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Abstract

Background: Chlorophyll is a major component of chloroplasts and a better understanding of the genetic basis of
chlorophyll in soybean [Glycine max (L) Merr] might contribute to improving photosynthetic capacity and yield

in regions with adverse environmental conditions. A collection of 332 diverse soybean genotypes were grown

in 2 years (2009 and 2010) and chlorophyll a (eChI_A), chlorophyll b6 (eChl_B), and total chlorophyll (eChl_T)
content as well as chlorophyll a/b ratio (eChI_R) in leaf tissues were determined by extraction and spectrometric
determination. Total chlorophyll was also derived from canopy spectral reflectance measurements using a model
of wavelet transformed spectra (tChl_T) as well as with a spectral reflectance index (iChl_T).

Results: A genome-wide associating mapping approach was employed using 31,253 single nucleotide
polymorphisms (SNPs) to identify loci associated with the extract based eChI_A, eChl_B, eChl_R and eChI_T
measurements and the two canopy spectral reflectance-based methods (tChl_T and iChI_T). A total of 23 (14 loci),
15 (7 loci) and 14 SNPs (10 loci) showed significant association with eChl_A, eChl_B and eChl_R respectively. A total
of 52 unique SNPs were significantly associated with total chlorophyll content based on at least one of the three
approaches (eChl_T, tChI_T and iChI_T) and likely tagged 27 putative loci for total chlorophyll content, four of

which were indicated by all three approaches.

Conclusions: Results presented here show that markers for chlorophyll traits can be identified in soybean using
both extract-based and canopy spectral reflectance-based phenotypes, and confirm that high-throughput
phenotyping-amenable canopy spectral reflectance measurements can be used for association mapping.

Keywords: Abiotic stress tolerance, Chlorophyll a, Chlorophyll b, Chlorophyll a/b ratio, Total chlorophyll,
Genome-wide association mapping, Single nucleotide polymorphisms, High-throughput phenotyping

Background

Soybean (Glycine max [L.] Merr.) is the world’s most
widely grown legume crop and produces high quality
grain which contains 35-55 % easily digestible protein,
17-27 % oil, and about 30 % carbohydrates, among
others components [1, 2]. Photosynthesis during the re-
productive stages is positively correlated with crop yield,
and improving the photosynthetic capacity of leaves has
been suggested as a way to increase crop yields [3, 4].
Solar radiation is absorbed by the antenna pigments in
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chloroplasts and the excitation energy is directed to the
reaction center pigments through resonance energy
transfer to drive photochemical processes [5]. Chloro-
phylls @ and b (Chl a, Chl b) represent the majority of
the antenna complex pigments and thus are of great im-
portance for light absorption, oxygen evolution, and
conversion of light energy to chemical energy. In fact,
the amount of solar radiation that is absorbed by a leaf
is closely related to its chlorophyll concentration [6-8],
which generally is positively related with photosynthetic
rate [9-11]. Although not at all developmental stages,
positive correlations between leaf chlorophyll concentra-
tion and photosynthesis have been reported for soybean
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[11-13], including correlation coefficients as high as
~0.7-0.9 during R4 and R5 developmental stages [11].

Leaf pigments are commonly quantified using extract-
based methods [14—16] but can also be assessed with
non-destructive techniques. Quantification by extract-
based methods often involves the collection of leaf disks,
solvent-based pigment extraction, and analysis by spec-
trophotometry or liquid chromatography. Alternatively,
spectral reflectance based methods may be used to as-
sess pigment composition and content of intact leaves
and/or canopies [17, 18]. In fact, investigations into the
relationships between plant characteristics and spectral
reflectance have produced numerous models and spec-
tral indices to predict a range of plant phenotypes,
including chlorophyll content [17, 18—22]. Spectral re-
flectance measurements can be made in controlled
environments as well as in field conditions, are quick,
and can be repeated on the same sampling area to as-
sess temporal dynamics. In addition, in contrast to
extract-based methods, spectral reflectance character-
istics of plant tissue can be assessed across a broad
range of spatial scales from sub-leaf to plant and field
levels. As such, spectral reflectance based methods have
attracted much attention for high-throughput plant
phenotyping [14, 23-25]. Given their role in light ab-
sorption, leaf and/or canopy spectral reflectance based
methods are particularly promising for the assessment
of chlorophylls [14, 16, 26].

Even though previous reports [27-29] indicate a con-
siderable amount of genetic variation for chlorophyll
characteristics in the soybean germplasm, only limited
information on the genetics of soybean chlorophyll char-
acteristics is available to date. Much of this information
is based on mutants with chlorophyll-deficient pheno-
types, several of which have been mapped [30-32]. In
addition, Li et al. [33] mapped a total of 20 quantitative
trait loci (QTL) for chlorophyll content determined
using a chlorophyll meter (SPAD meter) at different
developmental stages based on data collected from one
location in 1 year and two locations in a second year.
However, only one common QTL each was found in the
same year across the two locations and across the 2 years
in one location. More recently, Hao et al. [34] conducted
genome-wide association analyses of chlorophyll and
chlorophyll fluorescence parameters on a population of
168 soybean genotypes and identified 28 SNPs associ-
ated with chlorophyll content determined using a SPAD
meter. Interestingly, for this study, Hao et al. determined
the phenotypes when plants were at the full seed devel-
opmental stage (R6), by which time leaf traits including
photosynthesis and chlorophyll levels are generally con-
siderably reduced [35, 36]. Since leaf chlorophyll con-
centrations can change substantially over the course
of plant and leaf development and are influenced by
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environmental and management factors, genotype by en-
vironment interactions, as observed by Hao et al. [34] and
suggested by the results of Li et al. [33], are expected.

The vast majority of plant physiological traits are
quantitative in nature [37]. Quantitative trait analysis
can be used to unravel the interactions of complex traits
for plant physiologists and breeders [38]. Probably
because gas exchange measurements are very laborious
and phenotypes are greatly influenced by environments
during growth and measurement, the number of QTL
studies for photosynthetic traits are relatively limited
[39-41]. Nonetheless, genetic determinants of photosyn-
thesis have been estimated in several species including
wheat (Triticum aestivum) [42)], maize (Zea mays) [43]
and pea (Pisum sativum) [44]. In both wheat and pea,
photosynthetic activity is controlled by additive gene
action [42, 44]. In pea, the chlorophyll content is also
governed by a preponderance of additive effects. For
soybean, Li et al. [33] observed additive gene effects
for chlorophyll content in F,3 and F,, populations,
and there is evidence that soybean breeding improved
leaf-level photosynthetic rates in Canadian and Chinese
cultivars [45, 46]. In contrast, Koester et al. [47] did not
find a consistent increase in maximum photosynthetic
capacity for US cultivars released between 1923 and 2007;
however, light interception, radiation use efficiency, and
harvest index did increase with year of cultivar release
[48]. Interestingly, chlorophyll content of sunlit, fully
expanded leaves at R5 increased with year of release for
these cultivars. Hence, a better understanding of the gen-
etic complexity of chlorophyll dynamics in soybean and
application of molecular markers to identify QTLs associ-
ated with photosynthesis and photosynthesis-related traits
may allow for continued improvement in photosynthesis
and yields.

