown in Fig. S5a–b, the mRNA
levels of IL-6 and TNF-α which are classical markers of M1 macro-
phages, exhibited sustained increases in the HFD-fed mice compared
to the ND-fed group. The expression levels of CCR7 (Fig. S5c–d) were
T and PPARγ plasmids were treated with 500 ng/mL LPS or 500 ng/mL LPS + 7.5 μM Api
dicate fold induction (normalized by β-actin signal). All values are expressed as mean ±
**P b 0.01, ***P b 0.001. (b) Cells in (a) were treated with 10 ng/mL IL-4 or 10 ng/mL IL-
s (a). All values are expressed as mean ± SEM. Statistical analysis is based on one-way
ransfected scrambled or PPARγ shRNA were treated with 500 ng/mL LPS or 500 ng/mL
ow graphs). Data indicate fold induction (normalized by β-actin signal). All values are
nett's test. *P b 0.05, **P b 0.01, ***P b 0.001. (d) Cells in (c) were treated with 10 ng/mL
ta analysis as (c). All values are expressed as mean ± SEM. Statistical analysis is based on
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Fig. 4. Api binds to and activates PPARγ. (a) ANA-1 macrophages was treated with 10 ng/mL IL-4 or 10 ng/mL IL-4 plus 7.5 μM Api simultaneously for 24 h, the mRNA level PPARγ was
measured by using qRT-PCR. Data indicate fold induction (normalized by β-actin signal). All values are expressed as mean ± SEM. Statistical analysis is based on one-way ANOVA
followed by a Dunnett's test. ns, no significant difference. (b) Transcriptional activation of PPARγ in cells treated with the indicated dosages of Api or Rosi. HER293T cells were
transfected with pIRES-mPPARγ/PPRE and pRL-control using Lipofectamine2000. Then cells were pre-treated with apigenin for 24 h. Luciferase activities were measured by using the
dual-luciferase reporter assay system. All values are expressed as mean ± SEM. Statistical analysis is based on one-way ANOVA followed by a Dunnett's test. *P b 0.05, **P b 0.01,
***P b 0.001 compared with 0 group. (c) ANA-1 macrophages was treated with the indicated group for 24 h, the mRNA level PPARγ activation related genes CD36 and iNOS was
measured by using qRT-PCR. Data indicate fold induction (normalized by β-actin signal). All values are expressed as mean ± SEM. Statistical analysis is based on one-way ANOVA
followed by a Dunnett's test. ns, no significant difference. (d) ITC data for binding of Api to PPARγ. The upper panels show the raw data, and the lower panels show the corresponding
binding isotherm fitted according to the “one binding site” model. Reference titration of ligand into buffer was used to correct for heat of dilution. The thermodynamic parameters
(K, ΔH, and ΔS) are indicated under the below. (e) The deletion mutant model. (f) HER293T cells were transfected with pIRES-mPPARγ truncated mutants/PPRE and pRL-control using
Lipofectamine2000. Then cells were pre-treated with Api (1 μM, 10 μM) for 24 h. Luciferase activities were measured by using the dual-luciferase reporter assay system. All values are
expressed as mean ± SEM. Statistical analysis is based on one-way ANOVA followed by a Dunnett's test. *P b 0.05, **P b 0.01, ***P b 0.001 compared with 0 group. (g) Auto dock
model of Api binding to the PPARγ. Hydrogen bonding was built between Api and the Lys263, Lys265, Leu340 and Ser 342 sites of PPARγ. (h) Mutants disturbed Api from activating
PPARγ analyzed using the dual-luciferase reporter assay system. HER293T cells were transfected with pIRES-mPPARγ point mutants/PPRE and pRL-control using Lipofectamine2000.
Then cells were pre-treated with Api (1 μM, 10 μM) for 24 h. Luciferase activities were measured by using the dual-luciferase reporter assay system. All values are expressed as
mean ± SEM. Statistical analysis is based on one-way ANOVA followed by a Dunnett's test. *P b 0.05, **P b 0.01, ***P b 0.001 compared with 0 group.
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also significantly higher in HFD mice. Conversely, the transcription
levels of classical M2 markers, including CD206 (Fig. S5e) and Fizz1
(Fig. S5f)weremarkedlydecreased inHFD-fedmice compared to the con-
trol group. Consistently, the percentage of MGL1/2-positive macrophages
significantly decreased from 34.8% to around 15.10% (Fig. S5g–h).
These results suggest that polarization of macrophages is skewed
toM1 rather thanM2 differentiation during the development of obesity
induced by a HFD, thereby leading to sustained inflammation.
Next, we investigated whether Api restrained inflammation via reg-
ulation of M1/M2 polarization of macrophages. When treated with Api,
the increase in the expression ofMHCII and CD80 that had been induced
by HFD feeding was significantly abolished (Fig. 2a–b). Meanwhile, the
expression of M2 markers, such as MGL1/2, was significantly up-regu-
lated by Api (Fig. 2c). Furthermore, as shown in Fig. 2g–h, adipose tissue
macrophages (ATMs) isolated from Api-treated HFD mice had reduced
mRNA levels of CCL3 and CCL4 (M1 markers) but enhanced levels of

