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In the mouse, membrane cofactor protein (CD46), a key regulator of the alternative pathway of the com-
plement system, is only expressed in the eye and on the inner acrosomal membrane of spermatozoa. We
noted that although Cd46�/�mice have normal systemic alternative pathway activating ability, lack of CD46
leads to dysregulated complement activation in the eye, as evidenced by increased deposition of C5b-9 in
the retinal pigment epithelium (RPE) and choroid. A knockout of CD46 induced the following cardinal
features of human dry age-related macular degeneration (AMD) in 12-month-old male and female mice:
accumulation of autofluorescent material in and hypertrophy of the RPE, dense deposits in and thickening
of Bruch’s membrane, loss of photoreceptors, cells in subretinal space, and a reduction of choroidal vessels.
Collectively, our results demonstrate spontaneous age-related degenerative changes in the retina, RPE, and
choroid of Cd46�/� mice that are consistent with human dry AMD. These findings provide the exciting
possibility of using Cd46�/� mice as a convenient and reliable animal model for dry AMD. Having such a
relatively straight-forward model for dry AMD should provide valuable insights into pathogenesis and a test
model system for novel drug targets. More important, tissue-specific expression of CD46 gives the Cd46�/�

mouse model of dry AMD a unique advantage over other mouse models using knockout strains. (Am J Pathol
2016, 186: 2088e2104; http://dx.doi.org/10.1016/j.ajpath.2016.03.021)
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Age-related macular degeneration (AMD) is a leading cause
of irreversible vision loss in individuals >50 years of age in
the United States and around the world.1e5 This disease
causes a progressive destruction of the macula, leading to
the loss of central vision. AMD is a chronic degenerative
process with multiple risk factors.2,3,6e17 Nearly two million
individuals in the United States alone are currently afflicted
with AMD. This number is expected to grow in part because
of increasing life expectancy.5 Clinically, AMD is usually
classified into two formsdnonexudative (dry type) and
exudative (wet type). Although the dry form of AMD is
more prevalent (approximately 85% of the cases) and a
precursor to wet AMD, the fundamental processes under-
lying dry AMD are particularly not well understood.2e4,6e10

Several agents to treat dry AMD are currently in the
stigative Pathology. Published by Elsevier Inc
developmental stage. However, no effective treatment op-
tion is currently available.11,12 Novel therapeutic targets for
dry AMD need to be discovered.
. All rights reserved.
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CD46 and Dry AMD
Studies during the past decade have shown that the
alternative pathway (AP) of the complement system is a
critical player in AMD pathogenesis. A simple interpretation
of the accumulating data from animal and especially human
studies is that in AMD there is overactivation of the AP,
leading to adverse consequences.1e4,6,13e28 CD46, the
major membrane regulatory protein of the AP in most
vertebrate species, except for rodents, is critical for regula-
tion of AP.29e32 Although expressed widely by human
nucleated cells, mouse CD46 was thought to be only present
on the inner acrosomal membrane of spermatozoa.30,31

Recently, we reported that CD46 is expressed in the
neurosensory retina, retinal pigment epithelium (RPE), and
choroid of the mouse eye.28 Our goal was to investigate if the
Cd46�/� mouse spontaneously develops a phenotype that
closely resembles the dry form of human AMD. Herein, we
describe that Cd46�/� male and female mice have normal
systemic AP activating ability, but the lack of ocular CD46
leads to dysregulated complement activation in the retina and
choroid. Furthermore, aged Cd46�/� mice spontaneously
develop cardinal features of human dry AMD.

Materials and Methods

Animals

We have previously described the generation of a mouse with
homozygous deficiency of Cd46 (Cd46�/�) on the C57BL/6
background.28 C3�/�, Cfb�/�, and Cfp�/� mice were gener-
ated, as previously reported.33e35Micewere bred andhoused in
a pathogen-free, temperature-controlled environment. Geno-
typingwas performed byPCRanalysis using tail-derivedDNA.
The following primers were used in PCR analysis: CD46,
50-ATGCCTGTGAACTACCACGGCCATTTGAAG-30 (for-
ward) and 50-AACTTTAATATAGCTCCAGTGCCAGTT-
GCA-30 (reverse); Neo, 50-AACAGACAATCGGCTGCTC-
TGATG-30 (forward) and 50-GCTCTTCGTCCAGATCAT-
CCTGATCG-30 (reverse); C3, 50-GATCCCCAGAGCTAA-
TG-30 (V787) and 50-AGGGACCAGCCCAGGTTCAG-30

(V789); Neo, 50-TCGTCCTGCAGTTCATTCAG-30 (V788);
FB, 50-CCGAAGCATTCCTATCCTCC-30 (forward 1), 50-
GTAGTCTTGTCTGCTTTCTCC-30 (reverse 1), and 50-
CGAATGGGTGACCGCTTCC-30 (Neo).