To date, no genome-wide association mapping study
of total chlorophyll content based on high-throughput-
amenable canopy spectral reflectance measurements has
been published. In addition, a direct comparison of gen-
etic loci identified for extract-based and spectral reflect-
ance based chlorophyll traits is absent in the literature.
Therefore, the objective of this research was to use
genome-wide association mapping to identify genomic
loci associated with i) extract-based measurements of
chlorophyll a, chlorophyll b, and total chlorophyll con-
tent, as well as chlorophyll a/b ratio, and ii) two canopy
spectral reflectance-based indices for total chlorophyll
content in soybean.

Methods

Experimental design

No specific permission was required for the field study
as it was conducted at the University of Missouri Bradford
Research Center.
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Field experiments were conducted in 2009 and 2010 at
the Bradford Research Center (BRC) in Columbia, MO
USA (38° 53'N, 92° 12" W). A total of 385 maturity
group IV soybean genotypes were grown on a Mexico
silt loam soil (fine, montmorillonitic, thermic Typic
Albaqualfs) in a randomized complete block design with
three replications. Soybean were planted at a density of
25 seeds m™ on 23 May 2009 and 27 May 2010 in four-
row plots measuring 4.87 m in length and 3.04 m in
width. The crop was managed according to standard
agronomic practices as previously described [17]. The
genotypes included in this study consisted of plant in-
troductions that were selected from the USDA Germ-
plasm Collection according to criteria in Dhanapal et al.
[49, 50]. Genome-wide association analyses for chloro-
phyll traits were conducted on 332 of the 385 genotypes
grown.

Chlorophyll content determinations

Chlorophyll contents were determined using extract-
and canopy reflectance-based methods. The chlorophyll
contents determined from extracts of leaf disks are here-
after referred to as chlorophyll a (eChl_A), chlorophyll b
(eChl_B), chlorophyll a/b ratio (eChl_R) and total
chlorophyll (eChl_T). The two total chlorophyll contents
derived from canopy spectral reflectance are hereafter
referred to as i) spectral reflectance index total chloro-
phyll content (iChl_T), and ii) wavelet transformed spec-
tral reflectance total chlorophyll content (tChl_T). A list
of these traits along with their acronyms is provided in
Table 1. Briefly, at 54 days after planting (DAP; 2009)
and 60 DAP (2010), five 0.68 cm? leaf disks were collec-
ted from the upper-most fully expanded, sun-exposed
leaf (3rd or 4th leaf from the stem apex) from five differ-
ent plants at flowering [R1-R2 stage, [51]]. The leaf disks
were immediately placed in opaque glass vials containing
5 mL of ethanol (95 %, v/v). Samples were incubated at
room temperature in the dark for 24 h, after which, the
vials were vigorously agitated. A 200 pL aliquot of each

Table 1 List of traits used in this study along with their acronyms

Data analysis Acronym References

Extraction and spectrophotometric measurements

Chlorophyll a eChl_A Lichtenthaler 1987
Chlorophyll b eChl_B Lichtenthaler 1987
Total Chlorophyll eChl_T Lichtenthaler 1987
Chlorophyll a/b ratio eChl_R Lichtenthaler 1987

Canopy spectral reflectance based measurements

Wavelet transformed spectral tChI_T

reflectance of total chlorophyll

Singh et al. 2013

Literature-based canopy spectral reflectance measurements

Spectral total chlorophyll index iChI_T Gitelson et al. 2005
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sample was transferred to a 96 well-plate (Costech
Analytical Technologies Inc., CA USA) and absorbance
measured at 664, 648, and 470 nm on a Scanning
Monochromatic Spectrophotometer (Bio-Tek Power-
Wave X 340 Microplate Reader, BioTek U.S. VT, USA).
Total chlorophyll (eChl_T), chlorophyll a (eChl_A), and
chlorophyll b (eChl_B) were calculated according to
Lichtenthaler [52], expressed on a leaf-area basis (ug cm™).
The ratio of eChl_A and eChl_B was determined and is re-
ferred to as eChl_R.

To match extract-based chlorophyll content determi-
nations with chlorophyll assessments based on canopy
spectral reflectance characteristics, reflectance measure-
ments were conducted between 54 and 57 DAP in 2009
and 58 and 61 DAP in 2010 as described by Singh et al.
[17]. In brief, for each plot, three random spectral re-
flectance measurements were collected using an ASD
FieldSpec, FR spectroradiometer (Analytical Spectral De-
vices Inc., Boulder, CO, USA). The fiber optic cable was
positioned about 0.5 m above the plant canopy and three
reflectance spectra (350 to 1800 nm) were collected and
averaged for each plot.

Chlorophyll contents were calculated based on reflect-
ance spectra from i) the ratio of the area under the curve
in the 840-870 nm region and the 720-730 nm region
[IR340,370/IR720,730] [53] for IChl_T, and 11) a model
developed by Singh et al. [17] for tChl_T. Singh et al.
[17] used the extract-based total chlorophyll content
(eChl_T) data to test multiple models for total chloro-
phyll estimation based on canopy spectral reflectance
measurements [17]. Among the tested models [17], one
based on multiple linear regression (MLR) analysis and
incorporating six wavebands derived from continuous
wavelet transformed spectral reflectance data using the
‘Mexican hat’ wavelet family, most accurately predicted
eChl_T. Consequently, this model was used to estimate
tChl_T.

