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Introduction
Diabetes is a metabolic disorder occurring when 
the pancreas does not produce enough insulin or 
when the body does not properly use the released 
insulin. The common effect is a chronic hypergly-
cemia that leads to a long-term risk of micro- and 
macroangiopathy. The worldwide incidence of 
diabetes is steadily increasing and the World 
Health Organization estimated that about 552 
million people will be affected by the disease by 
2030 [Ding et al. 2013].

Type 1 diabetes (T1D) affects 5–10% of all 
patients with diabetes and usually develops in 
children and young adults. This disease is charac-
terized by progressive destruction of pancreatic 
insulin-producing β cells provoked by a B- and 
T-lymphocyte-dependent autoimmune assault 
[Atkinson et al. 2011]. Although the origins of the 

causative autoimmune reactions are still uncer-
tain [Ludvigsson, 2013], several studies have 
shown correlations between T1D onset and envi-
ronmental factors such as enteroviral infections 
[Krogvold et  al. 2015], early infant nutrition 
[Mayer-Davis et  al. 2013], or vitamin D defi-
ciency [Mathieu, 2015]. The genetic association 
between human leucocyte antigen (HLA) and the 
onset of T1D has also been confirmed by many 
studies since the 1970s. About 50% of the risk for 
developing T1D is explained by the polymor-
phism of more than 50 different HLA loci [Lysy, 
2014]. Most of these genes are involved in 
immune regulation and were associated with the 
risk of developing other autoimmune disorders 
such as celiac disease, systemic lupus erythemato-
sus and multiple sclerosis [Noble, 2015]. Current 
treatments for T1D are primarily focused on 
insulin supplementation that improves glucose 
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homeostasis but fails to achieve treatment targets 
for many patients [Lind et al. 2014].

Pancreas and islet transplantation
In this context, the replacement of functional β 
cells would be the only cure for patients with 
T1D, as demonstrated by the accumulated expe-
rience in whole pancreas [Niederhaus, 2015] and 
human islet transplantation [Shapiro and Lakey, 
2000; Bellin et  al. 2012; Barton et  al. 2012]. 
Currently, more than 13,000 patients with diabe-
tes mellitus have benefited from a successful pan-
creas (i.e. pancreas alone, or pancreas-after-kidney) 
transplantation [Kerr et al. 2015] and graft sur-
vival improved by up to 81.5% 1 year after organ 
transplant [Kaufman, 2015]. This procedure is 
often proposed to patients with severe renal fail-
ure requiring concomitant kidney transplant 
[Johannesson et  al. 2015]. Despite its curative 
potential, pancreas transplantation remains a dif-
ficult procedure with significant morbidity and 
mortality (22% mortality rate 10 years after trans-
plant), and with limitations associated to organ 
shortage [Kandaswamy et al. 2016].

Human islet isolation was developed to provide 
patients with a minimally invasive cell-replace-
ment protocol, and functionality of transplanted 
islets was greatly improved in the last decade 
[Bruni et al. 2014]. A review by Barton and col-
leagues from the Collaborative Islet Transplant 
(CIT) Registry showed insulin independence 
during 3 years after human-islet transplantation 
in about 44% of patients [Barton et  al. 2012]. 
Recently, Brennan and colleagues showed func-
tional islet engraftment and glucose tolerance 54 
months after transplantation under the Edmonton 
protocol, in patients followed up for 12 years and 
treated with tacrolimus and sirolimus or mycophe-
nolate mofetil [Brennan et al. 2016]. The devel-
opment of a new immunosuppressive regimen 
that combined sirolimus and tacrolimus with 
classical drugs such as daclizumab and etanercept 
in addition to granulocyte-colony stimulating 
(G-CSF) and exenatide showed prolonged graft 
function in 70% of the patients for about 12 years 
[Inverardi, 2015]. Previously, Long and col-
leagues showed the efficiency of rapamycin com-
bined with interleukin-2 (IL-2) as treatment for 
autoimmune diabetes [Long et al. 2012]. Indeed, 
nine diabetic patients in a phase I clinical trial 
were treated with this cocktail (administration of 
rapamycin for 3 months and IL-2 for 1 month) 
and showed effective augmentation of Treg cells. 

However, transient β-cell dysfunction, decreased 
levels of C-peptide and negative effects on β-cell 
regeneration represented the greatest limitations 
of this combinatorial therapy.

Despite significant improvements, islet transplan-
tation still remains limited by the shortage of 
cadaveric donors, the necessity for long-term 
immunosuppression, restricting its indication for 
adults with unstable diabetes (e.g. recurrence of 
severe hypoglycemias, intractable glucose varia-
bility, diabetes-related complications), due to the 
complexity of cell isolation protocols and islet 
viability after cryopreservation. Although 
Manning Fox and colleagues recently showed 
that human islets cryopreserved for 20 years 
maintained correct purity, functional intracellular 
Ca2+ influx and glucose-stimulated insulin secre-
tion (GSIS), these stored cells had decreased lev-
els of insulin content and lower abilities to reverse 
diabetes in a mouse model as compared with 
fresh islets [Manning Fox et al. 2015].