For properdin (P), the following neoprimers were initially
used in PCR analysis: Neo F371, 50-AACAGACAATC-
GGCTGCTCTGATG-30; Neo R779, 50-GCTCTTCGTCC-
AGATCATCCTGATCG-30. Western blotting using rabbit
anti-mouse properdin36 was used to establish the absence of
properdin in the Cfp�/� mouse.

Protocols for animal breeding, housing, and handling
were approved by the Division of Comparative Medicine at
Washington University (St. Louis, MO) and Institutional
Animal Care and Use Committee, University of Arkansas
for Medical Sciences (Little Rock, AR). All mice were kept
under a 12-hour dark and 12-hour light cycle with ad libi-
tum access to food and water.
The American Journal of Pathology - ajp.amjpathol.org
Homozygous Cd46 knockout mice were backcrossed into
C57BL/6 for at least eight generations before use. Male and
female C57BL/6 mice were purchased from the Jackson Lab-
oratory (Bar Harbor, ME) and served as a wild-type control.

Sample Collection

Two-month-old (adult) and 12-month-old (aged) mice were
used. The eyes from the following eight groups of mice
were analyzed: group 1, wild type (WT) male, 2-month-old;
group 2, WT female, 2-month-old; group 3, Cd46�/� male,
2-month-old; group 4, Cd46�/� female, 2-month-old; group
5, WT male, 12-month-old; group 6, WT female, 12-month-
old; group 7, Cd46�/� male, 12-month-old; and group 8,
Cd46�/� female, 12-month-old.

Tissue Processing

Eyes for histological investigation were processed as
described.24,26,28 Animals were sacrificed between 4 and 7
hours after the light was turned on using carbon dioxide
inhalation, and the eyes were harvested immediately. One
eye from each animal was fixed in 4% buffered para-
formaldehyde (pH 7.4 in 0.05 mol/L phosphate-buffered
saline) and embedded in paraffin. Three composite blocks
were formed to contain two eyes from each group (total six
eyes from each group) and serial sections (5 mm thick) were
cut. Paraffin sections were stained with hematoxylin and
eosin or were subsequently used in immunofluorescence
(IF) analysis as described below.

One eye from each animal was fixed with 2.5% glutar-
aldehyde (Polysciences Inc., Warrington, PA) for 1 hour.
The anterior part of the eye (including the ciliary body and
lens) was removed, whereas the posterior part of the eye was
fixed in 2.5% glutaraldehyde for additional 3 hours. Sam-
ples were washed in 7.5% sucrose overnight. The posterior
part of the eye was sliced in two parts by a sagittal cut close
to the optic nerve and post fixed in 1% osmium tetroxide
(Polysciences Inc.) in 0.05 mol/L phosphate-buffered saline
for 1 hour at room temperature. Samples were then treated
with saturated solution of uranyl acetate (Polysciences Inc.)
prepared in 50% ethanol for 1 hour at room temperature.
Ethanol was used to dehydrate the tissue. Electron micro-
scopy grade acetone (Polysciences Inc.) was used as an
intermediate medium between ethanol and resin. The
Embed 812 epon resin kit (Electron Microscopy Sciences,
Hatfield, PA) was used for embedding. All samples were
oriented with sagittal slice facing the cutting surface in sil-
icon molds before polymerization (24 hours at 45�C and 24
hours at 57�C). Semithin (1 mm thick) sections from each
plastic block (two blocks per eye) were cut and stained
using Toluidine Blue and Basic Fuchsin (Electron Micro-
scopy Sciences) for 1 minute at 60�C, dried, and embedded
in Canada balsam (Alfa Aesar, Heysham, England). These
stains differentiate basophilic structures (pink) and nuclei
(blue). Semithin (1 mm thick) sections were used for light
2089
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microscopy, whereas ultrathin (60 to 80 nm thick) sections
were used for electron microscopy.