Descriptive statistics and BLUP calculation

All descriptive statistics and Pearson correlation analyses
were conducted for each variable (eChl_A, eChl B,
eChl_R, eChl_T, tChl_T and iChl_T) using PROC MEAN
and PROC CORR procedures of SAS Version 9.3 (SAS
Institute Inc., Cary, NC, USA). Variance components were
determined using the PROC MIXED of SAS [54, 55] as
described in Dhanapal et al. [49], considering all effects as
random. Broad sense heritability estimates for all variables
were derived using variance components obtained from
the PROC MIXED procedure of SAS Version 9.3 as previ-
ously reported [50, 56, 57]. Best linear unbiased prediction
(BLUP) values were used to reduce error variance. For
each variable, data from both years were used to calculate
one BLUP value to represent each genotype for GWAS
analysis.
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Kinship matrix and population structure

The genome-wide association mapping software TASSEL
5.2.3 was used to create a kinship matrix (K). All 31,253
polymorphic SNPs were used for generation of K based
on the scaled Identity by State (IBS) similarity method as
described [58]. The software program STRUCTURE 2.2
[59] was used to infer the population structure based on
ten independent iterations with 1 to 10 hypothetical
sub-populations with an admixture and allele frequency
correlated model. The correct estimation of k (k = 8) was
provided by joining the log probability of data [LnP(D)]
from the STRUCTURE output and an ad hoc statistic
Ak, determined by the value at which LnP(D) reached a
plateau as described in [60].

SNP genotyping and genome wide association mapping
Genotypic data from the SoySNP50K iSelect SNP Bead-
chip [61] are publicly available at Soybase (http://www.
soybase.org/snps/download.php) and were obtained for
the 332 soybean accessions and used in this study. For
genome-wide association mapping of eChl_A, eChl_B,
eChl_R, eChl_T, tChl_T and iChl_T, 31,253 polymorphic
SNPs with a minor allele frequency (MAF)>5 % across
the 332 genotypes were used.

Genome-wide association mapping was conducted
based on the BLUP values using a mixed linear model
with Q-matrix and K-matrix (MLM + Q + K). The Q and
K matrices were used as corrections for population
structure and/or genetic relatedness to help avoid false
positives [50, 62, 63].

Genome-wide association mapping based on the
MLM + Q + K model was conducted with TASSEL 5
[64, 65]. Multiple testing was performed using QVALUE
R 3.1.0, employing the smoother method [66], an exten-
sion of the false discovery rate (FDR) method [67], to
assess the significance of marker-trait associations. All
markers that satisfied multiple testing had -logl0 P
values > 3.2, which is above the threshold used by others
for soybean [68-70]. Markers with FDR < 0.05 were con-
sidered significant [71, 72].

Results

Environmental conditions, chlorophyll phenotypes, and
broad-sense heritability

In general, environmental conditions for the period from
planting through collection of leaf disks and canopy
spectral reflectance measurements were similar between
the 2 years and close to 30-year averages. Daily average
temperatures between planting and leaf-disk sampling
were somewhat higher in 2010 (24.73 °C) than in 2009
(22.88 °C). The observed differences in temperatures
were mirrored by higher solar radiation in 2010
(21.77 MJ m?) than in 2009 (20.50 MJ m). Precipitation
totals for the months encompassing planting through
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collection of leaf disks and canopy spectral reflectance
measurements (May, June, and July) were the same or
greater in 2009 and 2010 than the 30 year averages.
Cumulative precipitation for May, June, and July was 418,
494, and 319 mm for 2009, 2010, and the 30-year average,
respectively, and irrigation was therefore not necessary to
avoid drought stress in either year.

The 332 MG IV soybean genotypes varied widely for
the different chlorophyll traits (Fig. 1). Analysis of
variance indicated significant year effects for all six traits
(P <0.0001). However, except for the chlorophyll a/b ratio
(eChl_R), no genotype by year interactions were observed.
For all traits, mean and median values were larger in 2009
than 2010. The ranges in chlorophyll contents in 2009
were smaller than in 2010 for all traits except tChl_T.
Across the 2 years, the range in chlorophyll content
was largest for eChl_T (9.85 pg cm™>) followed by
eChl_A (7.91 pg cm™), tChl_T (6.06 pg cm™), eChl_B
(2.39 pg cm™>), and a considerably smaller range for
iChL_T (0.51 pg c¢cm?). The eChl R, the only trait for
which a genotype by year interaction was observed,
ranged from 2.94 to 4.26 (ug cm™) across the 2 years.
Correlation coefficients for each trait between the
2 years ranged from 0.35 for eChl A to 045 for
tChl_T and were highly significant (P <0.001), except
for eChl_R which was 0.11 but nonetheless significant
(P <0.05).

The relationships among all chlorophyll traits, includ-
ing extract-based and canopy spectral reflectance based
determinations, were examined by correlation analysis
based on across-year genotypic averages. As expected,
strong positive correlations were observed between
eChl_A and eChl_B (»=0.90), eChl_A and eChl T (r=
0.95), eChl_B and eChl_T (r=0.94). The two canopy-
based reflectance methods for total chlorophyll content
were positively correlated with extract-based total
chlorophyll content (tChl_T and eChl_T, r = 0.67; iChl_T
and eChl_T, r=0.48) and also showed significant positive
correlations with extract-based chlorophyll 4 and chloro-
phyll b measurements (Table 2). However, as illustrated by
the big difference in iChl_T compared to eChl_T based
chlorophyll contents, the index applied to the canopy
spectral reflectance measurements to calculate iChl_T, did
not predict well the absolute values of eChl T. Cal-
culations of broad-sense heritability indicated the highest
heritability for tChl_T (62 %) followed by iChl_T (59 %),
eChl_B (56 %), eChL_T (49 %), eChl_A (46 %) and eChl_R
(15 %).

Genome-wide association mapping

With the exception of eChl_R no significant genotype by
year interactions were observed. Therefore, BLUP values
across years were calculated for each chlorophyll trait
and used for genome-wide association mapping. Analysis


http://www.soybase.org/snps/download.php
http://www.soybase.org/snps/download.php

Dhanapal et al. BVIC Plant Biology (2016) 16:174

Page 5 of 15

- - N N W
o (3 o ol o
1 1 1 1 J

+
-

Chlorophyll content (ug cm-2)

o

——
—f—

d
(=2}

w £
Chlorophyll content (ug cm-2)
or chlorophyll a/b ratio

+
—+

eChl_A_09
eChl_A_10
eChl_B_09
eChl_B_10
eChl_T_09
eChl_T_10
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was conducted with 31,253 SNP markers and the ex-
tractable chlorophyll traits including eChl_A, eChl_B
and eChl_R and eChl_T and two canopy-based reflectance
methods for total chlorophyll (tChl_T and iChl_T) was
conducted using an MLM + Q + K model using TASSEL
5.2.3 software. The K (kinship matrix) and Q (population
structure) were used as corrections for genetic relatedness
and population structure to help avoid false positives
[63, 73]. Application of gFDR < 0.05 reduced the number
of SNPs from 31,253 to 23, 15, 26 and 14 unique candi-
date SNPs associated with 14, 7, 15 and 10 putative
genomic loci for eChl_A, eChl_B, eChl_T and eChl_R, re-
spectively, and 20 and 18 unique candidate SNPs showed
association with 12 and 11 putative loci for tChl_T and
iChl_T, respectively (Additional file 1: Table S1 and
Additional file 2: Table S2).