Pluripotent stem cells
These difficulties fostered the finding of new cell 
sources with potential to provide large supplies of 
insulin-producing cells for clinical settings. 
Embryonic stem cells (ESCs) and induced pluri-
potent stem cells (iPSCs) represent the most 
widely investigated candidates for in vitro repro-
gramming purposes because of their theoretically 
unlimited proliferation and high differentiation 
potential [Lysy et  al. 2012]. Over the last 10 
years, researchers designed protocols for differ-
entiation of pluripotent stem cells (PSCs) that 
mimicked pancreas embryogenesis by using 
cocktails of molecules with specific influences on 
key intracellular pathways [Blyszczuk et al. 2004; 
Ku et al. 2004; Schroeder et al. 2006; Schiesser 
and Wells, 2014]. Combinations of activin A, 
retinoic acid, transforming growth factor (TGF) 
β, nicotinamide, bone morphogenetic protein 
(BMP), keratinocyte growth factor (KGF), 
cyclopamine, basic fibroblastic growth factor 
(bFGF), Noggin, wingless-type mouse mam-
mary tumor virus (MMTV) integration-site fam-
ily-member 3a (Wnt3a), sonic hedgehog pathway 
antagonist (SANT1) and insulin were used to 
induce the differentiation of ESCs toward pan-
creatic endocrine precursors through incubations 
of 3–4 weeks [Ku et  al. 2004; Yasunaga et  al. 
2005; D’Amour et al. 2006; Kroon et al. 2008; 
Rezania et  al. 2012]. During differentiation, 
ESCs showed acquisition of typical gene profiles 
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of pancreatic stepwise development: expression 
of OCT4, SOX2, and Brachyury followed by acti-
vation of PDX1, NGN3, NKX6.1 until final 
expression of key β-cell markers such as MAFA, 
PAX4 and insulin [D’Amour et al. 2006; Jackson 
et  al. 2010; Hrvatin et  al. 2014]. In 2006, 
D’Amour and colleagues made great advances by 
obtaining ESC-derived β-cell populations con-
taining up to 12% of insulin+ cells after in vitro 
stepwise protocols [D’Amour et al. 2005, 2006]. 
These cells completed their reprogramming into 
functional insulin-producing derivatives 3–4 
months after transplantation into rodents 
[D’Amour et al. 2006; Kroon et al. 2008; Rezania 
et al. 2012]. Yet PSCs lacked essential properties 
of bona fide β cells, including GSIS [Nostro et al. 
2011; Kelly et al. 2011; Bruin et al. 2014; Hrvatin 
et al. 2014]. Recently, two groups [Pagliuca et al. 
2014; Bruin et al. 2014] demonstrated the possi-
bility of obtaining functional differentiation of 
human ESCs in vitro with insulin secretion pat-
terns close to human islet cells; yet only the 
Rezania and Pagliuca teams described the attain-
ment of monohormonal ESC-derived β cells after 
implantation under the kidney capsule of dia-
betic mice [Pagliuca et  al. 2014; Rezania et  al. 
2014]. In these studies, human insulin was 
detected in the mouse bloodstream with subse-
quent glycemic normalization within 40 days 
post transplantation. These data are putting 
PSCs closer to potential exploitation in the clini-
cal setting.

Tumor formation remains a major concern in the 
use of ESCs, fetal stem cells and iPSCs for trans-
plantation studies. Unwanted ‘off-target’ meso-
dermal formation was reported with human ESCs 
in transplantation sites [Kroon et  al. 2008; 
Rezania et  al. 2012]. Many groups have tried 
selection of ESC-derived endocrine cells [Kelly 
et al. 2015; Jiang and Morahan, 2015] or the use 
of micro- and macroencapsulation devices [Motte 
et al. 2014; Agulnick et al. 2015; Song and Roy, 
2015] such as the TheracyteTM (Inc. manufac-
tures, Laguna Hills, California) system to circum-
vent the undesired cell growth, but also to 
promote angiogenesis of the cells and to protect 
those from the host immune system [Pepper et al. 
2015]. PSC-derived functional insulin-producing 
cells were recently injected into a Theracyte-
based device (called EncaptraTM, San Diego, 
California) and subsequently transplanted subcu-
taneously [Agulnick et  al. 2015]. Furthermore, 
this system permitted the survival of mouse neo-
natal pancreatic tissue maintaining euglycemia up 

to 95 days post-transplant in diabetic RIP-
LCMV.GP mice [Boettler et  al. 2015]. Clinical 
trials in Phase I/II [ClinicalTrials.gov identifiers: 
NCT02239354 and NCT01996228] are cur-
rently assessing long-term tolerability and efficacy 
of this system, with results eagerly awaited for. 
Very recently, alginate-based encapsulation was 
used to intraperitoneally transplant human ESC-
derived β-like cells into immunocompetent mice 
[Vegas et al. 2016]. Grafts retained functionality 
at 174 days of follow up with significant effects on 
glucose homeostasis that mirrored C-peptide 
secretion levels. These important results bring 
additional evidence of the translational capacity 
of human ESCs.

Principal modes of β-cell regeneration
Whether progenitors or stem cells reside in the 
adult human pancreas or not is still unknown, but 
regeneration of pancreatic compartments were 
described after birth and after injury [Chintinne 
et al. 2010; Li et al. 2010; Nakamura et al. 2011]. 
The principal mechanisms investigated to explain 
β-cell regeneration within the pancreas include: 
neogenesis (differentiation of islet cells from fac-
ultative pancreatic progenitors), replication of 
pre-existent β cells and transdifferentiation (being 
the conversion from one cell type to another) 
[Bonner-Weir et al. 2010, 2012].

Neogenesis
Neogenesis was largely considered the main pro-
cess responsible for embryonic development, 
however, its involvement in the adult pancreas is 
still under investigation [Bonner-Weir et  al. 
2012]. Numerous studies describe the existence 
of a reservoir of progenitor cells within the human 
exocrine pancreas. The involvement of PDCs as 
a niche of committed progenitors in the adult 
pancreas will be discussed below.