IF Analysis

Serial sections of composite blocks were used in IF studies
for membrane attack complex (MAC; C5b-9) and detection
of autofluorescence. Using sections containing two eyes
from each of the eight groups generated identical conditions
for each step and all samples were processed at the same
time. Sections were deparaffinized, hydrated, and treated
with antigen unmasking solution (Vector Laboratories,
Burlingame, CA). For detection of MAC, sections were
treated with rabbit polyclonal anti-MAC (C9 neoepitope)
antibody (Ab; primary Ab) provided by Prof. B. P. Morgan
(University of Wales College of Medicine, Cardiff, UK),
followed by AF488-conjugated donkey anti-rabbit IgG
(H þ L) (Molecular Probes, Eugene, OR). To identify RPE
cells on the same sections, we used DyLight 649 conjugated
mouse monoclonal anti-RPE65 (IgG1 k) from Novus
Biological (Littleton, CO). Negative control sections were
stained with an isotype-matched control Ab at identical
concentrations to those of the primary Ab.

To reduce autofluorescence, we treated paraffin sections
with 1% Sudan Black after immunostaining as described.23 To
investigate autofluorescence in RPE, sections (not treated with
Sudan Black) were mounted in ProLong antifade reagent with
DAPI (Invitrogen, Grand Island, NY). Images were captured
using the laser confocal microscope LSM510. Beam Splitters
were set up as follows: 405-nm laser (10%) window, 20 to 480
nm; 488-nm laser (10%) window, 505 to 530 nm; and 561-nm
laser (15%) window, 575 to 615 nm. Eight-bit images were
obtained using the microscope in sequential mode with line
average of eight and format of 1024 � 1024 pixels for auto-
fluorescence investigation and 512� 512 pixels for C5b-9 IF.
We captured a single 1-mm optical slice of each section stained
for C5b-9 using the Plan-Apochromat 40�/1.4 or 63�/1.4 oil
differential interference contrast objectives. We obtained a
3-mm optical slice for investigation of autofluorescence using
Plan-Apochromat 63�/1.4 oil differential interference contrast
objective. All images were captured with the same settings.
Differential interference contrast images were captured to
facilitate localization of histological structures of the eye.
Intensity of C5b-9 positive staining on RPE and choroid
was observed by two independent investigators in a masked
manner. Integrated (total) intensity of the signal was used to
evaluate C5b-9 positive fluorescence. C5b-9 positive fluores-
cence (green channel) was measured using ImageJ software
version 1.50b (NIH, Bethesda, MD) in RPE-choroid. Auto-
fluorescence (red channel) of paraffin sections was measured
using ImageJ in RPE65 positive structures.

Angiography

To investigate choroidal vasculature, WT male and Cd46�/�

male mice (at 2 and 12 months of age) were first
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anesthetized with ketamine/xylazine cocktail. Animals were
then perfused (through the heart) with 0.75 mL of
phosphate-buffered saline containing 50 mg/mL of fluores-
cein isothiocyanate (FITC)-labeled dextran (2 � 106 mo-
lecular weight; Sigma, St. Louis, MO) before they were
sacrificed.18e20,28 Harvested eyes were dissected, and the
posterior part of the eye was gently scratched with a bine
brush to destroy RPE cells and remove pigment. Choroid-
sclera complexes were flat mounted in ProLong antifade
reagent with DAPI (Invitrogen). Z-stack images of flat
mounts were captured (in a consistent location), and a three-
dimensional model of choroidal vasculature was built using
ZEN software version 2009 (Zeiss, Jena, Germany). Area of
FITC-dextran perfused choroidal vessels (green color)/total
image area was measured using ImageJ. This reflects the
density of choroidal vessels.

Microscopy

Hematoxylin and eosinestained paraffin sections and
semithin epon sections were examined using Olympus
Vanox-S AH-2 microscope (Olympus Optical, Tokyo,
Japan) equipped with a QImaging GO-5 camera (Surrey,
BC, Canada). We used 1� objective to capture entire
section and 40� and/or 100� oil objective to capture
images for morphometry. Each section was divided in four
zones using a point between ciliary body and optic nerve.
Two peripheral zones and two central zones were defined.
Two images were captured from each zone (total eight
images per section). One field of view close to optic nerve
or ciliary body was excluded from the analysis. Images
were captured in areas of RPE-choroid-sclera complex and
outer nuclear layer (ONL) with photoreceptor outer
segment (POS) and photoreceptor inner segment (PIS).
QCapture Pro software version 5.1.1.14 (Media Cyber-
netics, Bethesda, MD) was used to capture images. For IF
analysis, we used a laser confocal microscope LSM510
(Carl Zeiss, Jena).
Electron microscopy was performed using a FEI Tecnai

G2 TF20 transmission electron microscope (FEI Worldwide
Corporate Headquarters, Hillsboro, OR). We used �5000
magnification to capture the basal surface of RPE, Bruch’s
membrane (BM), and choroidal capillaries.

