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ABSTRACT

Both psychological stress (PS) and ionizing radiation (IR) cause varied detrimental effects on humans. There
has been no direct evidence so far showing PS alone could cause cancer; however, long-lasting PS may affect
our overall health and ability to cope with cancer. Due to their living conditions and occupations, some people
may encounter concurrent exposure to both PS and IR to a high extent. In addition to possible health effects
resulting directly from exposure to IR on these people, fear of IR exposure is also a cause of PS. The question of
whether PS would influence susceptibility to IR, radiocarcinogenesis in particular, is of great concern by both
the academic world and the public. Recently, investigations using animal PS models demonstrated that PS could
modulate susceptibility to IR, causing increased susceptibility to radiocarcinogenesis in Trp53-heterozygous
mice, hematological toxicity in peripheral blood and elevated chromosome aberration (dicentrics) frequency in
splenocytes of Trp53–wild-type mice. To actively reduce health risk from exposure to IR, further studies are
needed to cumulate more evidence and provide insights into the mechanisms underlying the alterations in sus-
ceptibility due to PS modulation. This mini-review gives a general overview of the significance of PS effects on
humans and experimental animals, with a special focus on summarizing the latest weight-of-evidence approaches
to radiobiological studies on PS-induced alterations in susceptibility in experimental animal models. The suscep-
tibility being investigated is mainly in the context of the impact of the modulatory effect of PS on radiocarcino-
genesis; we seek to improve understanding of the combined effects of exposure to both PS and IR in order to
facilitate, via active intervention, strategies for radiation risk reduction.

KEYWORDS: psychological stress, ionizing radiation, radiosusceptibility, radiocarcinogenesis, mouse psycho-
logical stress model

INTRODUCTION
Both psychological stress (PS) and ionizing radiation (IR) cause
varied detrimental effects on humans. The health consequences of
PS and the underlying mechanisms of those consequences have
been studied for more than 100 years, and there is a pile of exten-
sive review articles in the literature, including those within specia-
lized fields of study [1–12]. It is known that PS can contribute to a
number of diseases, including cancer. In intensive lifestyle interven-
tion, stress management focusing on psychological well-being is of

the same importance as diet, exercise, and group support. As an
important lifestyle component, PS is not merely taken into account
for e.g. breast cancer prevention [13], it is treated as one of the
causes of disease in lifestyle medicine [14]. Humans, inevitably, are
exposed to both PS and IR because they are living in a highly com-
petitive society with diverse stress and on the surface of the Earth,
which has a natural background of IR from cosmic, terrestrial and
internal sources. Due to people’s occupations, activities, lifestyle, liv-
ing conditions and health conditions, some people may encounter
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concurrent exposure to PS and IR to a high extent, e.g. nuclear
facility workers (cleaning crew and decommissioning workers, in
particular), underground miners, uranium mine workers, radiodiag-
nostic doctors, radiotherapists, patients under radiotherapy, astro-
nauts, space travelers, flight attendants, flight passengers, residents
of the high background radiation areas, residents of radiocontami-
nated areas due to nuclear testing or nuclear plant accidents, etc.
[15]. In addition to the possible health effects resulting directly
from exposure to IR on such people, fear of health effects such as
cancer is also a cause of PS [16–20]. It is believed that fears about
and preoccupation with cancer and other health effects attributable
to IR would be significant and remain high for years following a
radiological attack [21].

Among nuclear and radiation accidents, accidents of nuclear
power plants (ANPPs) usually influence millions of people because
they are often accompanied by the release of multiple different
radioisotopes that result in radioactive contamination of the envir-
onment. These released radioisotopes may present a radiation haz-
ard to residents living in radiocontaminated areas because exposure
to IR could cause varied deleterious effects, including carcinogen-
esis. Because IR is neither visible nor able to be sensed, disasters
involving IR, in particular, often strike the public with horror of
exposure to IR. In fact, exposure to IR due to ANPPs is a significant
threat leading to a major health concern. On the other hand,
ANPPs also cause PS. Notably, radioactive contamination of the liv-
ing environment often restricts the outdoor activities of humans,
causing further physiological stress and PS [16–23]. Thus ANPPs
may pose a long-term threat to health, resulting in adverse health
consequences both directly and indirectly.