Acinar cells represent the major population in the 
human pancreas; therefore particular attention 
was paid to their role as progenitors [Houbracken 
et al. 2010; Mfopou and Bouwens, 2013; Baeyens 
et  al. 2014; Pin et  al. 2015]. The conversion of 
acinar into endocrine fates was previously 
reported by lineage-tracing studies, showing  
formation of ectopic insulin+ cells derived from 
acinar cells after suppression of Ptf1a in zebra 
fish [Hesselson et al. 2011]. Controversy regard-
ing the in vivo plasticity of adult acinar was gener-
ated by a study showing the lack of acinar-to-β 
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transdifferentiation following 70% pancreatec-
tomy (Px), pancreatic duct (PDL), and cerulein-
induced pancreatitis in mice [Desai et al. 2007]. 
In 2008, Zhou and colleagues showed the direct 
reprogramming of exocrine cells into β cells after 
in-vivo overexpression of PDX1, NGN3, and 
MAFA [Zhou et  al. 2008]. Adenoviral vectors 
containing the sequences of the three transcrip-
tion factors (TFs) (and green fluorescent (GFP) 
as reporter) were transduced in exocrine cells of 
Rag1-/- diabetic mice. Only 10 days after infec-
tion, new insulin+/GFP+ cells expressing the  
hallmarks of bona fide β cells were observed. 
Streptozotocin (STZ)-treated animals showed 
significant decrease of hyperglycemia without 
complete disease reversal. These results were 
confirmed by Cavelti-Weder and colleagues, who 
showed extensive periods (up to 13 months) of 
euglycemia in two of the TF-transduced diabetic 
animals [Cavelti-Weder et al. 2015]. Similarly, a 
cytokine-based protocol [containing epidermal 
growth factor (EGF) and ciliary neurotrophic fac-
tor (CNTF)] was developed to circumvent the 
use of adenoviruses for acinar-to-β transdiffer-
entiation [Bonfanti et  al. 2015]. In this study, 
alloxan-induced diabetic mice received EGF and 
CNTF via intraperitoneal osmotic pumps that 
allowed 65% of animals to increase their levels of 
serum insulin and normalize their glycemia within 
5 days. Acinar cells were detected to be at the 
origin of the new β cells via lineage-tracing exper-
iments. Together, these works provide evidence 
for a major potential of acinar cells for designing 
in situ transdifferentiation protocols.

Replication
The other mechanism thought to be at play in 
endogenous replenishment of pancreatic tissues is 
replication of pre-existing β cells. β-cell prolifera-
tion in both human and murine models is nor-
mally controlled by activation of proteins that 
regulate the cell cycle [Vetere et  al. 2014]. For 
example, it has been shown that p16, p27, cyclins 
D1, D2, and D3 have a central role in pancreas 
regeneration controlling the replicative potential 
of the β-cell mass. Many efforts were made to 
identify compounds that could stimulate β-cell 
proliferation. An increase of about 50% of the 
β-cell mass and parallel decrease of hyperglycemia 
in mice was observed after 6 weeks of treatment 
with WS6 molecule without affecting their differ-
entiation or viability [Shen et  al. 2013; Boerner 
et al. 2015]. High-throughput screening of more 
than 850 compounds led to the identification of 

other molecules such as 5-iodotubercidin and 
ABT-702, capable of stimulating β-cell expansion 
in rodent and porcine islets [Annes et al. 2012]. 
Intraperitoneal injections of these adenosine 
kinase inhibitors in wild-type mice promoted 
β-cell turnover within 24 hours, as demonstrated 
by the increase of PDX1+/insulin+ cells coex-
pressing Ki-67 while no replication was found in 
the exocrine compartment.

Although the replication potential of rodent β 
cells was observed, very little evidence of β-cell 
proliferation was provided in the human pancreas 
[Meier et al. 2008]. In this context, Russ and col-
leagues, in 2011, described an in-vitro system to 
dedifferentiate, expand and redifferentiate human 
β cells with the aim of obtaining a large supply of 
functional insulin-producing cells [Russ et  al. 
2011]. The dedifferentiating β cells acquired 
mesenchymal markers, suggesting epithelial-mes-
enchymal transition (EMT). Furthermore, the 
maintenance of epigenetic memories allowed fast 
redifferentiation of β-cell-derived cells into new 
insulin+ cells, using a combination of soluble  
factors that included glucose, nicotinamide, 
exendin-4, and activin A. About 40% of 
C-peptide+ cells were observed in these EMT 
populations after 8 days of incubation with these 
molecules. When EMT-derived β-like cells gen-
erated from Notch inhibition protocols were 
transplanted under the kidney capsule of STZ-
treated NOD-SCID mice, Efrat’s group observed 
a decrease of blood glucose levels and the detec-
tion of human C-peptide [Bar et  al. 2012]. 
Collectively, these findings proposed a new sys-
tem for expansion and generation of a source of 
functional β cells starting from primary cultures 
of adult human islets.

Transdifferentiation
The third mechanism evaluated to explain β-cell 
mass replenishment is the transdifferentiation of 
pancreatic cells into β cells. Using a transgenic 
mouse model, Collombat and colleagues, in 
2009, described the conversion of glucagon+ cells 
into functional β cells after overexpression of 
PAX4 [Collombat et al. 2009] or selective inhibi-
tion of aristaless related homeobox (ARX) in α 
cells [Courtney et  al. 2013]. In both studies, in 
vivo overexpression of PAX4 or misexpression of 
ARX was sufficient to generate new functional β 
cells capable to revert STZ-induced diabetes. In 
parallel, it was observed that the lack of gluca-
gon+ cells triggered an endocrine-specification 
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program occurring after re-expression of NGN3+ 
in ‘progenitors’ residing in the duct epithelium. 
This shift of endocrine phenotypes was also 
observed after diphtheria toxin-induced α-cell 
death [Thorel et al. 2010]. Other groups reported 
the in vitro conversion from α to β cell under spe-
cific conditions [Fomina-Yadlin et al. 2010; Yang 
et al. 2011; Zhang et al. 2015], but at rather low 
yields. Also, the question remains as to whether 
these phenomena could take place in humans and 
how this potential could be translated into phar-
macological protocols [Courtney et  al. 2011; 
Napolitano et  al. 2015; Vieira et  al. 2013; 
Collombat et al. 2010].

Progenitor cells
Theoretically, pancreatic epithelial cells present 
valuable properties for β-cell reprogramming 
since they all arise from the same embryonic pre-
cursor; the branching morphogenesis of the pan-
creas, depending on the ductal system, gives rise 
to all exocrine and endocrine lineages [Pan and 
Wright, 2011; Lysy et  al. 2013] under specific 
signaling instructions. Pancreas organogenesis is 
controlled by the embryonic mesoderm that 
releases molecules such as fibroblastic growth fac-
tors (FGFs), retinoic acid, BMPs, Wnt, Sonic 
Hedgehog, and Notch proteins [Wandzioch and 
Zaret, 2009; Mfopou et  al. 2010; Nostro et  al. 
2011; Marquez-Aguirre et  al. 2015]. Moreover, 
both exocrine and endocrine compartments are 
characterized by local expression of specific mark-
ers and TFs. For example, Lemaire and col-
leagues showed that bicaudal C1 (BICC1), a 
protein normally in duct lining during embryo-
genesis, is essential for ductal morphogenesis and 
subsequent progenitor differentiation [Lemaire 
et al. 2015]. Pancreatic sections of BICC1-/- mice 
showed a 34% decrease of NGN3-expressing 
endocrine progenitors within the ductal compart-
ment. BICC1 shutdown affected normal tissue 
formation: the endocrine mass was decreased by 
50% and duct cell overproliferation led to cystic 
dysplasia of the main and interlobular ducts. 
These results illustrate the possibility to fate-map 
molecular signals of pancreas morphogenesis.