Association analysis for eChl_A identified a total of 23
significant SNPs. Since SNPs in close proximity probably
identify the same locus, these 23 unique SNPs likely
mark 14 putative loci (Fig. 2). The R* for these loci
ranged from 3.7 to 6.1 % (Additional file 1: Table S1).
The putative eChl_A locus on chromosome 18 was

Table 2 Pearson correlation coefficients for extractable
chlorophyll traits chlorophyll a (eChl_A), chlorophyll b (eChl_B),
total chlorophyll (eChI_T) and chlorophyll a/b ratio (eChI_R) and
wavelet transformed spectral reflectance total chlorophyll
(tChI_T) and spectral reflectance index total chlorophyll (iChI_T)

eChl_A  eChl_B eChl_R eChLLT tCh_T iChl_T
eChl_A 090" 0417 095" 065" 047"
eChl_B —001™ 094" 0697 049"
eChl_R 033" 003™ 001™
eChl_T 067" 048"
tChl_T 070"

The symbols ***, **, * and ns represent the significance level of P <0.001,
P<0.01, P<0.05 and not significant (P> 0.05)

identified by seven closely spaced SNPs and the one on
chromosome 20 by three SNPs. One of two loci on
chromosome 19 was identified by two SNPs while the
remaining eleven loci were marked by one SNP each.

Fifteen unique SNPs were identified as having significant
associations with eChl_B. Based on their genomic pos-
ition, these 15 SNPs likely identified seven putative loci
with R2 ranging from 3.1 to 6.1 % (Fig. 2) (Additional
file 1: Table S1). The putative eChl_B locus on chromo-
some 18 was identified by five closely spaced SNPs, one
locus on chromosome 15 was identified by four SNPs, and
the remaining six loci were identified by a single SNP sig-
nificantly associated with eChl_B.

For eChl_R, association analysis indicated 14 significant
SNPs. Together these 14 SNPs likely identified 10 putative
loci with R* ranging from 3.6 to 6.3 % (Additional file 1:
Table S1). Six of these loci were identified by a single SNP
each (Fig. 2). Putative loci located on chromosomes 1, 4,
and 19, and one of the two loci on chromosome 15, were
identified by two closely spaced SNPs.

A total of 26 unique SNPs were significantly associated
with eChl_T phenotypic BLUP values, identifying a total
of 15 putative loci (Fig. 3). The R* for these putative loci
ranged from 3.4 to 6.1 % (Additional file 2: Table S2).
One putative locus on chromosome 18 was identified by
seven closely spaced SNPs and, one on chromosome 20
was identified by four closely spaced SNPs, while one of
two loci each on chromosome 19 and 15 were identified
by two closely spaced SNPs. The remaining eleven loci
were identified by one SNP each, showing significant
association for eChl_T.

Genome-wide association analysis for the two canopy
spectral reflectance based methods used for total chloro-
phyll determination resulted in the identification of 20
(tChL_T) and 18 (iChl_T) candidate SNPs, representing
12 and 11 putative loci, respectively (Fig. 3). The R* for
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the putative loci ranged from 3.6 to 6.0 % for tChl_T and
from 3.3 to 6.0 % for iChl_T (Additional file 2: Table S2).
The 20 SNPs significantly associated with tChl_T marked
12 putative loci of which one, located on chromosome 20,
was identified by five closely spaced SNPs, and one locus
on chromosome 5 was identified by three closely spaced
SNPs. One locus each on chromosome 8 and 18 were
identified by two SNPs, and the remaining eight loci were
identified by one SNP each showing significant association
for tChl_T. The 18 unique SNPs significantly associated
with iChl_T marked 11 putative loci of which seven were
identified by single SNPs (Fig. 3) (Additional file 2:
Table S2). One locus on chromosome 14 was identified
by four closely spaced SNPs, one locus on chromosome
2 by three closely spaced SNPs, and one locus each on
chromosome 18 and 20 by two closely spaced SNPs.
Genome-wide association mapping for extract-based
chlorophyll traits identified a total of 78 SNPs (23 + 15 +
14 + 26) with 43 unique putative candidate SNPs contrib-
uting to 14, 7, 10 and 15 putative loci for eChl_A and

eChl_B, eChl_R and eChl_T, respectively (Additional file
1: Table S1 and Additional file 2: Table S2). The 78 SNPs
marked 24 unique putative loci, seven of which were iden-
tified by three of the four extract-based chlorophyll traits.
Eight of the 24 loci were identified by at least two of the
four chlorophyll traits and the remaining nine loci were
only identified by one of the four chlorophyll traits. None
of the SNPs or loci identified for eChl_R overlapped with
those found for eChl_A, eChl_B, or eChl_T. Examination
of SNPs identified for eChl_A, eChl_B and eChl_T iden-
tified several that were detected based on two or three of
these traits (Figs. 2 and 4a). Twenty-two SNPs were in
common between eChl_A and eChl_T, 12 SNPs between
eChl B and eChl_ T, 10 SNPs between eChl A and
eChl_B, and nine SNPs were common among all three
traits (Fig. 4a) (Additional file 3: Table S3). One locus on
chromosome 18 was identified by five closely spaced SNPs
and one locus each on chromosomes 10, 19 and 20 was
identified by one SNP, showing significant association with
eChl_A, eChl B and eChl_T.
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Fig. 4 a VVenn diagram showing the number of SNPs significantly associated with extractable chlorophyll a (eChl_A), chlorophyll b (eChl_B) and
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Mapping of total chlorophyll content based on eChl_T,
tChl_T, and iChl_T indicated a total of 64 significant
SNPs (26 + 20 + 18). Of these 64 SNPs, five SNPs were
identified based on all three methods, one SNP was in
common between eChl_T and iChl_T only, and one
SNP was in common between tChl_T and iChl_T only
(Figs. 3 and 4b). Of the five total SNPs identified based
on all three methods, one locus on chromosome 20 was
identified by two closely spaced SNPs, and three loci,
one each on chromosomes 15, 18 and 19, were identified
by one SNP each that was in common for eChl_T,
tChl_T and iChl_T (Fig. 3) (Additional file 2: Table S2
and Additional file 4: Table S4). Consequently, a total of
52 unique SNPs representing 27 putative loci were found.
Four of the 27 putative loci were identified using all three
total chlorophyll determination methods (one locus each
on chromosomes 8, 15, 19 and 20). One putative locus
each on chromosomes 10 and 18 was identified for tChl_T
and iChl_T but not eChl_T. Another locus on chromo-
some 19 was identified for eChl_T and iChl_T but not
tChl_T. The remaining 20 putative loci were all identified
for only one of the three methods of total chlorophyll
determination (Additional file 2: Table S2 and Additional
file 4: Table S4).

