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A spectrum of CYP1B1 mutations associated with primary
congenital glaucoma in families of Pakistani descent
Bushra Rauf1,2, Bushra Irum1,2, Firoz Kabir1, Sabika Firasat2, Muhammad Asif Naeem2, Shaheen N Khan2, Tayyab Husnain2,
Sheikh Riazuddin2,3,4, Javed Akram3,4 and S Amer Riazuddin1

Glaucoma is the second leading cause of blindness, affecting ~ 65 million people worldwide. We identified and ascertained a large
cohort of inbred families with multiple individuals manifesting cardinal symptoms of primary congenital glaucoma (PCG) to
investigate the etiology of the disease at a molecular level. Ophthalmic examinations, including slit-lamp microscopy and
applanation tonometry, were performed to characterize the causal phenotype and confirm that affected individuals fulfilled the
diagnostic criteria for PCG. Subsequently, exclusion analysis was completed with fluorescently labeled short tandem repeat
markers, followed by Sanger sequencing to identify pathogenic variants. Exclusion analysis suggested linkage to the CYP1B1 locus,
with positive two-point logarithm of odds scores in 23 families, while Sanger sequencing identified a total of 11 variants, including
two novel mutations, in 23 families. All mutations segregated with the disease phenotype in their respective families. These
included the following seven missense mutations: p.Y81N, p.E229K, p.R368H, p.R390H, p.W434R, p.R444Q and p.R469W, as well as
one nonsense mutation, p.Q37*, and three frameshift mutations, p.W246Lfs81*, p.T404Sfs30* and p.P442Qfs15*. In conclusion,
we identified a total of 11 mutations, reconfirming the genetic heterogeneity of CYP1B1 in the pathogenesis of PCG. To the best of
our knowledge, this is the largest study investigating the contribution of CYP1B1 to the pathogenesis of PCG in the Pakistani
population.
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Glaucoma is the second leading cause of blindness, affecting
~ 65 million people worldwide.1 It causes irreversible visual field
defects, eventually resulting in complete blindness.2,3 Glaucoma
encompasses a range of ocular dystrophies that each exhibit optic
disc neuropathy, which is specifically characterized by progressive
loss of retinal ganglion cells and optic nerve atrophy.4,5 The
disease is generally classified by age of onset, anatomy of the
anterior chamber and etiology. These characteristics define
the following three broad categories of disease: open-angle
glaucoma, closed-angle glaucoma and primary congenital
glaucoma.6

The focus of our study, primary congenital glaucoma (PCG), is
characterized by developmental defects in the anterior chamber
that obstruct the normal flow of aqueous fluid in the eye. Blockage
and subsequent buildup of fluid increases intraocular pressure
(IOP) and damages the optic nerve.7–10 Clinical indications of
PCG include elevated IOP, buphthalmos (globe enlargement),
photophobia, corneal enlargement, epiphora, Haab’s striae
(Descemet’s membrane ruptures), blepharospasm and optic nerve
damage.7,8 PCG occurs in approximately 1 in 10,000 live births, but
the incidence varies widely between populations.6

PCG is a genetically heterogeneous disorder that occurs both
sporadically and in families and is inherited as an autosomal
recessive trait. Linkage analysis has identified the following four
loci: GLC3A (2p22-p21), GLC3B (1p36.2-36.1), GLC3C (14q24.3) and
GLC3D (14q24.2-24.3).11–14 GLC3A and GLC3D have been cloned,
with mutations in cytochrome P450, subfamily B, polypeptide

1 (CYP1B1) and latent transforming growth factor β binding
protein 2 (LTBP2) reported in populations of multiple
ethnicities.15,16 We previously reported four causal mutations
identified in large consanguineous families of Pakistani origin.14