In vivo studies on pancreatic progenitors
Postnatal in vivo experiments performed using 
several murine pancreatic injury models (e.g. par-
tial Px, cellophane wrapping, duct ligation or 
intraperitoneal cerulein injection [Rosenberg, 
1995; De Breuck et  al. 2006; Sakaguchi et  al. 

2006; Bonner-Weir et al. 2008]) revealed partial 
tissue regeneration from PDCs (Table 1) express-
ing PDX1, NGN3, HNF1β, with or without 
SOX9. The Inada group observed β-cell mass 
replenishment after PDL in carbonic anhydrase II 
(CAII)-Cre transgenic mice, which were subse-
quently mated with the strain ROSA26 loxP-
Stop-loxP LacZ (R26R) to trace the progeny of 
ductal cells [Inada et al. 2008]. Two weeks after 
PDL, mice had 12.1 ± 1.9% of β-galactosidase+ 
β cells in nonligated portions and 23.6 ± 2.2% in 
the ligated ones, compared with 5.5 ± 2.0% in 
control mice. These results suggested, at least 
partially, the ductal origin of the new β cells. To 
investigate the role of putative progenitors in pan-
creas regeneration, Criscimanna and colleagues 
generated a mouse model of restricted diphtheria-
toxin (DT)-receptor expression for induction of 
global pancreatic damage after toxin injection 
[Criscimanna et al. 2011]. Extensive and selective 
ablation of elastase+ acinar and PDX1+ endo-
crine cells were induced in R6DTR/CRE back-
crossed animals. Within 3 to 4 weeks after DT 
injection, highly proliferative ducts contained 
cells coexpressing amylase, NGN3, insulin, and 
glucagon. These findings suggested that the 
global pancreatic damage provoked by DT injec-
tion stimulated the differentiation of cells located 
in the ductal compartment toward acinar and 
endocrine cells. Recently, lineage-tracing experi-
ments showed duct-to-β-cell conversion after 
partial Px in normal young developing mice and 
in adult mice with TGF-β receptor overexpres-
sion [El-Gohary et al. 2016]. Interestingly, this 
study showed prolongations of the ductal tree 
inside surrounding islets, at least in young mice 
and humans. This feature was not observed in 
adult mice after injury, but well in TGF-β-
receptor-mutant animals, showing the implica-
tion of this pathway (implicated in EMT) in 
endocrine reprogramming of the ducts in adult 
tissues. These results corroborate previous reports 
about the requirement for duct-lining cells to 
enter a state of EMT before endocrine repro-
gramming can occur (see below) [Pfeifer et  al. 
2013].

The identification of factors with potential to acti-
vate β-cell regeneration from progenitors would 
be a compelling approach to cure diabetes [Piran 
et al. 2014; Riley et al. 2015; Dominguez-Bendala 
et al. 2016]. Induction of pancreatic neogenesis in 
the postnatal pancreas after administration of 
growth factors in vivo was evaluated in murine 
models using glucagon-like peptide 1 (GLP-1)/
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exendin-4, betacellulin, gastrin, INGAP, 
interferon-γ, soybean trypsin inhibitor and 
TGF-β. These studies are summarized elsewhere 
[Bonner-Weir et al. 2012]. Intraperitoneal injec-
tion of exendin-4 in STZ-treated wild-type rats, 
repeated for 10 consecutive days, induced a sig-
nificant reduction of blood glucose for more than 
2 weeks [Xu et al. 2006]. In another study, ade-
noviral vectors carrying human betacellulin 
sequences were injected within ducts in imprint-
ing control region (ICR) mice [Tokui et al. 2006]. 

Only 1 week later, betacellulin and insulin-pro-
tein expression were observed in ductal cells, and 
at 2 and 8 weeks postinfection, numbers of duct-
lining cells coexpressing insulin increased [Tokui 
et al. 2006]. Because of potential implications of 
gastrin in β-cell mass regeneration in rodents 
[Suarez-Pinzon et al. 2008; Suissa et al. 2013], a 
recent study evaluated the role of gastrin in pro-
moting β-cell neogenesis from ductal cells in 90% 
Px rats [Tellez and Montanya, 2014]. In the gas-
trin-treated mice, strong proliferation activity was 

Table 1. Evidence of pancreatic ducts as a source of progenitor cells.

Reference Research model Evidence

Suarez-Pinzon et al. [2005] In vivo Treatment with EGF promoted β-cell neogenesis
Xu et al. [2006] In vivo Treatment with exendin-4 facilitated β-cell 

neogenesis in pancreatic ducts
Tokui et al. [2006] In vivo Betacellulin promoted ductal differentiation 

towards insulin-expressing cells
Inada et al. [2008] In vivo β-cell mass replenishment occurred from ductal 

cells 2 weeks post PDL
Bonner-Weir et al. [2008] In vivo Partial pancreatic tissue regeneration occurred 

from ductal cells
Xu et al. [2008] In vivo Re-expression of NGN3 in ductal lining cells 

occurred 1 week after PDL
Criscimanna et al. [2011] In vivo Proliferative ducts expressed acinar and 

endocrine markers 3/4 weeks post-DT injection
Wang et al. [2012] In vivo Administration of gastrin and EGF increased β-cell 

neogenesis
Pfeifer et al. [2013] In vivo Requirement of EMT for duct-lining cells 

differentiation into endocrine cells
Courtney et al. [2013] In vivo Continuous activation of NGN3+ cells along the 

lining duct occurred after ARX inhibition
Téllez et al. [2014] In vivo Appearance of β-cell clusters from ductal 

epithelium occurred 3 days post 90% Px
Lemaire et al. [2015] In vivo Bicaudal C1 expressed in duct lining cells was 

essential for progenitor differentiation
Yamaguchi et al. [2015] In vivo Pancreatic ductal glands contained niches of 

progenitor cells
Carpino et al. [2015] In vivo Pancreatic ductal glands as container of niches 

for pancreatic precursors
Napolitano et al. [2015] In vivo Continuous activation of NGN3+ cells along the 

lining duct occurred after PAX4 overexpression
El-Gohary et al. [2016] In vivo Duct-to-β-cell conversion occurred after partial 