Identification of candidate SNPs and genes

All SNPs identified for eChl_A (23), eChl_B (15), eChl_R
(14), eChL_T (26), tChL_T (20), and iChl_T (18) that
satisfied the FDR <0.05 were considered as the most
promising candidate SNPs associated with chlorophyll
contents or the Chl a/b ratio. Based on the 60 bp se-
quences flanking the 43 unique candidate SNPs for
extract-based chlorophyll traits and 52 unique candidate
SNPs for the three total chlorophyll content traits, a
blast search was conducted with default parameters in
Soybase (www.soybase.org) to identify putative candidate
genes. The search for candidate genes found that, for
extract-based chlorophyll traits, 12 SNPs were present in
introns or coding regions of a gene, and that, for the
three total chlorophyll content traits, 17 SNPs were
present in introns, coding regions or 3’- untranslated re-
gions (UTR) of a gene (Additional file 3: Table S3 and
Additional file 4: Table S4). For all SNPs not located in a
gene, the gene closest to the SNP was identified in
Soybase and is listed in the supporting documents
(Additional file 3: Table S3 and Additional file 4: Table
S4). However, none of these genes have any obvious direct
relationship with any of the chlorophyll traits. An
additional search for candidate genes was performed in
Soybase using the term “chlorophyll”, and soybean chloro-
phyll biosynthetic pathway (KEEG pathway http://www.
genome.jp/kegg-bin/show_pathway?gmx00860). These
searches revealed 155 chlorophyll-related genes from
Soybase and 12 chlorophyll-related genes from the
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KEGG pathway (data not shown). Of these chlorophyll-
related genes, 28 were located within + 3 Mb [50, 69, 74,
75] of one of the 43 unique candidate SNPs identified
for extract-based chlorophyll traits (Table 3), and 33
chlorophyll-related genes that were located within +
3 MB of one of the 52 unique candidate SNPs identi-
fied for the three total chlorophyll content traits
(Table 4).

Discussion

Chlorophyll phenotypes

Considerable variation in extract-based chlorophyll traits
(eChl_A, eChl_B, eChl_T, and eChl_R) and canopy-
based spectral reflectance total chlorophyll content traits
(tChL_T and iChl_T) was observed among the 332 soy-
bean genotypes (Fig. 1). The eChl_A, eChl_B, eChl_T,
and eChl_R average values observed were similar to
chlorophyll contents and chlorophyll a/b ratios reported
previously for soybean [28, 76]. As expected, given that
total chlorophyll is a function of chlorophyll a and
chlorophyll b, the correlations of eChl_A and eChl_B
with eChl_T were positive and very strong (Table 2).
Positive relationships were also found among all three
total chlorophyll traits, despite the fact that leaf disks
extracted for eChl_T determination were collected from
uppermost fully expanded, sun-exposed leaflets while
the reflectance measurements used for tChl T and
iChl_T determination represented a canopy of leaves of
different ages and positions on the plants. Both tChl_T
and iChl_T were estimated based on the same canopy
spectral reflectance measurements, but the two determi-
nations were based on independent indices, one devel-
oped by Gitelson et al. [53], and the other by Singh et al.
[17]. Nonetheless, the two canopy spectral reflectance
based estimates were more closely related to each other
than either of them was with eChl_T. Since tChl_T was
estimated based on a model Singh et al. [17] developed
using the eChl_T and canopy spectral reflectance mea-
surements from the 332 genotypes examined in this
study, the stronger positive correlation between eChl_T
and tChl_T compared to eChl T and iChl_T was ex-
pected (Table 2).

Putative loci for extract-based chlorophyll traits and
known chlorophyll genes in their vicinity

Advances in high-throughput genotyping technologies
have enabled genome-wide association analysis to be a
powerful tool for detection and mapping of quantitative
trait loci (QTLs) underlying complex traits in soybean.
The MLM + Q + K model applied in this study resulted
in the identification of between 14 and 26 significant
SNPs for each of the investigated chlorophyll traits. The
majority of the SNPs identified for eChl_A, eChl_B, and
eChl_T, were common between at least two of these
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Table 3 List of 28 known chlorophyll-related genes within a + 3 MB region of the 43 putative candidate SNPs identified from
Soybase (www.soybase.org) for extractable chlorophyll a (eChl_A), chlorophyll b (eChl_B), total chlorophyll (eChl_T) and chlorophyll
a/b ratio (eChl_R)

Loci Gene ® Chromosome  Start Stop Soybase © /Pathway/ Distance to Functional annotation Trait
Reference SNP (Mb)
1 Glyma01g41320 GmO1 528,555,359 528,56,591 Glyma 1.0 0.29 Chlorophyll A-B binding protein  eChl_R
Glyma01g43630 GmO1 545,89,487 54598903 Glyma 1.0 1.80 Magnesium chelatase activity eChl_R
(chlorophyll biosynthetic process)
Glyma01g43720 GmO1 546,67,132 546,69,898 Glyma 1.0 1.80 Tetrapyrrole biosynthetic process eChl_R
(Porphobilinogen deaminase)
Glyma01g42390 GmO1 545,54,210 54556460 Fang et al 2014 1.80 Stay-Green (SGR) gene D2 eChl_R
(Chlorophyll catabolic process)
2 Glyma04g04110 GmO04 30,19987 3021,151 Glyma 1.0 264 Chlorophyll A-B binding protein  eChl_A
3 Glyma04g37740 GmO04 441,63,842 441,70,887 Glyma 1.1 0.98 regulation of transcription, eChl_A and
DNA-templated eChl_T
5 Glyma05g01000 GmO05 6,06,608 6,08,812 Glyma 1.0 1.11 Electron transfer flavoprotein- eChl_B, eChl_R
Ubiquinone oxidoreductase and eChl_T
6 Glyma05g05450 GmO05 476469 4766688 Glyma 1.0 2.14 Chlorophyll A-B binding family eChl_B, eChl_R
protein and eChl_T
7 Glyma06g17360 GmO06 136,67,004 136,74,569 Glyma 1.0 0.13 Regulation of transcription, eChl_R