In an ongoing effort to investigate the genetic basis of PCG and
identify novel disease loci and/or causal mutations responsible for
the disease phenotype, we have recruited a large cohort of
consanguineous families, each including at least one affected
individual from a consanguineous mating. Approval for the study
was granted by the Institutional Review Boards (IRBs) of the
National Centre of Excellence in Molecular Biology (Lahore,
Pakistan), the National Eye Institute (Bethesda, MD, USA) and
Johns Hopkins University (Baltimore, MD, USA).
Individuals who participated in this study signed an informed

written consent, which was approved by each IRB and adheres to
the Declaration of Helsinki. Any available medical records were
used to compile medical histories for the study participants, but
much of the information was provided in interviews with the
families. The majority of the enrolled families live in remote areas
without access to ophthalmic clinics. Therefore, the precise age of
onset of glaucoma or the age at first diagnosis is not well
documented. The parents of the affected children, as well as
family elders, reported that reduced or abnormal vision was
evident in the first year of the children’s lives. The consistently
early onset of symptoms suggests congenital ocular dystrophy.
Common symptoms of the affected individuals were increased
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IOP, increased corneal diameter and visual acuity that was
reduced to hand movement and/or light perception (Table 1).
All study participants provided a blood sample of ~ 10 ml that

was collected in a tube containing 400 μl of 0.5 mol/l EDTA.
Genomic DNA was extracted from white blood cells as previously
described.17 Exclusion analysis, two-point logarithm of odds (LOD)
score calculations, and bi-directional Sanger sequencing were
completed as previously described, along with the sequences of
the primer pairs used for Sanger sequencing.14

A total of 23 familial cases localized to chromosome 2p21
(Supplementary Figures 1–23): PKGL001, PKGL014, PKGL028,
PKGL032, PKGL040, PKGL046, PKGL047, PKGL050, PKGL051,
PKGL058, PKGL060, PKGL065, PKGL066, PKGL067, PKGL068,
PKGL069, PKGL070, PKGL071, PKGL072, PKGL073, PKGL077,
PKGL079 and PKGL082. Alleles of chromosome 2p21 markers
provided evidence of linkage to the GLC3A locus, with positive
LOD scores (Supplementary Tables 1–23). Subsequently, we
sequenced all coding exons, exon–intron boundaries, and the 5′
and 3′ UTR regions of CYP1B1. In 23 PCG families, we identified 11
homozygous variations, including seven missense mutations, one
nonsense mutation and three frameshift mutations (Table 2).
We identified a homozygous variation, c.1405C4T (p.R469W), in

both PKGL001 and PKGL028. Similarly, we identified a homo-
zygous variation, c.1169G4A (p.R390H), in PKGL040, PKGL046,
PKGL060, PKGL065, PKGL066, PKGL067, PKGL069, PKGL070,
PKGL071, PKGL073, PKGL077, PKGL079 and PKGL082. Moreover,
we identified the homozygous variations c.1300T4C (p.W434R),
c.685G4A (p.E229K), c.1331G4A (p.R444Q), c.241T4A (p.Y81N),
c.1103G4A (p.R368H), and c.109C4T (p.Q37*) in PKGL014,

PKGL047, PKGL050, PKGL051, PKGL058 and PKGL072, respectively
(Table 2).
We further identified a homozygous 1 bp insertion,

c.736_737insT (p.W246Lfs81*), and a homozygous 1 bp
deletion, c.1325delC (p.P442Qfs15*), in PKGL047 and PKGL068,
respectively (Table 2 and Supplementary Figure 24a,b), and a
10-bp homozygous duplication, c.1200_1209dupTCATGCCACC
(p.T404Sfs30*), in PKGL032 (Table 2). Each of these mutations
results in a frameshift and eventually leads to premature
termination of CYP1B1. Among these variants, seven missense
mutations, a frameshift mutation, and a nonsense mutation
have been previously reported, whereas p.W246Lfs81* and
p.P442Qfs15* are novel. All the above-mentioned pathogenic
variations co-segregated with the disease phenotype in their
respective families and were absent in 192 ethnically matched
control chromosomes.
Next, we examined the evolutionary conservation of the