Px in mice overexpressing TGF-β receptor
Zhang et al. [2016] In vivo Conversion of SOX9+ cells into insulin-producing 

cells occurred after administration of gastrin and 
EGF

Seaberg et al. [2004] In vitro Progenitor colonies arose from islet and ducts 
cultured with EGF and FGF2

Rovira et al. [2010] In vitro Centroacinar/terminal ductal cells with 
progenitor-like phenotype

ARX, aristaless related homeobox; DT, diphtheria toxin; EGF, epidermal growth factor; EMT, epithelial-mesenchymal 
transition; PDL, pancreatic duct ligation; Px, pancreatectomy; TGF, transforming growth factor.
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observed in the ductal epithelium 1 day after Px, 
with cells acquiring expression of β-cell markers 
such as PDX1, NGN3, NKX6.1, and NeuroD1. 
Only 3 days after surgery, β-cell clusters and 
increased β-cell mass appeared next to the ductal 
epithelium in gastrin-treated animals. However, 
blood glucose levels were not improved [Tellez 
and Montanya, 2014].

Since treatment with EGF was reported to induce 
β-cell neogenesis from adult ductal cells in vitro 
and in vivo [Suarez-Pinzon et  al. 2005; Wang 
et al. 2012], Zhang and colleagues recently inves-
tigated the origin of ductal neogenesis in alloxan-
treated diabetic wild-type mice subjected to 
administration of EGF and gastrin for 56 days 
[Zhang et al. 2016]. Lineage-tracing experiments 
showed that conversion of SOX9+ PDCs into 
insulin-producing cells occurred in hyperglyce-
mic conditions and that differentiation signifi-
cantly increased after long-term administration of 
low-dose gastrin and EGF (GE). Interestingly, 
about 75% of animals reversed medium (300–
450 mg/dl) but not high hyperglycemia (>450 
mg/dl), suggesting a dependency on glucose lev-
els of duct-to-β reprogramming.

Controversy arose about spontaneous postnatal 
duct-to-β cell conversion after several studies 
reported the complete absence of endocrine 
regeneration from ductal lineages in early postna-
tal mouse models [Solar et  al. 2009; Furuyama 
et  al. 2011; Kopp et  al. 2011; Pan et  al. 2013; 
Rankin et al. 2013]. Although β cells appear at day 
17.5 in the mouse embryo after activation of 
NGN3+ cells in the vicinity of the ductal epithe-
lium [Pan and Wright, 2011], Kopinke and 
Murtaugh could not find evidence of postnatal 
endocrine specification of PDCs in healthy mice 
after birth [Kopinke and Murtaugh, 2010]. Using 
a Cre-lox system within HNF1β locus to track 
embryonic and adult ductal cells after PDL in 
R26R reporter mice, Solar and colleagues found 
that the development of endocrine cells was 
strictly dependent on HNF1β expression in the 
embryos but not in the adult tissues [Solar et al. 
2009]. Similar findings were obtained in 2011 
with Sox9CreERT2 transgenic mouse in which 
NGN3 expression in PDCs triggered de novo for-
mation of endocrine and acinar cells before birth, 
but not postnatally [Kopp et al. 2011]. The same 
year, a study confirmed the absence of endocrine 
reprogramming of SOX9-expressing cells in adult 
mice following partial Px, acute pancreatitis, STZ-
induced diabetes, or PDL [Furuyama et al. 2011]. 

In 2013, a study showed the lack of significant 
changes in β-cell mass and insulin content in adult 
mice 30 days following PDL [Rankin et al. 2013] 
despite massive expression of NGN3 in the ligated 
portion. To investigate β-cell regeneration after 
extreme β-cell loss, Cavelti-Weder and colleagues 
performed PDL in STZ-treated adult rats trans-
planted with syngeneic islets [Cavelti-Weder et al. 
2013]. Although acinar cells showed massive 
regeneration and self-renewal capacities 10 
months after surgery, no evidence of significant 
β-cell replacement was observed in this model. 
Only few β cells (about 1.5%) could be observed 5 
and 10 months after PDL in ligated portions, with 
low insulin content (0.39 ± 0.1 µg/pancreas).