DNA-templated (ATP-dependent
CLP protease)

8 Glyma07g18470 GmO07 184,08,168 184,13,639 Glyma 1.0 1.05 Prenyltransferase activity eChl_A and
eChl_T
9 Glyma07g32550 GmO07 374,27,501 374,330,163 KEGG pathway 1.69 Magnesium chelatase activity eChl_R
database (chlorophyll biosynthetic process)
Glyma07g33320 GmO07 382,60,227 38261619 Glyma 1.0 252 UbiA prenyltransferase family eChl_R
(prenyltransferase activity)
12 Glymal0g13190 Gm10 148,88,257 149,01,045 Glyma 1.1 2.86 Pyridine nucleotide-disulphide eChl_B
oxidoreductase
13 Glyma10g32080 Gm10 405,24,508 405,27,468 Glyma 1.0 027 Chlorophyll A-B binding protein  eChl_A and
eChl_T
15 Glyma15g05790 Gm15 41,14,634  41,16,181  Glyma 1.0 1.09 Chlorophyll A-B binding protein  eChl_R
Glyma15g06050 Gm15 4295728 4306099 Glyma 1.0 1.28 Magnesium chelatase activity eChl_R
(chlorophyll biosynthetic process)
Glyma15g08680 Gm15 61,55823 61,58347 Campbell et al 2015 293 Magnesium chelatase activity eChl_R
16 Glymal5g16570 Gm15 128,69,848 128,76,153 Glyma 1.0 149 Magnesium chelatase activity eChl_A, eChl_B
(chlorophyll biosynthetic process) and eChl_T
17 Glymal5g42140 Gm15 495,29,893 495,34,600 Glyma 1.0 1.51 ATP-citrate synthase eChl_R
Glyma15g43150 Gm15 514,86,036 514,91,942 Reed et al 2014 2.96 Biogenesis of Photosystem | and  eChl_R
Il
18 Glyma16g24570 Gm16 28547662 28550487 Glyma 1.0 0.65 Chlorophyll catabolic process eChl_T
(Chlorophyllase.)
Glyma16g26130 Gm16 303,09,204 303,111,593 Glyma 1.0 241 Chlorophyll A-B binding protein  eChl_T
19 Glymal7g15730 Gm17 124,56,729 124,58,671 Glyma 1.0 041 Chlorophyll A-B binding protein  eChl_R
21 Glyma19g30350 Gm19 379,557,536 37960664 Glyma 1.0 117 Oxidation-reduction process eChl_A, eChl_B
(Rubrerythrin) and eChI_T
22 Glyma19g32070 Gm19 398,43,036 398,49,603 Glyma 1.0 297 Magnesium chelatase activity eChl_A, eChl_B
(chlorophyll biosynthetic process) and eChl_T
23 Glyma19g40370 Gm19 46794372 467,99,578 Glyma 1.0 0.27 Magnesium chelatase activity eChl_A and

(chlorophyll biosynthetic process) eChl_T
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Table 3 List of 28 known chlorophyll-related genes within a + 3 MB region of the 43 putative candidate SNPs identified from
Soybase (www.soybase.org) for extractable chlorophyll a (eChI_A), chlorophyll b (eChl_B), total chlorophyll (eChI_T) and chlorophyll

a/b ratio (eChl_R) (Continued)

24 Glyma20g35530 Gm20 438,224,060 43826992 Glyma 1.0

Glyma20g38941 Gm20 464,38,179 46439540 Glyma 1.1

1.36 Chlorophyll A-B binding protein  eChl_A, eChI_B
and eChl_T

0.92 Homogentisate eChl_A, eChl_B
phytyltransferase 1 and eChl_T

@ As reported in Soybase
b Annotation version information based on Soybase

traits, and nine of them were common between all three
traits. In fact, all SNPs that were identified for eChl_A
were also identified for either eChl_B or eChl_T, or for
all three traits (Fig. 4a). Specifically, 55 % of significant
SNPs were in common between eChl_A and eChl_B,
56 % between eChl B and eChl_T, and 45 % between
eChl_A and eChl_T. Since Chl a and Chl b are synthe-
sized by the same pathway, can be interconverted by a
Chl a—Chl b cycle, and sum to make up the total
chlorophyll content [77], this was anticipated and, to
some extent, cross-validates the genome-wide associ-
ation analysis results for the eChl_A, eChl_B, and
eChl_T traits. In total, five loci were identified to be
common among these three traits, one each on chromo-
somes 10, 15, 18, 19 and 20. Of the five loci, the loci on
chromosome 15, 19, and 20 were located in the vicinity
of known chlorophyll related genes (Fig. 2, Table 3).
Surprisingly, no known chlorophyll-related genes were
located near the loci on chromosomes 10 and 18. Thus,
these loci may identify genes that have not yet been
implicated in the modulation of chlorophyll content.
While the loci on chromosomes 15, 19, and 20 were also
identified based on tChl_T and iChl_T, the loci on chro-
mosomes 10 and 18 were not, and therefore may be of
particular relevance to chlorophyll content in fully ex-
panded sun-exposed leaves near the top of the canopy
and not, or less so, for leaves that are older and/or at
different position in the canopy (Figs. 2 and 3). The
known chlorophyll related genes found near the loci on
chromosomes 15, 19, and 20 that were identified based
on eChl_A, eChl_B, eChl_T, tChl_T, and iChl_T, include
genes annotated to encode proteins that have magnesium
chelatase activity (Chr 15, 19). Magnesium chelatase cata-
lyzes the insertion of Mg>* into protoporphryin IX, which
is the first committed step in chlorophyll biosynthesis
(earlier steps are in common with the heme biosynthetic
pathway) [78].

The remaining 19 loci that were identified based on
extract-based chlorophyll traits were marked by 34
SNPs, and a search for chlorophyll related genes identi-
fied 15 genes in their vicinity (3 MB). Given how
closely related the chlorophyll traits are, more confi-
dence and greater importance can be given to loci that

were identified based on more than one trait. These in-
cluded two loci identified based on three chlorophyll
traits (eChl_B, eChl_T and eChl_R (Chr 5) and eChl_A,
eChl_T and eChl_R (Chr 8)), and 8 loci that were identi-
fied based on two chlorophyll traits. The remaining 9
loci were based on single extract-based chlorophyll traits
(Fig. 2) (Additional file 3: Table S3).