Image of Fig. 5
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Ym1 and Arg1 (M2 markers) when compared with non-Api treated
mice, suggesting that Api restored the M1/M2 polarization of ATMs in
HFD-fed mice. Similar results were obtained in ob/ob mice treated
with Api (30 mg/kg) for 21 days (Fig. 2d–f, i–j). Together, Api regulated
M1/M2 polarization of macrophages in vivo.

In our in vitro cell models of M1 andM2macrophages, wewere able
to confirm that Api treatment did not affect cell viability below 10 μ. But
when the dosage was increased, the cell viability was significantly re-
duced by Api (Fig. S8a–c). Moreover, in M1 cell model, Api treatment
significantly reduced the expression levels of CCR7 and CD80 (Fig.
S6a) on the surface of macrophages, and the concentrations of IL-6
(Fig. S6b), IL-12 (Fig. S6c), TNF-α (Fig. S6d) and NO (Fig. S6e) in cell su-
pernatant induced by LPS. However, in the M2 cell model, Api further
up-regulated the concentration of IL-10 (Fig. S6f), Arg1 activity (Fig.
S6g), the mRNA level of M2 genes (Fig. S6h) and the expression level
of MGL1/2 (Fig. S6i) on the surface of macrophages.

To mimic the microenvironment of ATM, ana-1 macrophages were
co-cultured with differentiated 3T3-L1 adipocytes, and subjected to
Api treatment thereafter. We found that the M1 markers (Fig. S7a–c)
were all decreased by Api and, in contrast, the M2 markers (Fig. S7d–f)
were enhanced by Api treatment. Interestingly, in addition to the change
inM1/M2markers, the biologic functions of ATMs (phagocytic capability
and ROS production) were depressed by Api in both HFD-fed mice
(Fig. S8m) and ob/ob mice (Fig. S8n–q). The in vitro results were fur-
ther confirmed by the results in the cell model (Fig. S8d–l). Together,
these findings indicate that Api favors M2 polarization of ATMs and
blocks the inflammatory functions of the macrophages, suppressing
obesity-related inflammation in animal models of obesity.
3.3. Api Regulates M1/M2 Polarization via PPARγ.