Existence of stem-cell niches with progenitor 
potential was recently observed within pancre-
atic ductal glands (PDGs) [Yamaguchi et  al. 
2015]. PDGs are a newly identified epithelial 
compartment residing in the mesenchymal 
structures surrounding pancreatic ducts. Using a 
mouse model of pancreatitis and BrdU labeling, 
Yamaguchi and colleagues observed prolifera-
tion in PDCs which migrated from the PDGs to 
the main pancreatic duct 5 days after acute 
inflammation. Microarrays showed the enrich-
ment of ESC markers, including SOX2 and 
NANOG, in the PDGs compared with the ductal 
epithelium. A more extensive anatomical char-
acterization of PDGs and their role as a niche of 
pancreatic precursors was performed on healthy 
human pancreata [Carpino et  al. 2015]. PDGs 
were identified as heterogeneous populations of 
OCT4-/PDX1+/SOX9+ cells associated with 
pancreatic ducts and occasionally localized in 
continuity with islet cluster. A progressive loss of 
SOX9 expression was detected in PDCs transi-
tioning to the islets; this was interpreted as an 
indirect demonstration of their commitment to 
endocrine lineages. Proportion of the duct areas 
containing PDGs was estimated at 4% in the 
pancreatic head and in the tail. Few NGN3+ 
cells were detected in the PDG subpopulation of 
the main duct but this number increased in 
interlobular ducts where increased numbers 
(about 8% of ductal area) of insulin+ or gluca-
gon+ cells were observed. Yet, the function of 
these PDG-localized insulin-expressing cells 
remains elusive, in particular, in the context of 
disease. However, these data suggest the exist-
ence of adult-committed progenitors in proxim-
ity of intercalated ducts that differ from stem 
cells and show heterogeneous expression pat-
terns [Yamaguchi et al. 2015].
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One of the key elements in driving pancreatic pro-
genitors into endocrine lineage is the activation of 
NGN3+ expression [Desgraz and Herrera, 2009; 
Desgraz et al. 2011]. In a study conducted by Xu 
and colleagues, who observed an increase of 
about 40% of the β-cell mass 1 week after PDL in 
adult mice, re-expression of NGN3 occurred 
throughout the ductal lining [Xu et  al. 2008]. 
Electron microscopy analysis of purified NGN3+ 
cells showed their structural resemblance to pan-
creatic progenitor cells in the embryo, whereas 
their differentiation potential toward functional β 
cells was reported after microinjection into embry-
onic NGN3-/- explants. Furthermore, α-to-β cell 
conversion studies using PAX4 overexpression or 
ARX inhibition revealed a continuous activation 
of pancreatic precursors expressing NGN3 that 
were located along the lining duct [Courtney et al. 
2011, 2013; Beucher et al. 2012; Napolitano et al. 
2015]. NGN3+ cells differentiated toward α cells 
to compensate the relative glucagon deficiency. 
Altogether, these data identified NGN3 as a pro-
endocrine gene involved in a continuous cycle of 
regeneration from duct-lining cells.

In vitro studies on pancreatic progenitors
Two teams discovered multipotent progenitor 
cells (PMPs) in the adult mouse and human pan-
creas with capacities for proliferation and β-cell 
differentiation [Smukler et al. 2011; Razavi et al. 
2015]. These PMPs were isolated and identified 
at low frequency (0.02–0.03%) in both nestin+ 
and nestin− fractions, obtained following islet and 
ductal dissociation into single cells. Progenitor 
colonies arose in vitro from islet and ducts cul-
tured at low density with EGF and FGF2 [Seaberg 
et al. 2004]. About 26.3 ± 1.4 % of insulin+ cells 
deriving from these PMPs were observed in the 
normal adult pancreas, whereas few cells coex-
pressing insulin and NGN3 were identified and 
accounted as possible progenitor populations. 
The transplantation of PMP spheres under the 
kidney capsule of diabetic BalbC and NOD-SCID 
mice significantly improved hyperglycemia and 
demonstrated GSIS capacities. Immunostaining 
analysis of the grafts showed clusters of cells coex-
pressing insulin and glucagon. These studies sup-
port the existence within pancreatic ductal tissue 
of facultative adult progenitors with extensive pro-
liferation and differentiation capacities.

The endocrine differentiation potential of duct-
lining cells was also described with centroacinar/
terminal ductal (CA/TD) cell [Rovira et al. 2010]. 

CA/TD cells contain high levels of aldehyde 
dehydrogenase type 1 (ALDH1) enzymatic activ-
ity that allows their fluorescence-activated cell 
sorting (FACS) sorting. These cells show a pro-
genitor-like phenotype characterized by PTF1a, 
SOX9, SCA-1, SDF-1, c-MET, and Nestin expres-
sion. In suspension culture, ALDH1+ cells have 
self-renewal activity and form ‘pancreatospheres’ 
with endocrine and exocrine differentiation 
capacities. The spheres responded to glucose 
challenge (0, 5 and 11 mmol/L of glucose) by 
secreting up to 0.9 ng/ml of C-peptide in culture 
media. After injection into cultured microdis-
sected embryonic-dorsal-pancreatic buds isolated 
from E12.5 mouse embryos, 11.7% and 11.6% of 
ADLH1+ cells expressed glucagon and insulin/C-
peptide, respectively. In vivo, a massive expansion 
of CA/TD cells was observed after intraperitoneal 
injections of mice with low-dose cerulein for 3 
consecutive weeks [Strobel et  al. 2007]. These 
data suggest the potential application of ADLH1+ 
cell expansion and transdifferentiation protocols 
to promote neogenesis in vitro or in vivo.

In vitro expansion of pancreatic ductal cells
PDCs have other interesting features for β-cell 
engineering: they represent about 35% of the 
human pancreatic cell mass and are easily puri-
fied; they are resistant to organ enzymatic disso-
ciation and cell isolation procedures, and they 
attach to plastic. These characteristics offer 
unique opportunities for testing expansion proto-
cols required to obtain a critical mass of trans-
plantable cells.

Human primary PDCs perform one or two 
rounds of proliferation when plated into classical 
culture media (i.e. Connaught Medical Research 
Laboratories (CMRL) or Dulbecco’s Modified 
Eagle Medium (DMEM)) and rapidly enter cell-
cycle arrest if not stimulated [Bonner-Weir et al. 
2000]. To foster expansion of PDCs, three-
dimensional (3D) culture systems were devel-
oped using human exocrine preparations and 
extracellular matrices such as agarose or rat-tail 
collagen [Kerr-Conte et  al. 1996], or Matrigel 
[Bonner-Weir et al. 2000]. These studies had in 
common the development of cystic structures 
with PDCs increasing their proliferation by a fac-
tor of 3–7, and by the budding of endocrine cells 
coexpressing insulin after more than 1 week in 
culture. In the mouse, a much higher expansion 
rate (5 × 105 expansion over 11 weeks) of exo-
crine tissue was observed after its incorporation in 
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3D semisolid methylcellulose-based cultures using 
Matrigel [Jin et al. 2014]. In this model, authors 
added roof-plate-specific spondin 1 (RSPO1), a 
wingless-int (Wnt) signaling activator via ligation 
of LGR4-6 receptors, to the culture media, which 
greatly enhanced proliferation rates. Huch and 
colleagues found similar data with Matrigel-
embedded mouse pancreatic-duct fragments 
incubated with RSPO1, EGF, fibroblastic growth 
factor (FGF) 10 and nicotinamide [Huch et  al. 
2013]. These authors reported the subpassaging 
of cyst-like organoids at a 1:4–1:5 ratio weekly for 
over 10 months, without tumoral formation, chro-
mosomal anomalies or aneuploidy.