mutated amino acids by aligning the protein sequences of
CYP1B1 orthologs. In parallel, we investigated the possible effect
of amino acid substitution on the structure of CYP1B1 with SIFT
(http://sift.jcvi.org), Condel (http://bg.upf.edu/fannsdb/) and
PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2/index.shtml).
Evolutionary conservation of the substituted amino acids of all
seven missense variants show that not only these amino acids but
also the amino acids in the immediate vicinity are highly
conserved among other primates, placental mammals and
vertebrates (Supplementary Figure 24c). SIFT and PolyPhen-2
analyses showed that all 11 pathogenic variants were damaging
to the function and enzymatic activity of CYP1B1.

Table 1. Clinical characteristics of affected individuals manifesting symptoms of primary congenital glaucoma

Family ID Individual ID Sex Age at exam (years) IOP (OD/OS) CD ratio (OD/OS) VA (OD/OS) Corneal diameter Other findings

PKGL001 6 F 45 52/44 NV/NV NPL/PL Increased SD, CE, CH
PKGL014 9 M 4 *16/16* 0.6/0.4 PL/PL Increased B/L Bu, B/L MF
PKGL014 10 M 7 *8/20* 0.5/0.7 PL/CF 13 mm B/L Mc, B/L Ny
PKGL032 11 F 2 40/32 0.7/0.4 PL/HM Increased B/L Bu, CO, B/L Ny
PKGL032 12 F 4 NA NV/NV PL/PL Increased B/L Bu, B/L CO
PKGL040 7 M 12 26/20* NV/NV HM/HM B/L414 mm Bu, B/L CO, Vas, B/L Ny
PKGL040 8 F 16 36/36 1.0/NV 6/60/6/18 Increased Bu, Rt Pp, Lt PE, CO
PKGL046 10 M 14 NA NA NPL/NPL NA CO
PKGL046 11 F 10 NA NA NA NA Bu
PKGL047 8 F 2 44/30 0.8/NV PL/PL Increased B/L Bu, B/L Mc
PKGL047 9 F 5 NA 0.7/0.5 PL/PL 13 mm B/L Bu, B/L Mc
PKGL051 8 M 2 30/26 0.8/0.6 PL/PL Increased B/L Bu, B/L CO
PKGL065 12 M 3 NA/38 NA PL/PL Increased B/L Bu, Mc
PKGL065 11 M 10 25/28 0.8/0.9 NPL/PL Increased B/L Bu
PKGL066 14 F 3 22/20* NV/NV PL/PL 13.0/14.0 mm B/L Bu, B/L CO
PKGL068 11 F 10 28/28 1.0/1.0 4/36/4/12 Increased B/L Bu, B/L CO
PKGL068 12 F 5 Increased NV/NV NPL/NPL Increased B/L Bu, B/L CH, Php
PKGL071 12 M 13 *19/22 0.9/0.9 CF/CF Increased B/L Bu, B/L Ny
PKGL071 13 M 2 *16/12 0.9/0.3 NA Increased Rt Mc, Rt CO, B/L MF
PKGL072 11 F 14 38/NA NV/NV HM/NPL Increased Rt Bu, Lt PE, Rt Ny, B/L Trab
PKGL072 12 F 2 *18/25 0.3/0.9 CF/CF Increased B/L Bu, B/L Trab, Lt CO
PKGL072 9 M 5 *18/40 NV/NV CF/CF Increased B/L Bu, B/L Ny, B/L Trab, Lt CH
PKGL073 12 M 12 53/NA 0.7/NV 6/60/NPL Increased Rt. Mc, Rt. CH, Lt PE
PKGL073 9 M 4 *18/18* NV/NV CF/CF Increased B/L HS, B/L Bu, B/L CH
PKGL073 10 F 4 NA 0.3/NV NA Increased B/L Bu, B/L CH
PKGL077 10 F 12 NA NA PL/PL NA Bu, CO
PKGL079 11 F 10 NA NA NPL/NPL NA CO
PKGL082 8 M 4 NA NA NA NA Bu, CO
Control 01 F 28 15/17 0.3/0.3 6/6/6/6 11.5 mm
Control 02 F 28 17/17 0.3/0.4 6/6/6/6 11.5 mm