Although modulation effects from exposure to PS on radiation-
induced health consequences and the mechanisms underlying these
outcomes still remain largely unknown, recent studies and our latest
investigations in mouse models show that chronic restraint–induced
PS (CRIPS) can increase the susceptibility of Trp53-heterozygous
mice to radiocarcinogenesis, and cause hematological toxicity in per-
ipheral blood and elevated chromosome aberration (dicentrics) fre-
quency in splenocytes of Trp53–wild-type mice. This has had a big
impact on the academic world and a sensational effect on the public
[24–27]. This mini-review gives an overview of the significance of
PS effects on humans and experimental animals, with a special focus
on the context of the importance and perspective for study of the
modification effect from PS on radiosusceptibility.

It should be noticed that in radiobiology, the IR itself, as an
assault to induce varied effects, is also called ‘a stress’ or ‘a stressor’
[1]. To avoid any possible confusion, the term ‘stress’ in this mini-
review refers to PS unless otherwise specified.

CONCEPT OF PS AND ITS ANIMAL MODELS
Stress refers to conditions where an environmental demand on an
organism exceeds its natural regulatory capacity; it refers, in particu-
lar, to situations that include unpredictability and uncontrollability
[2]. There are two basic kinds of stress: PS and physical stress. In
humans, PS occurs when people confront a situation in which the
demands go beyond their coping resources, and it is a feeling of
strain and pressure, with emotional and physiological reactions. The

response of our body to PS is a highly adaptive phenomenon—
when the PS is small, the responses may be desirable, beneficial, and
even healthy. However, the response to excessive amounts of PS or
chronic PS can become maladaptive, which may be harmful and lead
to health consequences—namely, diseases and disorders [3].

Substantial efforts have been made so far in clinical and epidemio-
logical studies about PS; however, the etiology and mechanisms
underlying PS-induced health consequences are still poorly under-
stood. This has led to the need to develop clinically relevant animal
models, and a number of animal models for studying acute or chronic
PS have been developed for research use in the past 50 years.
Depending on the objectives and parameters chosen by the experi-
menter, protocols are available for applying to animals such stressors
as neonatal isolation, noise stress, circadian rhythm changes, and
predator stress [28, 29]. Psychological stressors have a major physical
component and, similarly, some models of physical stress (such as
restraint stress and immobilization stress) can induce PS, at least to
some extent (e.g. the chronic restraint model has been used to induce
PS [24, 27]). As one of the sources of PS, psychosocial stress is also
of great concern, and subordinate colony housing has been estab-
lished as a model in both mice and rats [4, 30–32]. Despite draw-
backs, these animal models are invaluable tools for investigation.

HEALTH CONSEQUENCES OF PS IN HUMANS
AND IN ANIMAL MODELS

As humans are exposed in daily life to the multitude of stressors
that are prevalent in modern society, PS to some extent might be
considered normal and even necessary for survival and regular psy-
chological development [5]. On the other hand, PS (excessive
amounts of PS and chronic PS, in particular) may cause negative
affective states, such as feelings of anxiety and depression, exerting
in turn direct effects on biological processes or behavioral patterns,
and consequently influencing the immune system, susceptibility to
infections, and risk of diseases, including cancer [1, 6–8, 33, 34].

In humans, PS, may contribute to miscellaneous health out-
comes that range from highly adaptive to increasing the risk of
developing psychopathology, including conditions such as emotional
exhaustion, vision disorders, asthma, hypertension, cardiovascular
disease, neurological alterations, Alzheimer’s disease, immunodefi-
ciency, gastrointestinal alterations, development and maintenance of
obesity, metabolic syndrome, diabetes, reproductive disorders, preg-
nancy complications, infertility, increased amount of mitochondrial
DNA (mtDNA), shortened telomeric DNA, and development of
cancer [9–12, 35–49]. PS also has an impact on cancer metastasis.
Both epidemiological and clinical studies have provided strong evi-
dence for links between PS and cancer progression, but only limited
evidence for the role of PS in cancer initiation [50].

In laboratory animal models, studies showed that CRIPS could
significantly reduce body weight gain from 1 week after the onset of
restraint in rats [51] and from the day following onset in mice [27],
and promote immune suppression, inducing lymphocyte reduction
[27, 52, 53]. In rats exposed to continuous stress from photoperiod,
temperature and noise, a significantly increased incidence of micro-
nuclei in peripheral red blood cells (RBCs) was observed [54].
In mice, it was demonstrated that PS could reduce the RBCs [27],
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alter the responsiveness to carcinogens, accelerate tumor onset, pro-
mote tumor progression and growth, and alter tumor type and loca-
tion [55–58].