Among the chlorophyll-related genes found in the
vicinity of the putative loci, chlorophyll A-B binding pro-
teins (8 genes near 8 loci) were the most prominent,
followed by genes encoding proteins with magnesium
chelatase activity (7 genes near 7 loci) (Table 3). How-
ever, the search for chlorophyll-related genes did not re-
veal hits near every putative locus. This includes the
aforementioned loci on chromosomes 10 and 18, that
were identified by Chl_A, eChl_B, and eChl_T as well as
five additional loci on chromosomes 4, 5, 8, 9 and 19
that were marked by one or a combination of other
eChl-based traits. Interestingly, the eChl_R-based locus
on chromosome 1 and chromosome 6, were located
close to two and one leaflet chlorophyll content QTL,
respectively, that were previously identified [33] based
on a biparental mapping population. One chlorophyll-
related gene, recently cloned [79] as “Stay-Green (SGR)
gene D27, controls the stay-green phenotype in soybean
and is involved in regulation of chlorophyll degradation.
Recently, Campbell et al. [31] cloned a magnesium che-
latase subunit located on chromosome 15, near the first
of two loci associated with eChl_R, and Reed et al. [32]
identified gene involved in the biogenesis of Photo-
system I and II near the second eChl_R locus on
chromosome 15, which was also close to a chlorophyll
content QTL previously identified by Hao et al. [34].
Both of these genes were identified in distinct chloro-
phyll deficient mutants. Another eChl_R-based-locus on
chromosome 15 was found near a QTL identified by
Hao et al. [34] and the QTLs for mutant’s y9 and y17
identified by Palmer and Xu [80] that condition green/
chlorotic foliage. The eChl_A and eChl_T-based locus
on chromosome 7 was also located close to one leaflet
chlorophyll content QTL previously identified by Li et
al. [33]. In addition, one of the eChl_A and eChl_T-
based loci on chromosome 4 as well as the eChl_T-
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Table 4 List of 33 known chlorophyll-related genes within a + 3 MB region of the 52 putative candidate SNPs identified from
Soybase (www.soybase.org) for three total chlorophyll determination methods namely extractable chlorophyll (eChl_T), wavelet
transformed spectral reflectance chlorophyll (tChl_T) and spectral reflectance index total chlorophyll (iChI_T)

Loci Gene ® Chromosome  Start Stop Soybase b/ Distance to Functional annotation Trait
Pathway  SNP (Mb)
1 Glyma02g40490 GmO02 45747413 457,63,801 Glyma 1.1 203 Mitochondrial Fe/S cluster iChl_T
exporter, ABC superfamily
Glyma02g39990 GmO02 451,89,739 451,97,024 Glyma 1.1 261 Translocon at the inner envelope iCh_T
membrane of chloroplasts
Glyma02g44150 Gm02 487,89,243 487,90,727 Glyma 1.1 0.99 Chlorophyll a biosynthetic process iChl_T
(geranylgeranyl reductase)
Glyma02g47120 GmO02 508,18647 50820935 Glyma 1.1 292 Red chlorophyll catabolite iChI_T
reductase (RCC reductase)
2 Glyma03g08280 GmO03 91,32,182 9134276 Glyma 1.1 1.28 Chlorophyll A-B binding protein tChI_T
3 Glyma03g27380 GmO03 35095413 35098484 Glyma 1.1 2.96 Oxidation-reduction process tChl_T
(Rubrerythrin)
Glyma03g29330 GmO03 373,17,236 37323794 Glyma 1.1 1.04 Magnesium chelatase activity tChI_T
5 Glyma04g37740 GmO04 441,63,842 441,70,887 Glyma 1.1 0.98 Regulation of Transcription eChl_T
(ATP-dependent CLP protease)
6 Glyma05g01000 GmO05 6,06,608 6,08,812 Glyma 1.1 1.11 Electron transfer flavoprotein- eChl_T
ubiquinone oxidoreductase
7 Glyma05g05450 GmO05 4764696 4766688 Glyma 1.1 295 Chlorophyll A-B binding eChl_T
family protein
8 Glyma05g38510 GmO05 41844917 41850362 Glyma 1.1 040 Regulation of transcription, tChi_T

DNA-templated (ATP-dependent
CLP protease)

Glyma05g38570 GmO05 384,15,657 384,18,787 KEGG 298 Magnesium protoporphyrin IX tCh_T
Pathway methyltransferase activity
(chlorophyll biosynthetic process)
10 Glyma07g18470 GmO7 184,08,168 184,13,639 Glyma 1.1 1.05 UbiA prenyltransferase family eChl_T
(prenyltransferase activity)

11 Glyma08g07880 Gm08 5644333 5645834 Glyma 1.1 1.49 Chlorophyll A-B binding protein iChl_T
Glyma08g08770 GmO08 62,68835 62,70396 Glyma 1.1 0.87 Chlorophyll A-B binding protein iChl_T
Glyma08g08920 GmO08 63,557,088 6363013 Glyma 1.1 0.78 Magnesium chelatase activity iChl_T

(chlorophyll biosynthetic process)
12 Glyma08g12070 Gm08 87,20,805 87,26,588 Glyma 1.1 1.59 Chlorophyllide a oxygenase iChl_T
[overall] activity
13 Glyma09g05240 Gm09 4035167 4041,182  Glyma 1.1 0.80 Magnesium chelatase activity tChi_T
(chlorophyll biosynthetic process)
Glyma09g07310 GmO09 61,557,184 6157688 Glyma 1.1 1.32 Chlorophyll A-B binding protein tChi_T
14 Glyma09g08260 Gm09 7339820 7342548 Glyma 1.1 2.51 Chlorophyll A-B binding protein tChI_T
15 Glymal0g25710 Gm10 341,446,057 341,558,388 KEGG 0.84 Coenzyme F420 hydrogenase tChl_T and
Pathway iChL_T
16 Glyma10g27890 Gm10 366,89,550 366,94,993 Glyma 1.1 0.84 Oxidation-reduction process tChI_T and
(Protoporphyrinogen oxidase) iCh_T
17 Glyma10g32080 Gm10 405,24,508 405,227,468 Glyma 1.1 027 Chlorophyll A-B binding protein eChl_T
18 Glymal1g12110 Gm11 8645442 86,50,623 Glyma 1.1 0.75 Magnesium chelatase activity iChl_T
(chlorophyll biosynthetic process)
20 Glymal5g16570 Gm15 128,69,848 128,76,153 Glyma 1.1 149 Magnesium chelatase activity eChl_T and
(chlorophyll biosynthetic process) tChI_T
21 Glymal16g24570 Gm16 28547662 28550487 Glyma 1.1 0.65 Chlorophyll catabolic process eChl_T