Numerous studies have established the critical role of PPARγ in con-
trollingmacrophageM2 polarization (alternative activation) (Odegaard
et al., 2007, Bouhlel et al., 2007). It has been suggested that Api itself is a
ligand of PPARγ (Liang et al., 2001). We further examined whether Api
regulates macrophage polarization through PPARγ. Upon stimulation
with LPS, the percentage of MHCII-positive cells increased from
18.92% to 55.03%, but decreased to 35.40%when treatedwith Api simul-
taneously (Fig. S9a–b). However, exposure to a specific PPARγ antago-
nist, GW9662, which can inhibit the transcriptional activation of
PPARγ, reversed the reduction of MHCII-positive cells by Api (Fig.
S9a–b). Similarly, GW9662 treatment also inhibited the Api-induced
decrease in the expression of CD80 as well as the mRNA levels of
CCR2, TNF-α, CCL4 and IL-1β in M1 polarization model (Fig. S9c–e).
Moreover, in the IL-4-induced M2 polarization model, the expected ef-
fect of Api-increased expression or transcription of M2markers, includ-
ing MGL1/2 (Fig. S9f–g), CD206, Arg1, Ym1 and IL-1r (Fig. S9h) was
blocked by the PPARγ antagonist, GW9662. These results suggest that
when the activity of PPARγ is inhibited by GW9662, the effects of Api
on M1/M2 polarization are correspondingly suppressed.
Fig. 5. Api regulatesmacrophage polarization via inhibiting the interaction between p65 and PP
HFDmice treated with 30mg/kg Api for 21 days was assayed by western blotting for three tim
(bottom). All values are expressed as mean ± SEM. Statistical analysis is based on the Studen
abundance were evaluated in the primary peritoneal macrophages of mice treated for 21 da
quantification of the protein level by image J software (bottom). All values are expressed as m
vehicle group. (c) The effect of 7.5 μM Api in LPS-induced ANA-1 on the activities of p65 w
experiments. (d) Using immunofluorescence, the p65 was evaluated in macrophage treated
24 h. p65 is shown in red, and nuclei stained with DAPI. Original magnification is ×400. F
cytoplasm ratio of (d) at least three independent experiments was quantified by Image J soft
ANOVA followed by a Dunnett's test. ***P b 0.001 compared with con or LPS group. (f) The p6
by confocal microscopy. p65 is shown in red, PPARγ is shown in green and nuclei stained w
experiments was quantified by Image J software. All values are expressed as mean ± SEM. S
compared with ND or HFD. (h) ANA-1 macrophages were treated with 500 ng/mL LPS, 10 ng/
for 24 h. The nuclei and cytoplasm protein was lysed and subjected to immunoprecipitatio
quantified by Image J software (right). All values are expressed as mean ± SEM. Statistical ana
To further confirm the role of PPARγ in Api-induced M1/M2 transi-
tion, the expression of PPARγ in Raw264.7 macrophages was knocked
down by specific shRNA. At first, the efficacy of PPARγ shRNA was ver-
ified by western blot and qRT-PCR (Fig. S10a–b). When the expression
of PPARγwas inhibited by PPARγ shRNA, the effects of Api on the tran-
scription levels of both M1 (NOS2, TNF-α, CCL3 and CCL4) (Fig. 3a) and
M2 (Ym1, CD163, CD206, Arg1) markers (Fig. 3b) were abolished.
Moreover, PPARγwas also overexpressed inmacrophages through con-
structing and transfecting PPARγ plasmids. The results indicate that the
overexpression of PPARγ further enhanced the effects of Api in
inhibiting the expression of M1 markers (Fig. 3c) while prompting the
expression of M2 markers (Fig. 3d) in LPS-or IL-4-stimulated macro-
phages. Taken together, all these results suggest that regulation of mac-
rophage M1/M2 polarization by Api is dependent on PPARγ.

3.4. Api Binds to and Activates PPARγ

We investigated the underlying mechanism by which PPARγ con-
tributes to Api-induced macrophage M1/M2 polarization. The mRNA
levels of PPARγ were comparable between the Api-treated group and
the vehicle control group (Fig. 4a), suggesting that Api does not affect
the mRNA expression of PPARγ. Activation of PPARγ through the lucif-
erase reporter assay indicated that the activity of PPARγ is significantly
increased by Api when PPARγ is overexpressed (Fig. 4b), which is con-
sistent with previous report (Liang et al., 2001). In order to detect
whether Api can activate the endogenous PPARγ, the EMSA experiment
was performed. The results of the EMSA assay further confirmed that
transcriptional activity of endogenous PPARγ can be induced by Api
(Fig. S10c). ThemRNA level of PPARγ target gene CD36 is also enhanced
by Api treatment. Since iNOS promoter activity is inhibited by PPARγ li-
gands (Ricote et al., 1998), the data shown in the Fig. 4c indicated that
Api inhibited iNOS expression, suggesting that Api can activate PPARγ,
and thus upregulate or downregulate the corresponding genes targeted
by PPARγ.

Noeris K. Salam et al. have suggested that Api might be an agonist of
PPARγ (Salamet al., 2008b). To explorewhether Api can directly bind to
PPARγ, we first expressed and purified the recombinant his6-tagged
PPARγ (termed PPARγ-his) (Fig. S10d–f). Then qualitative method-ITC
was employed to analyze the binding activity between PPARγ and Api
at 298 K. The binding affinity and binding stoichiometry of PPARγ to
Api were obtained via the one-site bindingmodel fitting using integrat-
ed binding heat, which revealed 14 potential Api binding sites within
PPARγ with moderate binding affinity (Ka = 44.900 ± 105,300 M−1)
(Fig. 4d).