Many studies described the use of growth factors 
such as EGF, hepatocyte growth factor (HGF), 
KGF or nicotinamide to stimulate human PDC 
proliferation [Bonner-Weir et  al. 2000; Rescan 
et al. 2005; Hoesli et al. 2012] without success-
fully avoiding rapid senescence and limited 
growth. Here again, mouse tissue showed a dis-
tinct growth pattern, as shown by Oshima and 
colleagues, with purified CD133+c-Met+ PDCs 
cultured in the presence of HGF, EGF, nicotina-
mide and dexamethasone [Oshima et  al. 2007]. 
These FACS-sorted cells were capable of clonal 
subculture for 3 months, albeit not to the extent 
required for massive output of reprogrammable 
cells. It is noteworthy that most successful proto-
cols for mouse PDC expansion failed to trigger 
replication of their human counterparts. This 
may be partly explained by the fact that in human 
cells, telomere shortening restricts replication and 
leads to senescence, whereas in mice and rats, tel-
omere length is maintained during subculture 
[Bonner-Weir et al. 2010].

As with many other epithelial cells [Khuu et al. 
2011; Russ et al. 2008], PDCs rapidly lose their 
phenotype after enzymatic disruption of intracel-
lular junctions and plating in adherent culture 
[Bonner-Weir et al. 2000; Todorov et al. 2006]. 
The loss of E-cadherin precedes mesenchymal 
marker expression, including N-cadherin and 
Snail1, the master regulator of epithelial-mesen-
chymal transition (EMT) [Lamouille et al. 2014]. 
The acquisition of mesenchymal features by 
PDCs was shown initially on unselected human 
exocrine cultures [Seeberger et al. 2009; Fanjul 
et al. 2010], but this was preceded by demonstra-
tions of EMT with human primary islet cultures 
[Gershengorn et al. 2004; Ouziel-Yahalom et al. 
2006] that were able to redifferentiate into insu-
lin-expressing cells after an expansion phase of 

over 65,000-fold. Russ and colleagues further 
exploited these properties, confirming the model 
by lineage tracing [Russ et al. 2008] and produced 
highly proliferative β-cell derivatives with poten-
tial to reverse hyperglycemia in STZ-treated 
NOD-SCID mice [Russ et  al. 2011; Bar et  al. 
2012]. Similarly, the natural process of EMT can 
be fostered in human PDCs to overcome early 
senescence of primary cultures. Using FACS-
sorted CA19-9+ PDCs as per the protocol of 
Yatoh and colleagues [Yatoh et  al. 2007], we 
observed the proliferation of purified cultures 
using endothelial growth media [Corritore et  al. 
2014]. The cells identified as human duct-derived 
cells (HDDCs) shifted from a cobblestone-like to 
a spindle-shaped morphology and massively 
expanded, such that 100 × 109 cells could be har-
vested after 1 month of culture. HDDCs went 
through an E- to N-cadherin switch, while main-
taining low levels of CK19 and SOX9 expression. 
Incubation of fresh CA19-9+ cells with TGFβ 
inhibitor A-83-01 blocked the appearance of 
HDDCs, which were not capable of clonal expan-
sion under serial dilution experiments. Culture 
conditions were defined to recapitulate the pan-
creas embryonic development using small mole-
cules and growth factors. After incubation with a 
14-day stepwise protocol, HDDCs acquired β-cell 
features, including insulin secretion capacities, yet 
not to the extent of glucose sensitivity. Ongoing 
work is evaluating the possibility of bringing 
HDDCs to functionality and diabetes-reversal 
potential in animal models (Corritore et al. 2016).

In vitro reprogramming of pancreatic ductal 
cells into β cells
Mouse and human studies on growth-factor-
based (e.g. EGF, nicotinamide, exendin-4, FGF-
7) [Bonner-Weir et  al. 2000, 2008; Gao et  al. 
2003; Kikugawa et  al. 2009], spontaneous 
[Ramiya et al. 2000; Yatoh et al. 2007], or in vivo-
induced [Hao et al. 2006] differentiation of PDCs 
demonstrated the potential of these cells to 
acquire β-cell-like features with GSIS capacities 
reported in perifusion models [Gao et al. 2003].

Because of the difficulties in obtaining critical 
amounts of epithelial PDCs in vitro, many groups 
investigated the endocrine differentiation poten-
tial of ductal-cell lines, such as PANC-1 cells 
[Zhou et  al. 2002; Hardikar et  al. 2003; Zhang 
et al. 2010] derived from a human sample of pan-
creatic carcinoma. Similarly, human PDCs 
immortalized by overexpression of E6/E7 genes 



E Corritore, Y-S Lee et al.

http://tae.sagepub.com 191

from human papillomavirus were developed as a 
surrogate for normal PDCs because of similar 
genotypic and phenotypic profiles [Yang et  al. 
1998; Ouyang et  al. 2000]. Incubation of these 
human pancreatic ductal epithelial (HPDE) cell 
lines with islet neogenesis associated protein 
(INGAP) favored the upregulation of β-cell mark-
ers [Assouline-Thomas et  al. 2015]. After short 
exposure of a week with INGAP, HPDE cells 
showed the capacity to secrete insulin in response 
to glucose, albeit the values observed in basal (5.8 
mmol of glucose) and stimulated conditions (25 
mmol of glucose) were not statistically significant. 
Interestingly, an increase of glucagon, somatosta-
tin, and pancreatic polypeptide (PPY) gene 
expression was also detected at day 7 of the incu-
bation period, suggesting the induction of  
an endocrine program elicited by INGAP. 
Nevertheless, the outcome of similar differentia-
tion protocols in unmodified primary cultures is 
still doubtful.