Notably, stress is an inevitable part of human life and it is experi-
enced even before birth. In addition to the health problems caused
by acute exposure to PS, experiencing PS repeatedly over a long
period of time (i.e. chronic stress) or exposure to PS in the early
stages of life may strongly impact on health, including increasing
cancer risk [5, 42]. Exposure to chronic stress could result in long-
term or permanent changes in the emotional, physiological and
behavioral responses that influence susceptibility to and course of
disease [6, 59]. Studies show that children who have grown up
under PS, namely, in disadvantaged social environments, such as
poverty or an unstable family, have an association with adverse
health outcomes [60]. Genetics modulates the magnitude of the
health consequence, but stress determines the direction [61]. In
studies of PS effects following large-scale ANPPs (e.g. the
Chernobyl and Fukushima accidents), the sequelae are intense and
long lasting, and occur independently of the actual exposure
received—and mental health effects were the most significant health
consequence [16–20]. It is noted that the evacuee mothers rated
their evacuated children’s well-being as significantly worse than their
own, and the most important risk factors of this health consequence
were maternal somatization, and Chernobyl-related stress [62].
Especially in children, there is a wide range of mental and behavioral
sequelae due to PS, which can last a long time [60] and cause
alterations of mitochondrial DNA copy number and shortening of
telomere length [12, 63, 64]. Poor mental health status due to anx-
iety about IR exposure has been reported, even in the younger gen-
eration born in the surrounding area after the Chernobyl accident
[65]. In animals, traumatic stress in early life induced altered
microRNA expression, and behavioral and metabolic responses in
their progeny [66], and CRIPS caused significant apical dendritic
atrophy [67, 68]. Prenatal exposure to maternal stress altered
physiological and immune functions in the offspring [69–71]. These
studies highlight the effects on health of PS that is experienced at a
young age [19]. On the other hand, older adults, especially those
with multiple co-morbidities, are at risk of increased morbidity after
disasters and catastrophic events [72]. However, epidemiological
studies on the younger and the older are still rare and the documen-
ted works offer limited information. In general, the importance of
the PS impact after ANPPs is underrated, and investigations are still
far from being complete and comprehensive [73–75].

MECHANISMS INVOLVED IN PS-INDUCED
HEALTH CONSEQUENCES

PS, as an important precursor of disease, could reduce quality of life
in humans. The biological pathways between PS and the patho-
physiological processes underlying disease have attracted substantial
scientific attention. Although the mechanisms underlying PS-induced
biological and health consequences remain insufficiently understood,
based on epidemiological and animal data, a consensus on the physio-
logical reaction to PS has been reached, focusing mainly on the vital
roles of two endocrine systems—the hypothalamic–pituitary–adrenal
(HPA) axis and the sympatho–adreno–medullary (SAM) axis—

with the involvement of the immune system, hematopoietic system,
metabolic system, circulatory system, central nervous system
(CNS), peripheral nervous system, and behavioral system [2, 5, 9,
11, 12, 24, 29, 38, 76–99] (Fig. 1). For example, PS is thought to
influence the pathogenesis of physical disease by causing negative
feelings and depression, which in turn promotes biological processes
that are associated with disease risk [6]. As shown in the upper part of
Fig. 1, (via the HPA axis) PS causes, through regulation of glucocortic-
oid secretion (cortisol in humans and corticosterone in mice and
rats), a variety of physiological changes, such as anti-inflammatory
responses; suppression of the immune system; metabolism of carbohy-
drates, fats and proteins; and gluconeogenesis. Through releasing cate-
cholamines and cooperation with the sympathetic nervous system,
SAM regulates the cardiovascular, pulmonary, hepatic, skeletal,
muscle, and immune systems. Among the wide variety of physio-
logical changes, the alteration of immune and inflammatory func-
tions may influence infectious, autoimmune, and coronary artery
disease and some virally mediated cancers [100]. In addition,
immune mechanisms were also involved in the responses of the off-
spring that were prenatally exposed to maternal stress [69–71].
Examples of PS-induced health consequences will now be described.

(i) PS-induced, chronic, systemic low-grade inflammation seems
to be a likely pathway to disease (detrimental health conse-
quences). Transient increases in systemic inflammation have
been observed in response to acute PS. There was a potential

Fig. 1. A schematic of the overall concept proposed relating
the modifying effect from psychological stress on
radiocarcinogenesis.
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relationship between inflammatory responses to acute PS and
long-term development of disease [101].