PPARγ contains four domains, including the A/B domain, C (DNA
binding domain, DBD), D (hinge) and F (ligand binding domain, LBD)
domain. To identify the amino acid sequence of PPARγ that binds to
Api, three different C-terminal deletion mutants (C/F, D/F, F) of PPARγ
were constructed using an eukaryotic expression plasmid (plenty-v5-
PPARγ) as described in Fig. 4e. Then the PPARγ activation assays were
performed in 293T cells which expressed these deletion mutant
ARγ. (a)The expression of p65 in the primary peritonealmacrophages of 19weeks ND and
es, 3 mice/time (top). And the quantification of the protein level by using image J software
t's t-test. *P b 0.05 compared with ND or vehicle. (b)The impact of Api on IκBα, p-IκBα
ys with 30 mg/kg Api by western blotting for three times, 3 mice/group (top). And the
ean ± SEM. Statistical analysis is based on the Student's t-test. **P b 0.01 compared with
as detected by EMSA assay. Figure shows one image from at least three independent
with Control, LPS (500 ng/mL), or LPS (500 ng/mL) and 7.5 μM Api simultaneously for
igure shows one image from at least three independent experiments. (e) The nuclei/
ware. All values are expressed as mean ± SEM. Statistical analysis is based on one-way
5/PPARγ complex in the ATM of mice treated with 30 mg/kg Api for 21 days was assayed
ith DAPI. Original magnification is ×400. (g) Data from (F) at least three independent
tatistical analysis is based on one-way ANOVA followed by a Dunnett's test. ***P b 0.001
mL IL-4, 500 ng/mL LPS plus 7.5 μM Api simultaneously or 10 ng/mL IL-4 plus 7.5 μM Api
n and western blotting (left). Data from at least three independent experiments was
lysis is based on one-way ANOVA followed by a Dunnett's test. *P b 0.05, ***P b 0.001.
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plasmids. The results indicated that Api significantly activated the C/F
(107aa–475aa) mutant, and partially activated the D/F (181–475aa)
mutant (Fig. 4f). In contrast, the F (289–475aa) mutant could not be ac-
tivated by 10 μMApi (Fig. 4f), suggesting that the sequence of 107–289
amino acids in PPARγ is responsible for binding to Api. To further deter-
mine the specific amino acids required for binding between Api and
PPARγ, we used the molecule docking method, which suggested that
four amino acids (Lys263, Lys265, Leu340, Ser342) of PPARγ form hy-
drogen bonds with Api (Fig. 4g). Then, site-directed mutants of these
four amino acids of PPARγ were subsequently generated. As Fig. 4h
shows, none of the single mutants (K263R, K265R, L340F and S342T)
could be activated by Api, indicating that these four specific amino
acids are required for binding and they might form a pocket for binding
to Api. Interestingly, unlike Api, except K263-R mutant, the D/F, F trunk
mutants and the other three point mutants had no effect on PPARγ ac-
tivation by Rosi (10 μM) (Fig. S11), which further imply the different in-
teraction mechanism between Api and Rosi with PPARγ.

3.5. Api Reduces NF-κB Signaling by Changing the PPARγ/p65 Complex in
the Cytoplasm and Nucleus.

Nuclear factor kappa B (NF-κB), which is a key transcription factor
regulating inflammation, has also been shown to play a central role in
metabolic pathologies (Kiechl et al., 2013). Here, we performed RNA-
Seq of the primary peritoneal macrophages from both HFD and ND
mice. The sequencing quality and credibility were evaluated by the
composition of raw reads of ND and HFD samples (Fig. S12a), the
amount of clean reads (Fig. S12b), the number of reads (Fig. S12c), the
gene expression levels (Fig. S12d) and the distribution of gene coverage
(Fig. S12e). The data of the RNA-Seq was shown in Table s6. Among
these, therewere 246 genes up-regulated and 75 genes down-regulated
in HFD mice (Fig. S10g). The results of sequencing was confirmed by
qRT-PCR assay (Fig. S10h). The genes associated with the growth and
survival of cells (Table s1), insulin resistance (Table s2), T cells activa-
tion (Table s3) and inflammation (Table s4) were all up-regulated in
HFD mice. Among those, NF-κB signaling was activated and the mRNA
level was significantly increased. Moreover, p65 expression in the peri-
toneal macrophages of HFD mice was significantly decreased by Api
treatment (Fig. 5a). Furthermore, IκBα interacts with p65 to inhibit nu-
clear translocation, and activation of IκB kinase can lead to the degrada-
tion of IκBα and translocation of p65 into the nucleus. Our results show
that Api reduces the phosphorylation level of IκBα in macrophages of
HFD mice (Fig. 5b). Consistent with this finding, our EMSA showed
that Api suppressed the activation of NF-κB (Fig. 5c) and our immuno-
fluorescence assay and the quantification of the p65 fluorescence inten-
sity showed that Api significantly inhibited the translocation of p65
from cytoplasm to nuclei (Fig. 5d–e).