In parallel with studies using cell lines, the β-cell 
differentiation capacities of the pancreatic exo-
crine tissue was also investigated, with leaders in 
the field being Bouwen’s and Baeyens’s groups 
[Baeyens and Bouwens, 2008; Bouwens et  al. 
2013] that accumulated in vitro studies both on 
murine and human tissues. Recent developments 
in their work showed the potential to induce 
NGN3 expression in human exocrine cells by 
lentiviral-induced overexpression of mitogen-
activated protein kinase, and signal transducer 
and activator of transcription 3 [Lemper et  al. 
2015]. The NGN3-expressing cells entered an 
endocrine program and specified into functional 
β cells 42 days after transplantation into normo-
glycemic immunocompromised mice. Although 
elastase 2A-expressing acinar cells were shown as 
the parent of insulin+ cells, a state of acinar-to-
ductal dedifferentiation was observed before 
endocrine reprogramming, as described earlier 
with human cells [Houbracken et al. 2011; Staels 
et al. 2015]. This particularity of a ductal inter-
mediate was already suggested in vitro by Gomez 
and colleagues [Gomez et al. 2015], who showed 
the possibility to FACS-sort NGN3+ cells from 
human exocrine tissue cultures based on their 
selective coexpression of CD133, expressed  
on the apical surface of CA19–9+ PDCs. 
Interestingly, these NGN3+CD133+ duct-lining 
cells, which resembled endocrine progenitors in 
their expression profile, had features of both aci-
nar and ductal lineages, confirming the contin-
uum between those two exocrine compartments, 

at least in culture. Similar duct-lining cells coex-
pressing NGN3 and duct markers (e.g. osteopon-
tin or HNF1β) were purified from adult mice 
subjected to pancreas injury [Xu et al. 2008] or to 
genetic modifications to foster α-to-β cell trans-
differentiation [Al-Hasani et al. 2013]. How these 
cells participate in the endocrine reprogramming 
potential of the exocrine compartment is unclear 
since in vitro studies involved ipso facto unselected 
tissues. A recent study by Klein and colleagues 
using cultures of human islet-depleted exocrine 
tissue showed that acinar (elastase 3a+) and 
ductal (CAII+) cells participated poorly to bone 
morphogenetic 7-induced endocrine reprogram-
ming [Klein et al. 2015]. Instead, cells expressing 
PDX1 at the time of lentiviral-based tagging par-
ticipated to almost 50% of the C-peptide+ cells 
retrieved after differentiation protocols. Although 
these results might be partly influenced by line-
age-dependent transduction efficiency, it clearly 
highlights issues related with the use of unselected 
exocrine preparations, that is, contamination with 
endocrine cells (69% of fresh cells expressed 
PDX1 protein) and natural EMT processes (79% 
of the insulin-Cre progeny expressed vimentin 
after 12 days) leading to overestimation of the ini-
tial presence of progenitor cells and/or of the con-
tribution of a cellular subtype in the endocrine 
reprogramming.

Purification of human PDCs unequivocally 
addresses the potential of the ductal-cell com-
partment for in vitro neogenesis. Several mem-
brane proteins were studied for their duct-specific 
expression, such as lectin (binding peanut agglu-
tinin [Barresi et al. 1993], CA19-9 [Gmyr et al. 
2004; Yatoh et  al. 2007], CD133 [Lee et  al. 
2013], or antigens targeted by specific monoclo-
nal antibodies [Dorrell et  al. 2008; Hald et  al. 
2012]. The Bonner-Weir group was one of the 
first to show spontaneous differentiation of puri-
fied human PDCs after aggregation [Yatoh et al. 
2007]. In their study, CA19-9+ PDCs had 
increased capacities to form insulin-producing 
cells after coculture with pancreatic stromal cells. 
Likewise, human CD133+ PDCs exclusively 
expressing duct-specific markers (such as keratin 
19) were successfully isolated using flow cytome-
try [Lee et al. 2013]. These cells were submitted 
to adenoviral-based concomitant overexpression 
of PDX1, MAFA, NGN3, and PAX6 that trig-
gered β-cell differentiation to levels close to β cells 
regarding insulin content (up to 15.2 pmol/µg 
DNA), GSIS and ultrastructure. This study con-
firmed previous reports of unselected PDCs that 
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showed reprogramming of PDCs into insulin-
producing cells after transduction of NGN3 
[Heremans et  al. 2002] with or without MYT1 
[Swales et  al. 2012]. Similar outcomes were 
obtained in adult mouse PDCs subjected to 
reprogramming after incubation with a polycis-
tronic construct carrying NGN3, PDX1, and 
MAFA TFs [Yamada et al. 2015] borrowed from 
the study by Zhou and colleagues that achieved 
acinar-to-β transdifferentiation [Cavelti-Weder 
et al. 2015]. Interestingly, Yamada and colleagues 
[Yamada et  al. 2015] showed the need to add 
exendin-4 to culture media for PDCs to acquire 
GSIS, a feature not observed in vivo by other 
groups [Zhou et  al. 2008; Cavelti-Weder et  al. 
2015].

Conclusion
Over the last 15 years, strategies to generate insu-
lin-producing cells have been thoroughly investi-
gated. Committed progenitor cells with capacity 
for renewal of the endocrine compartment after 
tissue damage were identified in adult pancreata 
within the ductal epithelium. Re-expression of 
NGN3 in this subpopulation of pancreatic pre-
cursors was identified as an essential step antici-
pating the regeneration process. In vivo 
experiments performed in adult pancreas showed 
replenishment of β-cell mass and restoration of 
glycemic levels in STZ- or alloxan-treated rodents 
due to conversion of ductal progenitors into insu-
lin-producing cells following treatment with 
growth factors or small molecules.

In parallel, efforts have been made to exploit 
PDCs as a safe source of β-like cells for transla-
tional studies. Current investigations are focusing 
on the potential to expand and differentiate PDCs 
after purification. Recent models for expansion of 
purified human PDCs were reported, and in vitro 
differentiation protocols achieved functional β-cell 
phenotypes within a few weeks. Animal studies 
will help to determine long-term functionality of 
these systems and the safety of expanded PDCs 
after transplantation. Once the proof of concept of 
diabetes reversal with purified human PDCs is 
unequivocally demonstrated, PDCs might be con-
sidered for developing new strategies for β-cell 
mass regeneration in the human setting.
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