Morphometry

ImageJ was used to measure thickness of the ONL, density
of nuclei in the ONL, and total length of PIS and POS. Total
length of PIS and POS was measured as a distance between
outer limiting membrane and the free end of photoreceptor
outer segment facing RPE cells. For each image, length of
ONL was measured as a distance between outer margin of
ONL and outer limiting membrane. We also determined the
density of nuclei in ONL by counting the number of nuclei
on the image. These parameters reflect photoreceptor
degeneration and loss.
ajp.amjpathol.org - The American Journal of Pathology
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CD46 and Dry AMD
We counted the number of nuclei in RPE cell layer,
number of cells in subretinal space, and measured the length
of RPE layer. We then calculated density of RPE cell nuclei/
mm of RPE layer and the density of cells in subretinal
space/mm of RPE layer. The size of RPE layer was
measured from apical to basal surface of RPE. These pa-
rameters represent the loss, proliferation, and atrophy of
RPE.26

An arbitrary scale was used to score the loss of choroidal
vessels as follows: 0 indicates choroidal capillaries have
good visible lumen with no intercapillary pillars; 1 indicates
choroidal capillaries have good visible lumen with choroidal
capillaries occupying more than 3/4 of Bruch’s membrane;
2 indicates choroidal capillaries have reduced vascular
lumen with choroidal capillaries occupying approximately
half of Bruch’s membrane; 3 indicates choroidal capillaries
have reduced vascular lumen with choroidal capillaries
occupying approximately 1/4 of Bruch’s membrane; 4 in-
dicates completely obliterated or absent capillaries, no
lumen is visible.

Thickness of the Bruch’s membrane was assessed be-
tween intercapillary pillars using electron microscopy im-
ages. Thickness of Bruch’s membrane was defined as the
distance between RPE side of the inner collagenous zone
and the choriocapillaris side of the outer collagenous zone.
Three measurements were performed for each image (the
middle, left, and right part of the image).

Rabbit RBC Hemolysis Assay for Detection of Serum AP
Activity

A standard rabbit red blood cell (RBC) hemolysis assay was
used to measure AP activity of mouse serum. Rabbit blood
(1�) (Colorado Serum Company, Denver, CO) was placed
in AP buffer (GVB2þ with 20 mmol/L MgCl2 and 8 mmol/L
EGTA). After centrifugation, pellet was resuspended in the
AP buffer and aliquots of 20% serum from WT, Cd46�/�,
and Cfb�/� mice added as described.33 After a 2-hour in-
cubation at 37�C, hemolysis was measured at an OD of 405
nm. Lysis of rabbit RBCs in water served as the positive
control, whereas rabbit RBCs in AP buffer served as the
negative control. Hemolysis was determined by an OD ratio
of the following: (20% serum with RBC in AP buffer �
20% serum without RBC in AP buffer)/(RBC in water �
RBC in AP buffer).

Western Blot Analysis

Fresh serum from 2-month-old male WT, Cd46�/�, C3�/�,
Cfb�/�, and Cfp�/� mice (n Z 3 mice per group) was used
to measure C3, FB, and P by Western blot. To measure
rhodopsin and vascular endothelial growth factor (VEGF),
retina-RPE-choroid tissue pooled separately from 2-month-
old male WT and Cd46�/� mice and from 12-month-old
male WT and Cd46�/� mice (n Z 4 mice per group) was
used. Reduced samples were subjected to 10% SDS-PAGE
The American Journal of Pathology - ajp.amjpathol.org
and then transferred to nitrocellulose. Goat anti-mouse C3
(MP Biomedicals), goat anti-human FB (Complement
Technology), rabbit anti-mouse properdin,36 sheep anti-
rhodopsin (Abcam, Cambridge, MA), rabbit anti-VEGF
(Abcam), and mouse antieb-actin (Sigma) Abs were incu-
bated with the membranes for 2 hours at room temperature
or overnight. Secondary horseradish peroxidaseeconjugated
rabbit anti-goat IgG (Sigma-Aldrich), donkey anti-rabbit
IgG (GE Healthcare UK Limited), goat anti-rabbit IgG,
donkey anti-sheep IgG, or goat anti-mouse IgG (all from
Santa Cruz Biotechnology, Dallas, TX) were added for 1
hour at 37�C. Membranes were developed with a Super-
Signal West Kit (Pierce). Quantification of protein bands
was accomplished by analyzing the intensity of the bands
using ImageJ.