Abbreviations: B/L, bilateral; Bu, buphthalmos; CD Ratio, cup to disc ratio; CE, corneal edema; CF, counting fingers; CH, corneal haze; CO, corneal opacity; HM,
hand movement; HS, Haab’s striae; IOP, intraocular pressure; Lt, left; Mc, megalocornea; MF, myopic fundus; NA, not available; NPL, no light perception; NV, no
view; Ny, nystagmus; OD, oculus dexter; OS, oculus sinister; PL, light perception; PE, phthisical eye; Php, photophobia; Pp, pseudophakia; Rt, right; SD,
spheroidal degeneration; Trab, trabeculectomy; VA, visual acuity; Vas, vascularization.
An asterisk indicates IOP is controlled through surgery and medical treatment.
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CYP1B1, a member of the cytochrome P450 superfamily, is the
largest known enzyme of the human cytochrome P450 pathway
that is primarily expressed in the trabecular meshwork, iris, retina
and ciliary body. Membrane-bound CYP1B1 has a molecular
structure consisting of a 53-residue membrane-spanning domain
located at the NH2 (amino) terminus of the molecule, followed by
a 10-residue proline-rich ‘hinge’ region, which allows flexibility
between the membrane-spanning and cytoplasmic domains of
the protein molecule.18 The COOH (carboxy) terminus of CYP1B1
is highly conserved, consisting of conserved core structures
composed of a J-helix, a K-helix and a heme-binding region.19,20

Mutations in CYP1B1, either at the NH2 or the COOH terminus, are
expected to interfere with the basic properties of the CYP1B1
molecule, such as its ability to bind heme or to adopt its regular
conformation, resulting in impaired enzymatic function.20,21 The
pathogenesis of CYP1B1 in PCG is still not fully understood, but it is
thought to be involved in metabolic pathways related to ocular
differentiation (anterior segment and trabecular meshwork
formation). A study conducted recently on CYP1B1-deficient mice
showed that CYP1B1 deficiency resulted in increased oxidative
stress and structural defects in the trabecular meshwork in the
early lives of mice.22

To date, more than 150 mutations in CYP1B1 have been
associated with PCG, accounting for a significant fraction of the
genetic load of familial and sporadic cases of PCG. We found one
mutation, R390H, in 13 of the 23 familial cases investigated in this
study, accounting for more than half of the families linked to
CYP1B1, which is consistent with previously published estimates.
The R390H allele is the most frequently occurring mutation
identified in Chinese, Iranian, Indian and Pakistani populations
affected by PCG, while only a small fraction of Caucasians harbor
the R390H allele.23–27

We further investigated the origin of this mutation by
constructing a haplotype exploiting the following six previously
reported CYP1B1 SNPs: rs2617266, rs10012, rs1056827, rs1056836,
rs1056837 and rs1800440. All 13 families harboring the R390H
allele shared a common haplotype, C–C–G–C–C–G (data not
shown). The same haplotype was recently reported in five families
of Pakistani origin that harbored the R390H allele.27

Interestingly, the W434R allele identified in PKGL014 has
previously been implicated in primary open-angle glaucoma
(POAG), where a single heterozygous carrier of Indian descent
was reported to have POAG.28 However, no clinical details of the
patient were included in the report; therefore, we cannot compare
the severity of the causal phenotype of the heterozygous carrier
reported to have POAG with that of the affected individuals in
PKGL014 who are homozygous for the W434R allele. Surprisingly,
the heterozygous carriers of the W434R allele in PKGL014 are
phenotypically normal and do not show any signs or clinical
symptoms of POAG or any other ocular dystrophy.
In conclusion, we report a broad spectrum of mutations

identified in CYP1B1 that are responsible for PCG in consangui-
neous families of Pakistani origin, reaffirming the role of CYP1B1 in
the pathogenesis of PCG. To the best of our knowledge, this is the
largest study investigating the contributions of CYP1B1 causal
mutations associated with PCG in the Pakistani population, which
will add to our understanding of the genetic basis of PCG.