(ii) For PS-associated increased atherosclerosis, alterations in
immune reactions due to activation or depression of HPA
regulatory feedback mechanisms influenced both vascular
endothelium function and the recruitment of circulating mono-
cytes and their conversion to foam cells, and this involved
expression of pro- and anti-inflammatory cytokines by stress
hormones, such as catecholamines and glucocorticoids [89].

(iii) For PS-associated increased morbidity in humans and animal
models, activation by acute stress of the major stress respon-
sive systems, such as the HPA axis and the sympathetic ner-
vous system, played an important role in the regulatory
control of the inflammatory cascade. Target tissues for stress
system modulation varied in their responses to stress system
signaling. Stress-related changes in the sensitivity of target sys-
tems toward glucocorticoid regulation were responsible for
inflammatory disinhibition and the development of disease
related to inflammation [102].

(iv) Concerning a relationship between PS and cancer, both human
and animal studies have shown that PS could impact cancer biol-
ogy via sympathetic, neuroendocrine and immunologic mechan-
isms, in part, through regulation of inflammatory mediators.

PS could stimulate neuroendocrine, sympathetic and immune
responses, resulting in the activation of the HPA axis, the sym-
pathetic nervous system, and the subsequent regulation of
inflammatory responses by immune cells. HPA axis hormones
affected the pathogenesis of chronic inflammatory skin diseases
and skin tumors, and hyperactive lesional HPA axis hormones
could negatively feed back to the central HPA axis and interact
with some cytokines and neuropeptides, leading to symptom
deterioration [95]. PS-induced immune dysregulation resulted
in significant health consequences for immune-related disor-
ders, including tumor growth and metastasis [98]. The HPA
axis is also invariably responsive to chronic PS.

Negative mood scores on the questionnaire survey were related to
the salivary cortisol level. For example, significantly increased salivary
cortisol was observed in students 3 months after the Great East Japan
Earthquake [103], and a significantly high level of urinary cortisol
was detected 17 months after the accident for residents living within
5 miles of the Three Mile Island accident sites [104]. These facts sug-
gest that cortisol may play a critical role in the chronic pathogenesis
of physical disease in people who have experienced catastrophic disas-
ters. In addition, ectopic expression of serum- and glucocorticoid-
induced protein kinase 1 (SGK1) in mouse embryonic fibroblasts
and HCT116 human colon cancer cells was found to decrease p53
protein accumulation in response to IR. Also, knockdown of SGK1
by siRNA was shown to abolish the blocking effect of cortisol on p53
protein accumulation in response to radiation. In the light of a gener-
ally accepted role for Trp53 in the maintenance of genomic integrity,
it is plausible that the induction of SGK1 by cortisol mediates
reduced function of Trp53, which in turn causes genomic instability,
potentially resulting in cancer induction.

Of note, some recent investigations have widened our knowl-
edge of the mechanism by which PS affects health. For example, it
appears that PS is conducive to several cell aging processes, leading

to accelerated cellular aging—dampening of telomerase, shortening
of telomere length, and cell senescence [12, 105]. In humans,
increase in glucocorticoid secretion triggered, at least in part,
increased mtDNA copy numbers and shortened telomere length,
and this was demonstrated in mice by the administration of the
stress hormone corticosterone [12]. It was also found that PS could
accelerate the erosion of telomeres from very early in life, and pos-
sibly even influence the initial setting of telomere length. It was
observed that the production of reactive oxygen species (ROS)
increased under high levels of PS, being closely associated with oxi-
dative stress [45]. Repeated short-term stress from restraint could
synergize ROS signaling through upregulation of NFκB and iNOS
expression [106]. Prolonged PS during childhood or adolescence
could induce increased oxidative stress in the CNS due to disequi-
librium between the oxidant generation and the antioxidant
response, resulting in neurobiological modifications; this could
enhance the risk of developing psychiatric diseases [5].

A better understanding of the mechanisms underlying PS-
induced responses and health consequences would contribute both
to new prevention and new treatment strategies. For example, defin-
ing the sources of oxidative stress following exposure to early life
stress is expected to create new beneficial insights into therapeutic
approaches to these mental disorders [5]. Further studies are still
required.