Previous studies have reported that PPARγ can suppress the activa-
tion of NF-κB in mouse macrophages (Liang et al., 1999) and inhibit in-
flammation through interacting with p65 and inducing its
ubiquitination and degradation (Hou et al., 2012). Itwas also investigat-
ed that ligand-activated PPARγ can play a negative regulatory role in
macrophage activation, resulting in lower NF-κB activity (Ricote et al.,
1998) and the interaction between PPARγ and p65dampens the pro-in-
flammatory signals (Sato et al., 2005). But, themechanismof Api inhibi-
tion of the translocation of p65 remains unknown. Although PPARγ is a
nuclear receptor, it is constitutively present in both the cytoplasm and
nucleus. Here, we hypothesize that Api may change the level of p65/
PPARγ complex in the cytoplasm and nucleus of macrophages. In fact,
immunofluorescence assay and the quantification of the PPARγ/p65
fluorescence intensity showed that the higher level of the PPARγ/p65
complex in the nucleus of ATM of HFD mice was reduced by Api treat-
ment (Fig. 5f–g). To further confirm this, we performed a co-immuno-
precipitation assay in M1/M2 macrophages, and the result indicated
that LPS treatment increased the interaction of PPARγ and p65 in the
nucleus, while the effect was reduced by Api stimulation in the nucleus.
In IL-4 stimulated macrophages, the PPARγ/p65 complex was reduced
compared with non-treated cells and further reduced after IL-4 and
Api co-treatment in the nucleus (Fig. 5h). Taken together, these results
indicated that Api regulated M1/M2 status by changing the location of
the PPARγ/p65 complex.

3.6. Api Attenuates Metabolic Syndrome

Obesity causes excess fat accumulation and chronic low-grade in-
flammation in various tissues, especially in insulin-responsive organs
such as skeletal muscle, liver and adipose tissue, thereby contributing
to the development of metabolic abnormalities (Despres and Lemieux,
2006). In our model, both ALT and AST were increased up to 3-fold or
50-fold in the serum of HFD mice (Fig. S13a–b). In addition, the levels
of total cholesterol (TC), triglycerides (TG), glucose, and carbonylational
proteins were also significantly increased in HFDmice (Fig. S13c–f), in-
dicating that a HFD induced liver injury and metabolic disorder. Treat-
ment with Api markedly reduced the levels of ALT, AST, TC and TG in
the serum of HFD mice, with effects similar to Rosi, which is a specific
PPARγ agonist (Fig. 6e–f). The histological examination of liver and
muscle sections further demonstrated that both Api and Rosi efficiently
attenuated the derangement of cell structures, excessive lipid accumu-
lation and pathological status induced by a HFD (Fig. 6a and c) and the
score showed that Api obviously attenuated their steatosis (Fig. 6b
and d). In addition to the HFD mouse model, we also investigated the
ability of Api to relieve metabolic syndrome in ob/ob mice. Similarly,
the levels of ALT, AST, TC, TG and glucose in the serum of ob/ob mice
were all decreased significantly by Api administration (Fig. 6e–h). All
these results suggest that Api can efficiently attenuate the syndromes
of metabolic abnormality in both HFD and ob/ob animal models.

3.7. Api Exhibits No Adverse Effects Found in Thiazolidinediones

Thiazolidinediones (TZDs), which are specific ligands for PPARγ,
have been used as anti-diabetic drugs and act as insulin sensitizers in
type 2 diabetes mellitus. According to our above results, Api might
also act as an insulin sensitizer since it is also a specific ligand
for PPARγ. To test this, we treated HFD mice with 30 mg/kg Api or
10 mg/kg Rosi for 21 days. The data shown in Fig. 7a indicate that
mice treated with Api had improved glucose tolerance with an approx-
imately 40–50% reduction in the AUC of glucose, whereas Rosi treat-
ment induced an approximately 20–30% reduction. Insulin tolerance
tests (ITTs) revealed that Api treatment has no significant improving
on insulin sensitivity in obese mice compared with the vehicle group
(Fig. S14). Mice treated with Api or Rosi both had reduced fasting insu-
lin levels and glucose levels (Fig. 7b and c). In addition, adiponectin, a
classical marker of insulin sensitivity, was enhanced by both Api as
well as Rosi (Fig. 7d). These results suggest that Api acts as an insulin
sensitizer, similar to Rosi.