Statistical Analysis

Sample size was determined statistically before starting the
experiment. Animals were numbered and selected for
experiment using simple randomization by masked selec-
tion of an animal number. Damaged eyes were excluded
from the analysis. All available samples (n Z 4 to 14 mice
per group) were used. Multiple measurements (at least
three) for each parameter were performed independently by
three investigators in a masked manner. Mean value for
these parameters was calculated for each mouse. Statistical
analysis was performed using Statistica program (StatSoft,
Inc., Tulsa, OK). Data were analyzed and compared using
one-way analysis of variance, followed by Newman-Keuls
post hoc test, and differences were considered statistically
significant at P < 0.05. Data are presented as mean value
(M) � SEM. We analyzed the effect of genotype (WT
versus Cd46�/�), the effect of age (2 versus 12 months),
and the effect of sex (male versus female) for all parame-
ters investigated. P values are shown in Supplemental
Tables S1eS13.

Results

Systemic and Local (Ocular) Complement Activation in
Cd46�/� Mouse

First, we determined the status of the AP in 2-month-old
mice. Western blotting was used to assess C3, factor B, and
P serum antigenic levels in WT, Cd46�/�, C3�/�, Cfb�/�,
and Cfp�/� mice (Figure 1A). AP functional activity of
Cd46�/� mouse serum was also assessed using a rabbit
RBC hemolysis assay (Figure 1B). Serum samples from WT
and FB knockout mice were used as positive and negative
controls, respectively. There was a normal antigen level of
serum C3, FB, and P in Cd46�/� mouse, indicating that
there was not excessive systemic turnover of the AP; like-
wise, functional activity was also equivalent between WT
and Cd46�/� mice (Figure 1, A and B, and Supplemental
Table S1). We next performed Western blotting only to
2091
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Figure 1 Systemic and ocular complement activation in CD46�/� mouse. Western blots of serum alternative pathway (AP) components in Cd46�/� and
control mice at 2 (A) and 12 (C) months of age. B: Measurement of AP activity in sera derived from 2-month-old wild type (WT), Cd46�/�, P�/�, and Cfb�/�

mice using a rabbit red blood cell (RBC) hemolysis assay. One-way analysis of variance was used. Cd46�/� mouse maintains a normal level of AP activity in the
serum at 2 (A and B) and 12 (C) months of age. DeS: Representative confocal photomicrographs of paraffin sections of retinal pigment epithelium (RPE) and
choroid stained for complement activation product, MAC (C5b-9). Green denotes MAC staining and red staining for RPE65, a RPE cell marker. HeK and PeS:
Negative control sections show extremely low levels of autofluorescence. Localization of MAC is observed on the choroid in male and female WT and Cd46�/�

mice at 2 (DeG) and 12 (LeO) months of age. Increased C5b-9 positive signal is observed in the RPE-choroid of both male and female Cd46�/� mice at 2 and
12 months of age compared with age-matched WT mice at these time points. However, in RPE cells MAC deposition (yellow when red and green merge;
arrowheads) is statistically significant only in 2-month-old Cd46�/� male (E) and female (G) mice. T: Integrated intensity of MAC positive fluorescence
measured using ImageJ. Statistically significant increase in MAC staining is noted in the RPE-choroid of 2-month-old Cd46�/� mouse compared with 2-month
WT control. Error bars represent means � SEM (B and T). n Z 3 mice per group (A and C); n Z 4 mice per group (B); n Z 6 mice per group (DeT). *P < 0.05
(one way analysis of variance). Scale bar Z 10 mm (DeS). Original magnification, �63 (DeS). FB, factor B; U, units.