EFFECTS FROM CO-EXPOSURE TO PS AND IR,
AND THEIR MECHANISMS

The findings to date on the biological effects from concurrent
exposure to IR and PS have been obtained mainly from the estab-
lished experimental PS models in rats and mice. Some pioneering
investigations date back several decades, though from a historic
point of view, these very early works did not add a critical credit to
the quality of the study. As most of the very early investigations
were published in non-English journals, and the number of research-
ers and reports in this field is still low, the progress in this field and
the recent significant achievements of the study on the biological
effects of concurrent exposure to PS and IR are not widely known
to most radiobiologists and psychologists.

Concurrent exposure to PS and IR was studied early, primarily
using endpoints in behaviorology, immunology and hematology,
rather than cancer biology or carcinogenesis. In a behavioral study,
a significantly increased emotional response was observed in rats
[107]. Suppression of aggressive behavior was induced by prior
exposure to IR in mice in response to PS in the isolation test.
Interestingly, the suppression could be induced by only low doses
(0.05–0.15 Gy), but not by relatively higher doses (0.25–0.35 Gy),
and changes in brain biochemistry (namely, fast turnover of brain
serotonin) significantly decreased carnosine content; its synthetase
activity in the olfactory bulbs was consistent with the behavioral
suppression [108]. In immunological and hematological studies, a
significantly decreased number of reticulocytes, neutrophils and
thrombocytes in the peripheral blood and an increased number of
lymphoid cells in the bone marrow, thymus and spleen were
observed in rats [107]. Concurrent exposure to PS from immobil-
ization and IR at a low dose resulted in early adaptation-like
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changes, such as decrease in body weight, increase in adrenal gland
weight, decrease in thymus weight, and slowing down of blood
coagulation, while irradiation of immobilized animals prevented
stressogenic disturbances, such as depression of anti-aggregation
activity of the vascular wall and decrease in the level of leucocytes
[109]. Pre-exposure to IR followed by PS reduced the compensa-
tory capability of the blood system. The degree of the disturbances
directly depended on the duration of the PS [110]. Exposure to PS
after irradiation could complicate the radiation effects, which were
especially pronounced under a prolonged and intensive stress.
Exposure to PS after low doses of IR showed a reduction in the
adaptive and compensator capabilities of the hematopoietic system
for exposure to low doses; on the other hand, exposure to PS after
a lethal irradiation dose showed inhibition of hematopoiesis recov-
ery, aggravation of the course of acute radiation disease and
decrease in the efficiency of radioprotection [111]. Interestingly,
exposure to PS prior to IR also showed an inhibitory effect on the
development of hyperplasia of the bone marrow [112]. Though
these opposite effects were observed, the reasons were unknown. In
mice, investigation of the combined effect of PS from immobiliza-
tion and IR demonstrated that disorders in the blood system were a
function of the phase of the general adaptation syndrome (GAS).
Acute IR during GAS resistance inhibited the adaptive and compen-
satory potential of the blood-forming system, and chronic stress by
itself increased the rate of spontaneous chromosomal aberrations in
the nucleus-containing bone marrow cells [113].

A study indicating the significance of the modulatory effect of
immunosuppressed conditions on radiocarcinogenesis was carried
out about 20 years ago [114]. Interestingly, the study itself was not
designed to specifically test the PS effect, but to demonstrate the
existence of preleukemic cells in irradiated mice and to explore the
role of an immunosuppressant (dexamethasone) on their promotion
to overt leukemia [114]. As mentioned in the previous section,
immunosuppression is a very common health consequence resulting
from PS, and these findings brought the modulatory effect of PS on
radiocarcinogenesis under the spotlight. In brief, Haran-Ghera
et al.’s work [114] showed that additional treatment with dexa-
methasone shortly after exposure of mice to IR (3 Gy) increased the
incidence of acute myelomonocytic leukemia from 10–30% to up to
50%. Transplantation of bone marrow cells from irradiated mice into
appropriate recipients and treating with dexamethasone could result
in acute myeloid leukemia development of donor origin in 70% of
the recipients. Moreover, a modulatory (promoting) effect of dexa-
methasone on radiocarcinogenesis was confirmed, whether adminis-
tered within several hours or 130 days after IR. It is also worthy of
noting that administration of cyclophosphamide shortly after IR could
not replace the dexamethasone effect, but it was found to be comple-
mentary to the effect of dexamethasone. These results suggest that
the underlying mechanisms for radiation-induced acute myeloid leu-
kemia involve a multiphase process, and that preleukemia can be pro-
moted by a stress hormone in the mouse model.