(Chlorophyllase.)
Glyma16g26130 Gm16 303,09,204 303,11,593 Glyma 1.1 241 Chlorophyll A-B binding protein eChl_T
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Table 4 List of 33 known chlorophyll-related genes within a + 3 MB region of the 52 putative candidate SNPs identified from
Soybase (www.soybase.org) for three total chlorophyll determination methods namely extractable chlorophyll (eChl_T), wavelet
transformed spectral reflectance chlorophyll (tChl_T) and spectral reflectance index total chlorophyll (iChI_T) (Continued)

24 Glyma19g30350 Gm19 379,557,536 37960664 Glyma 1.1

Glyma19g32070 Gm19 39843,036 39849603 Glyma 1.1
25  Glyma19g40370 Gm19 467,94,372 467,99,578 Glyma 1.1

26 Glyma20g28890 Gm20
27 Glyma20g35530 Gm20

37838,174 37839638 Glyma 1.1
438,224,060 438,226,992 Glyma 1.1

Glyma20g38941 Gm20 464,338,179 464,339,540 Glyma 1.1

1.17 Oxidation-reduction process eChl_T, tChI_T
(Rubrerythrin) and iChl_T

2.96 Magnesium chelatase activity eChl_T, tChI_T
(chlorophyll biosynthetic process) and iChI_T

027 Magnesium chelatase activity eChl_T and iChI_T
(chlorophyll biosynthetic process)
290 Chlorophyll A-B binding protein tChI_T
1.36 Chlorophyll A-B binding protein eChl_T, tChl_T
and iChl_T
0.73 Homogentisate phytyltransferase 1 eChl_T, tChl_T
and iChI_T

@ As reported in Soybase
P Annotation version information based on Soybase

based locus on chromosome 16 were located close to
chlorophyll content QTL previously identified [34] using
SNP markers.

Putative loci for eChl_T, tChl_T, and iChl_T and known
chlorophyll genes in their vicinity

Total chlorophyll content was mapped based on leaf-
level (eChl_T) and canopy-level estimates (tChl_T and
iChl_T). In total, 64 SNPs, 52 of which were unique,
were identified for total chlorophyll content based on
these three phenotypes. These SNPs identify 27 putative
loci in 16 chromosomal regions (Additional file 2: Table
S2). Among significant SNPs, 22 % were in common be-
tween eChl T and tChl_T, 33 % between tChl T, and
iChl T, and 30 % between eChl T, and iChl_T. The R?
values for total chlorophyll loci identified in this study
were higher (3.7 to 6.1 %) than the R? values (2.0 to
4.9 %) reported by Hao et al. (2012) [34]. A search for
chlorophyll-related genes resulted in 33 candidate genes
in the vicinity (+3 MB) of these 52 unique candidate
SNPs (Table 4). The chromosomal locations of the 52
SNPs and 33 candidate genes are shown in Fig. 3. As for
extract based chlorophyll traits, the most common
chlorophyll related genes found in the vicinity of the pu-
tative loci were genes encoding chlorophyll A-B binding
proteins (10 genes near 9 loci) and genes encoding pro-
teins with magnesium chelatase activity (7 genes near 7
loci) (Table 4).

Four putative loci, one each on chromosomes 8, 15, 19
and 20 were common for all three total chlorophyll phe-
notypes, thus imparting particular confidence in the val-
idity of these loci (Additional file 2: Table S2). As
mentioned above, the loci on chromosomes 15, 19, and
20 were also detected based on eChl_A and eChl_B phe-
notypes. In contrast to the loci on chromosomes 15, 19,
and 20, no known chlorophyll related gene was identified
in the vicinity of the locus on chromosome 8, despite

having been identified by eChl_A, eChl_B, eChl_T, tChl_T
and iChl_T phenotypes (Figs. 2 and 3, Fig. 3).

Of the remaining 23 loci for total chlorophyll content,
only three were identified by associations using two
methods of chlorophyll determination. One of these, on
chromosome 19, was found identified using eChl_T and
iChl_T as well as eChl_A, and was located in the immediate
vicinity of a gene annotated as magnesium chelatase
(Table 4). The other two loci were located on chromosomes
10 and 18 and were both identified with the two canopy
spectral reflectance-based traits. While no known
chlorophyll-related gene was found near the locus on
chromosome 18, two genes (Coenzyme F420 hydrogenase
and Protoporphyrinogen oxidase) were found near the
locus on chromosome 10. Of the remaining 20 loci iden-
tified by single canopy reflectance-based traits, 13 had
at least one chlorophyll related gene nearby (Fig. 3). Also,
the locus identified based on iChl_T on chromosome 2 was
near a QTL for a viable yellow mutant identified by Espi-
nosa [81] and near a chlorophyll content QTL identified by
Hao et al [34]. A QTL for a yellow leaf (y10) mutant identi-
fied [82], was located near the second tChl_T locus identi-
fied on chromosome 3. Interestingly, one QTL identified by
Li et al. [33] and one identified by Hao et al. [34], were also
located near that same putative locus on chromosome 3
that was also located in the vicinity of a magnesium chela-
tase (Fig. 3). Two loci for iChl_T on chromosome 11 and
14 respectively were found near chlorophyll content QTLs
previously identified by Hao et al. [34].

Conclusions

Significant variation in chlorophyll content (ug cm™)
was observed among the 332 MG IV soybean genotypes
examined in this study. Genome-wide association ana-
lysis identified putative loci associated with each of six
chlorophyll traits examined. Twenty-four unique puta-
tive loci on 14 chromosomes were identified for extract-
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based chlorophyll traits. For total chlorophyll content, de-
termined using three methods, association analyses identi-
fied 27 putative loci on 16 chromosomes. Several of the loci
were identified by more than one chlorophyll trait and
since the traits are closely related, more confidence and
greater importance can be given to loci that were identified
by more than one trait. While many of the putative loci
identified were located near genes previously identified or
annotated as related to chlorophyll traits, numerous SNPs
marked chromosomal regions where no known
chlorophyll-related  genes were found. Putative
chlorophyll-related loci identified based on high-
throughput amenable canopy spectral reflectance cha-
racteristics indicate that canopy spectral reflectance can
provide useful phenotypes for genome-wide association

mapping.
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