However, the clinical use of TZDs in type 2 diabetes mellitus is limit-
ed by adverse effects, including body-weight gain, osteoporosis and the
increase of small adipocytes inWAT (Schwartz, 2006), leaving room for
development of new and safer PPARγ-modulating drugs. To evaluate
the potential of Api as new an anti-diabetic drug, we also assessed
Api's safety and adverse effects. In contrast to TZDs, apigenin treatment
does not induce an obvious change in bodyweight (Fig. 1b–c). Previous
reports have indicated that TZDs also increase the number of small ad-
ipocytes in WAT, potentially by promoting differentiation (Okuno et
al., 1998), but our histological examination demonstrated that WAT
from Api-treated mice exhibited reduced adipocyte size (Fig. 7e). In ad-
dition, different from TZDs, Api reduced the accumulation of triglycer-
ides in the serum of both HFD and ob/ob mice (Fig. 6h). Another
undesirable side effect of TZDs is osteoporosis, and recent studies have
reported that TZDs cause osteoporotic fractures in rats, mice and
humans. We therefore employed the method of computer tomography
(CT) to detect the bone intensity of Api andRosi-treatedmice. As Table 1



Fig. 6. Api attenuates themetabolic disorders of obese mice. (a-c) Representative H&E staining showed liver/muscular morphology from 16-week-old HFDmice (n=9) treated with the
vehicle indicated doses of Api for 21 days and (b–d) the Quantification of hepatic/muscular steatosis for five to eight sections/400× field, five to six fields/gland/mouse, score according to
the grade of lesion, slight (0.5), mild (1), moderate (2), severe (3), profound severe (4) and normal (0), n=6, original magnification ×400. Statistical analysis is based on one-way ANOVA
followed by a Dunnett's test. ***P b 0.001 compared with vehicle. (e–h) the activities of ALT (e) and AST (f), The levels of TC (G) and TG (H) in serum of HFD and ob/ob mice were
significantly reduced by Api or Rosi, n = 9 or 6. All values are expressed as mean ± SEM. Statistical analysis is based on one-way ANOVA followed by a Dunnett's test or based on the
Student's t-test for comparing two groups. ***P b 0.001 compared with vehicle.
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shows, there was no significant bone loss in the Api-treated group com-
pared to controls. In contrast, Rosi treatment induced obvious bone loss.
Although there was no obvious improvement in the loss of femoral
bone, Api markedly increased the volume ratio of trabecular bone
from 14.123 to 26.164 while Rosi significantly reduced it to 2.366.
Taken together, Api appears to be a safer modulator of PPARγ than
TZDs, as it is able to induce insulin sensitization without the same ad-
verse effects.
4. Discussion

PPARγ is an attractive pharmacological target for the development
of drugs to treat metabolic disorders such as insulin resistance (Xu et
al., 2003a), type II diabetes (Saltiel and Olefsky, 1996) and chronic in-
flammation (Buckingham, 2005). As potent full agonists of PPARγ,
thiazolidinediones (TZDs), as a class of antidiabetic drugs that includes
Rosi and pioglitazone (Marciano et al., 2014), have been widely used

Image of Fig. 6


Fig. 7. Api treatment improves insulin sensitivity and glucose tolerance. (a) glucose tolerance tests and the total area under the curve (AUC) in HFD mice treated with vehicle, Api or
rogiglatazone, n = 9. Statistical analysis is based on one-way ANOVA followed by a Dunnett's test. Ns, no significant difference, *p b 0.05 compared with vehicle group. (b) The levels
of glucose and (c) insulin in the serum of HFD mice treated with vehicle, Api or rogiglatazone, n = 9. Statistical analysis is based on one-way ANOVA followed by a Dunnett's test.
*p b 0.05 compared with vehicle group. (d) Adiponetin in the serum of mice was detected by ELISA, n = 9. Statistical analysis is based on one-way ANOVA followed by a Dunnett's
test. **p b 0.01 compared with vehicle group. (e) The size of adipocyte was quantified by the microscope micrometers at the 100× light microscope. Count the numbers of adipocytes
in the measurement unit area (25 mm2), unit: numbers/25 mm2/100×, n = 6. All values are expressed as mean ± SEM. Statistical analysis is based on one-way ANOVA followed by a
Dunnett's test. **p b 0.01 compared with vehicle group.

74 X. Feng et al. / EBioMedicine 9 (2016) 61–76
for treating the above mentioned disorders. However, side effects of
TZDs have greatly limited their therapeutic use. Although not yet un-
equivocally demonstrated, it is likely that most side effects of TZDs are
associatedwith their high binding affinities for PPARγ and the resultant
over-activation of the classical PPARγ pathway. The fact that ligand
binding induced conformational changes in PPARγ offers the opportuni-
ty for specific ligand-selective regulation of PPARγ transcriptional activ-
ity (Higgins and Depaoli, 2010), prompting researchers to seek and
discover some effectivemodulators of PPARγ, and giving rise to the con-
cept of selective PPAR modulators (SPPARMs). Identifying efficient
SPPARMs, which can partially activate PPARγ but without the severe
side effects of full PPARγ agonists (Higgins and Mantzoros, 2008,
Gregoire et al., 2009), is a promising approach to development of new
and safer drugs.