Direct experimental evidence that CRIPS promotes radiocarci-
nogenesis in vivo has been provided by a recent study by Feng and
colleagues [24]. In this work using Trp53-heterozygous mice and a
mouse CRIPS model by immobilization, concurrent exposure to
both PS and IR (4 Gy) showed significantly reduced IR-induced

tumor latency (from ~49 to ~38 weeks of median survival age).
The IR-induced tumor spectrum (predominantly lymphomas and
sarcomas) was similar regardless of PS, suggesting that the reduced
tumor latency was not due to the development of new types of
tumor. CRIPS was found to elevate glucocorticoids, induce SGK1,
and in turn to increase E3 ubiquitin ligase and MDM2 activity, and
to decrease both the Trp53 protein level and Trp53 function in
mice, showing promoted growth of human xenograft tumors in a
largely Trp53-dependent manner. As regulation of multiple Trp53
stress responses was mediated through MDM2 activation by SGK1
[115, 116], attenuation of Trp53 functions by CRIPS-induced glu-
cocortcoids was believed to be an important part of the mechanism
underlying promotion by CRIPS of Trp53-heterozygous mice to
radiocarcinogenesis [24].

Feng et al.’s work [24] is a milestone in the field of the study on
co-exposure to PS and IR. It has had a big impact on the academic
world and a sensational effect on the public—particularly on the
residents living in radioactively contaminated areas. However, it
should be noticed that Trp53 heterozygous mice were used in this
work. Trp53 can prevent radiocarcinogenesis in mice, and IR (4
Gy) can significantly promote tumor development (mainly lymph-
omas) in Trp53 heterozygous mice, but not in Trp53 wild-type
(Trp53wt) mice [117]. Thus, it is important now to investigate the
health consequences, especially carcinogenesis, due to concurrent
exposure to both IR and PS in Trp53wt animals. Recently, a series
of investigations were performed in our laboratory, using the same
experimental setup and conditions (CRIPS model, 6 h restraint per
day for 28 consecutive days, and IR at 4 Gy on the eighth day), on
the biological responses of and subsequent consequences for young
mice with normal genotype. Multidisciplinary analyses were carried
out on changes in body weight and immune organ weight, altera-
tions in the levels of blood cytokines and stress hormones, changes
in the peripheral blood hemogram and anti-oxidative activity of
blood cells, chromosome aberrations in splenocytes and in micronu-
clei in bone marrow erythrocytes, and epigenetic variations (DNA
methylation and miRNA expression) and protein expression profiles
in the liver. Prior to our ongoing carcinogenesis study, results
showed that, concurrent exposure to both CRIPS and IR induced
significantly decreased body weight and immune organ weight
(spleen and thymus), increased corticosterone and deregulated
inflammation-related cytokines in the serum, marked decrease in
blood platelet count, and increased chromosomal aberrations
(dicentrics) in splenocytes when compared with that in animals
exposed to either IR or CRIPS alone [25, 27]. These findings sug-
gest that CRIPS also has a significant impact on radiation-induced
detrimental effects in Trp53wt mice.

To date, investigations into concurrent exposure to PS and IR
have embraced weights-of-evidence approaches, and in most cases
the IR performed was of low LET and at relatively high doses.
There is still a lack of information on epidemiological studies, to say
nothing of experimental studies using animal models in particular,
concerning the issues regarding IR at low doses and IR from high-
LET particles. Although the mechanisms remain largely elusive, in
addition to the attenuation of Trp53 functions, the altered metabol-
ism and degraded physiological and immune functions observed in
studies on PS in combination with pathogen and toxicological
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assaults may also be critical for additively or synergistically increas-
ing detrimental health consequences, particularly increasing suscep-
tibility to carcinogenesis, as indicated in the study on concurrent
exposure to PS and IR [24, 27, 53, 118–124].