HGV DATABASE
The relevant data from this Data Report are hosted at the Human
Genome Variation Database at http://dx.doi.org/10.6084/m9.
figshare.hgv.805 (2016), http://dx.doi.org/10.6084/m9.figshare.
hgv.808 (2016), http://dx.doi.org/10.6084/m9.figshare.hgv.811
(2016), http://dx.doi.org/10.6084/m9.figshare.hgv.814 (2016),

Table 2. Summary of causal alleles identified in our cohort of primary congenital glaucoma

Family ID Individuals
ascertained

Affecteds
ascertained

Two-point
LOD score

Mutation
(nucleotide change)

Mutation
(amino acid change)

Status In Silico Prediction

Known/
novel

Condel PolyPhen-2 SIFT

PKGL001 10 5 1.87 c.1405C4T p.R469W Known De (1) PD (1) Da (0)
PKGL014 8 4 3.01 c.1300T4C p.W434R Known De (1) PD (1) Da (0)
PKGL028 12 6 5.28 c.1405C4T p.R469W Known De (1) PD (1) Da (0)
PKGL032 7 2 1.68 c.1200_1209dup p.T404Sfs30* Known
PKGL040 5 2 1.59 c.1169G4A p.R390H Known De (1) PD (1) Da (0)
PKGL046 8 5 2.64 c.1169G4A p.R390H Known De (1) PD (1) Da (0)
PKGL047 9 4 1.52 c.736_737insT,

c.685G4A
p.W246Lfs81*,
p.E229K

Novel,
Known De (0.605) PD (0.950) Da (0)

PKGL050 9 3 2.27 c.1331G4A p.R444Q Known De (1) PD (1) Da (0)
PKGL051 4 1 1.03 c.241T4A p.Y81N Known De (0.998) PD (1) Da (0)
PKGL058 2 1 0.82 c.1103G4A p.R368H Known De (0.994) PD (1) Da (0)
PKGL060 5 2 1.37 c.1169G4A p.R390H Known De (1) PD (1) Da (0)
PKGL065 13 4 3.87 c.1169G4A p.R390H Known De (1) PD (1) Da (0)
PKGL066 12 6 5.01 c.1169G4A p.R390H Known De (1) PD (1) Da (0)
PKGL067 9 3 3.18 c.1169G4A p.R390H Known De (1) PD (1) Da (0)
PKGL068 10 7 3.28 c.1325delC p.P442Qfs15* Novel
PKGL069 5 3 1.39 c.1169G4A p.R390H Known De (1) PD (1) Da (0)
PKGL070 9 3 2.54 c.1169G4A p.R390H Known De (1) PD (1) Da (0)
PKGL071 8 4 3.54 c.1169G4A p.R390H Known De (1) PD (1) Da (0)
PKGL072 7 3 2.45 c.109C4T,

c.1103G4A
p.Q37*
p.R368H

Known
Known De (0.994) PD (1) Da (0)

PKGL073 9 5 3.34 c.1169G4A p.R390H Known De (1) PD (1) Da (0)
PKGL077 7 4 2.53 c.1169G4A p.R390H Known De (1) PD (1) Da (0)
PKGL079 9 6 2.66 c.1169G4A p.R390H Known De (1) PD (1) Da (0)
PKGL082 5 3 2.07 c.1169G4A p.R390H Known De (1) PD (1) Da (0)

Abbreviations: Da, damaging; De, deleterious; LOD, logarithm of odds; PD, probably damaging.
Parentheses show scores of prediction algorithms: Condel, PolyPhen-2 and SIFT.
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