Here, we report that Api, a natural PPARγ ligand, can significantly
curb obesity-related inflammation, as well as markedly ameliorate the
metabolic abnormalities and insulin resistance induced by obesity. Api
treatment does not exhibit some of the severe adverse effects of Rosi.
Our results suggest that Api may act as a potential SPPARM of PPARγ
that is useful for treating metabolic diseases. At the transcriptional
level, Api only showsmoderate PPARγ transactivation activity, with ap-
proximately 50% of the Rosi-induced effect, suggesting that Api partially
activates PPARγ. Liang et al. have utilized in vitro studies to show that
Api is an allosteric effector of PPARγ and is able to bind to PPARγ
(Guevara et al., 1998). Another study by Salam et al. using the in-
duced-fit docking method suggests that Api induces PPARγ conforma-
tional change and that the binding of Api to PPARγ is different from
Rosi (Salam et al., 2008a). In agreement with these studies, our results
confirm that Api binds to PPARγ. Furthermore, we found that both the
hinge and LBD domain of PPARγ are important for Api binding, which
are different from the domains bound by Rosi. By performing mutation
experiments,we have identified the four amino acids (K263, K265, L340
Table 1
Density of trabecular bone and femoral bone analysis by using CT scan.

Femoral (g/cm2) Trabecular (g/cm2) Trabecular BV%

Vehicle 1.106 ± 0.0954a 0.1501 ± 0.0012a 14.123 ± 1.202a

10 mg/kg 1.233 ± 0.039a 0.1401 ± 0.0024a 15.523 ± 1.091a

50 mg/kg 1.328 ± 0.058a 0.1820 ± 0.0013b 26.164 ± 1.532b

Rosi-10 mg/kg 1.003 ± 0.018a 0.1208 ± 0.0016c 2.366 ± 0.195c

Valueswithout a common letter in their superscripts in the same column differ (P b 0.05).
and S342) of PPARγ-located at the hinge (181–289aa) and LBD (289–
475aa) domains respectively—necessary for Api binding. Additionally,
our auto-docking assay indicates that these four amino acids interact
with Api through hydrogen bonds and form a PPARγ-binding pocket.
Different from Api, Rosi only binds to the LBD domain of PPARγ
(Willson et al., 2001), and such a difference in binding may explain
the differences in activity between Api and Rosi. Importantly, our in
vivo experiments demonstrate that Api improved the glucose tolerance
and insulin resistance induced by a high-fat dietwithout any adverse ef-
fects, including the weight gain, hepatic lipid accumulation and osteo-
porosis seen with Rosi. Herein, we propose that Api is a promising
SPPARM of PPARγ.

Macrophages are now regarded as prominent players in metabolic
disorder and associated diseases. Their sub-populations (M1 and M2
macrophages) may have either deleterious or protective functions to-
wards inflammatory regulation depending on certain conditions of var-
ious inflammatory microenvironments (Chinetti-Gbaguidi and Staels,
2011).M1/M2 status ofmacrophages represents one of thepivotal char-
acteristics of the inflammatory state and is crucial in rendering them
amenable to anti-inflammatory manipulation (Fujisaka et al., 2009).
Other studies have indicated that M2 activation mediated by PPARγ or
M1 depression mediated by knocking out CD11c + ameliorates obesi-
ty-related inflammation and related insulin resistance (Odegaard et
al., 2007, Patsouris et al., 2008). In addition, drugs such as statins,
GW7845, and others have been used successfully in clinical therapy
for glomerulonephritis and atherosclerosis by targeting M1/M2 status
(Li et al., 2000). Hence, modification of the balance of theM1/M2 steady
state has shown efficacy in therapeutic applications.