DISCUSSION
The mechanisms underlying detrimental radiation effects, for
example, radiocarcinogenesis, are likely to be multistep processes,
indicating the potential for highly detrimental interactions if two or
more consecutive rate-limiting steps are specifically affected by dif-
ferent factors [125], and studies on IR effects should also take the
potential for combined effects, namely, synergisms or antagonisms,
from other factors into account. To date, combined health effects
have only been studied for a few factors, but regarding PS, critical
findings are now accumulating. A study on the influence of smoking
on radon-induced lung cancer has moved from being an ongoing
source of controversy in risk assessment [126] to being an import-
ant example of combined exposures leading to a synergically
increased health effect risk according to UNSCEAR [127, 128].
Currently, the only attempt to systematically review the combined
effects of IR and other factors has been done by UNSCEAR [15,
127]. New findings, especially on such as dietary factors and PS, are
widening our knowledge of combined effects, and dietary interven-
tions through calorie restriction before or after IR exposure are asso-
ciated with a significant reduction in health risk for IR-induced
myeloid leukemia and some late-occurring tumors in mice [129,
130]. In view of the multitude of possible interactions among the
large number of potentially harmful factors that humans encounter,
physiological stress and PS (in particular, excessive amounts of PS
and chronic PS) may have a dramatic adverse impact on health for
humans living in the modern society. Thus, effects from combined
exposures to PS and IR are being revisited and the potential for
rapid research progress is considerable.

Regarding the study on combined effects, it should be noticed
that, in general, the documented data are still rudimentary, mainly
descriptive, and rarely cover exposure ranges large enough to make
direct inferences to low-dose exposure situations [125]. Laboratory
animal models of PS have provided a novel and powerful tool to
probe the mechanisms underlying cancer [98], while the existence
of genetic dependence and gender difference should be taken into
account [18, 20, 118–121, 124, 131–137]. On the other hand, the
development and utilization of new animal stress models should
help us to reveal the mechanisms underlying stress-induced health
consequences as well as to identify potential clinical interventions
based on mechanisms [28].

Psychological intervention, and dietary and pharmacological
intervention that are based on PS-reducing mechanisms, are promis-
ing means for preventing/reducing PS-attributable health conse-
quences. The interventions are not only symptomatic, but also
pathogenetic therapeutics, as demonstrated in humans and experi-
mental animal models [12, 37, 111, 138–143]. Already, both the
academic world and the public have recognized the importance of
the psychological consequences arising from accident catastrophe
and its aftermath, and these consequences challenge our public
health activities for the mitigation of IR exposures and risk

communication [144]. In response to the challenges, it is urgent
that we seek strategies for mitigating the serious consequences [20].
PS-reducing and health interventions should be offered to not only
occupational radiation workers, but also the public [145]. It is time
to embrace, thoughtfully and authentically, the lifestyle medicine
needed to contribute to active reduction of radiation risk. In
humans, to normalize PS-resultant altered responses to IR, and to
support stress management in lifestyle change is a low-tech and
low-cost, simple but simply effective approach, having important
implications for the care of high-risk persons and the public as well,
with no side effects. This could be done either in combination with
other treatments such as pharmacological intervention or as an
alternative.

CONCLUSION
This mini-review gives a general overview of the significance of PS
effects on humans and experimental animals: PS can cause varied
detrimental effects and affect us both emotionally and on a bio-
logical level. Although there is no direct evidence showing PS alone
can cause cancer, long-lasting PS may affect our overall health and
ability to cope with cancer. This paper summarizes the latest
weight-of-evidence approaches to radiobiological studies on PS-
induced alterations in susceptibility in experimental animal models,
mainly in the context of the impact of the modulatory effect of PS
on radiocarcinogenesis: it appears that PS could induce increased
radiosusceptibility and radiocarcinogenesis in mice. The mechan-
isms have been attributed to attenuation of Trp53 gene functions,
but still remain largely unknown, constraining our capacity to per-
form a comprehensive epidemiological study in humans. In the
meantime, we can ascertain the potential human relevance of the
health effects observed in animal models. A better understanding of
the mechanisms that govern and regulate PS-induced modulatory
effects on responses to IR should help us to understand the etiology
and the long-term health consequences in diverse populations and
provide intervention/prevention strategies for actively reducing IR
risk to humans. It is recommended that experimental mechanistic
studies use adequate animal models of different strains in both gen-
ders and that investigations include low doses of IR. The present
work provides a perspective for understanding the combined effects
of exposure to both PS and IR in order to facilitate, via active inter-
vention, strategies for radiation risk reduction. By highlighting the
importance of PS modulation of susceptibility to IR, it is becoming
increasingly clear that multidimensional approaches to the reduction
of PS through active and methodologically adequate interventions
promise to be valuable in preventing PS-induced health conse-
quences. Thus, applications of the PS concept, namely, the under-
standing of PS as a modulatory factor and the use of PS
management in reduction of radiation risk are of great importance.
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