In the present study,we demonstrate the link between Api andmac-
rophage polarization in obesity-related inflammation regulation. Api
modifies the balance between M1 and M2 polarization by binding and
activating PPARγ, thereby exerting its biological actions in obesity-in-
duced inflammation. The efficacy of Api on macrophage is similar with
another flavonoid compound, chrysin, which can significantly inhibit
obesity-related inflammation via regulating macrophage polarization
by activating PPARγ in our previous study (Feng et al., 2014). In fact,
many reports have investigated the underling mechanisms shared by
flavonoids such as flavone, kaempferol, quercetin (Welton et al., 1986)
and quercetin glucuronides (Kawai et al., 2008, De Whalley et al.,
1990, Liang et al., 1999), and they can target macrophages, suppress
the transcription activity of cyclooxygenase (COX)-2 and iNOS and so
on. But for the detailed and exact mechanism are required to further
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investigate. Furthermore, it is interesting that the efficacy of Api as a
SPPARM of PPARγ also impacts insulin resistance and glucose tolerance
in obese mice without the obvious adverse effects shown by TZDs, sug-
gesting an advantage for using a natural PPARγ ligand in metabolic dis-
order therapy.

Although the above results establish that Api increases M2 mac-
rophages by binding to and activating PPARγ and thereby attenuates
inflammation, the underlying molecular mechanisms remain elu-
sive. PPARγ agonists exert their antagonistic effects on inflammatory
responses through promoter-specific repression of NF-κB target
genes (Pascual et al., 2005, Straus and Glass, 2007), providing a
clue that the NF-kB pathway might be involved in the effects of
PPARγ modulators. Accordingly, we performed an RNA-Seq analysis
and verification assay to investigate whether NF-κB signaling is in-
volved in the M1/M2 shift mediated by Api. As expected, the results
indicate that NF-κB signaling is activated in macrophages of HFD
mice. The nuclear form of the NF-κB transcription factor binds to
DNA as a heterodimer of p50 and p65 polypeptide and p65 subunit
is responsible for initiating transcription (Schmitz and Baeuerle,
1991). Administration with Api disturbs the translocation of p65 to
the nucleus and thus inhibits NF-κB activation. Moreover, PPARγ
can interact with the p65 subunit of NF-κB in vitro (Chung et al.,
2000). Our further study found that in M1 cells, PPARγ/p65 complex
are mainly located in the nuclei while in M2 cells, PPARγ/p65 com-
plex are mainly located in the cytoplasm. After Api treatment, its
binding with PPARγ inhibited p65 translocation to nuclei, thereby
impeding the formation of nuclei PPARγ/p65 complex and leading
to the prolonged retention of the PPARγ/p65 complex in the cyto-
plasm. This suggests that Api binding with PPARγ inhibited p65
translocation to nuclei and changed the location of PPARγ/p65 com-
plex along with macrophage polarization. Above results may repre-
sent a new strategy to develop a PPARγ modulator to control
obesity related inflammation and related diseases via regulation
macrophage polarization. Phosphorylation of p65 helps stabilized
NF-κB in the nucleus for gene transcription and thereby is widely
used as an indicator of NF-κB activation (Hu et al., 2004). In addition,
previous studies have reported that p65 phosphorylation inducedmac-
rophage polarization (Nicholas et al., 2007, Hu et al., 2004, Lee et al.,
2014). Here, we detected the phosphorylation of p65 in M1 and M2
macrophages to investigate if the phosphorylation of p65 participates
in Api/PPARγ regulating p65 translocation. The data showed in the
Fig. S15 indicated that after the cells treated for 2 h, the phosphorylation
of p65 was increased in M1 cells while Api reversed this effect, which is
consistent with previous study that Api inactivated NF-κB by the sup-
pression of p65 phosphorylation in M1 cells (Nicholas et al., 2007).
Moreover, the reduction of phosphorylation of p65 in M2 cells was fur-
ther reduced by Api treatment, indicating that phosphorylation of p65
participated in Api/PPARγ regulating p65 translocation. Thus, Api bind-
ing with PPARγ inhibited p65 translocation to nuclei via regulating
phosphorylation of p65 in macrophage polarization. In addition, it is
possible that except from PPARγ we found, some other proteins may
also be involved in the process of Api regulating inflammation as the
Arango D et al. reported that there are 160 high-confidence candidate
apigenin targets in the human (Arango et al., 2013).

In summary, Api is a promising natural modulator of PPARγ that
ameliorates obesity-related inflammation efficiently without any of
the known side effects of TZDs. We found that Api partially activates
PPARγ via binding to certain amino acid residues in the LBD and hinge
domains of PPARγ. Moreover, we suggest that the possible mechanism
underlying the anti-inflammatory action of Api is through modification
of macrophage functional polarization via regulation of the location
of p65/PPARγ. These finding indicate that Api is a potential drug candi-
date for the treatment of obesity-related inflammation and related co-
morbidities, thereby providing a reasonable strategy and explanation
for developing more SPPARγ modulators that shift macrophage
polarization.
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