Lyzogubov et al
assess C3, factor B, and properdin serum levels in WT,
Cd46�/�, C3�/�, Cfb�/� and Cfp�/� mice at 12 months of
age. Again, we obtained no evidence to suggest increased
AP activation in the circulation of 12-month-old Cd46�/�

mice as well (Figure 1C).
The presence of the MAC is strong evidence of com-

plement activation,1,27,30 and was used as a marker of such
in the eye. IF using polyclonal anti-mouse C9 Ab was used
to localize MAC in the RPE and choroid of 2- and 12-
month-old Cd46�/� and WT mice. Polyclonal anti-mouse
C9 Ab recognizes a neoepitope in C9 that arises when C9
is a part of the MAC. MAC staining (green color) was
detected in the choroid of both male and female WT mice
and Cd46�/� mice at the age of 2 (Figure 1, DeG) and 12
months (Figure 1, LeO). Consistent with our previous
report,28 increased MAC deposition was observed on the
2092
RPE-choroid of both male and female Cd46�/� mice
compared with their WT controls at both time points. MAC
deposition (Figure 1, E and G) was noted on the basal
surface of RPE65 positive (Figure 1) RPE cells as a granular
staining in 2-month-old male and female Cd46�/� mice.
Control samples in which equal concentration of normal
rabbit serum was substituted for the primary Ab showed no
positive signal (Figure 1, HeK and PeS). Figure 1T sum-
marizes the results. Statistically significant (P < 0.05)
increase in MAC deposition was observed on the RPE-
choroid of 2-month-old Cd46�/� mice compared with
their WT control (Supplemental Table S2).
Together, these results demonstrate that Cd46�/� mice

have normal AP activating ability in the serum, but the
absence of ocular CD46 leads to dysregulated complement
activation in the eye.
ajp.amjpathol.org - The American Journal of Pathology
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CD46 and Dry AMD
To Assess the Cd46�/� Mouse as a Model for Dry AMD

We analyzed and compared ocular tissue (retina, RPE, and
choroid) from male and female Cd46�/� and WT mice at 2
(adult) and 12 months (aged) relative to the development of
the following cardinal signs of dry AMD.

RPE Autofluorescence
RPE autofluorescence was examined because clinical
studies have shown that age-dependent accumulation of
lipofuscin granules and the resulting excess auto-
fluorescence are associated with RPE atrophy, a key path-
ologic event of human dry AMD.2,3,6 To detect RPE
autofluorescence, thick (3 mm thick) optical slices of
paraffin sections from 2- and 12-month-old Cd46�/� and
WT mice were used using confocal microscopy to obtain a
strong signal for analysis. Granules of autofluorescent ma-
terial were occasionally detected in RPE of 2-month-old
male and female Cd46�/� and WT mice (Figure 2, AeD).
RPE autofluorescence in 2-month-old mice was not affected
by the sex or genotype (Figure 2I and Supplemental Table
S3). In WT 12-month old mice of both sexes, auto-
fluorescence was higher (Figure 2, E and G) compared with
2-month-old WT controls (Figure 2, A and C). However,
these differences were not statistically significant (Figure 2I
and Supplemental Table S3). In contrast, a dramatic increase
(P < 0.05) in RPE autofluorescence was observed in
12-month-old male and female Cd46�/� mice (Figure 2, F,
H, and I and Supplemental Table S3) compared with age
and genotype matched controls (Figure 2, E, G and I and
Supplemental Table S3).
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Figure 2 Retinal pigment epithelium (RPE) autofluorescence in Cd46�/� mous
(blue color) was measured with ImageJ. Integrated intensity of fluorescence is ob
pixels within defined region (RPE65-positive RPE cells). Representative confocal ph
(C), Cd46�/� male (B), and Cd46�/� female (D) mice have rare autofluorescent gr
in 12-month-old male (E) and female (G) WT mice compared with 2-month-old s
significant (I). Significantly increased autofluorescence is detected in RPE of 12-m
age- and sex-matched WT mice at this time point (E, G, and I), as well as sex-match
were not treated with Sudan Black. In these experiments, autofluorescence in the
n Z 5 mice per group (I). *P < 0.05 (one-way analysis of variance). Scale bar Z
photoreceptor outer segment.
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BM
Because there is a relationship between condition of BM
and AMD,2e4,6,9 electron microscopy was used to examine
BM in male and female Cd46�/� and WT mice at 2 and 12
months of age. In male and female WT mice, the appearance
of the BM was similar at 2 to that at 12 months (Figure 3, A,
C, E and G). In 2-month-old Cd46�/� mice (Figure 3, B and
D), the morphology of the BM was not different from that
observed in WT mice (Figure 3, A and C) at the same time
point. In 12-month-old male and female Cd46�/� mice, the
BM was irregular with local deposition of electron dense
material. This resulted in increased thickness of BM in 12-
month-old male and female Cd46�/� mice (Figure 3, F, H
and I) compared with 2-month-old Cd46�/� mice (Figure 3,
B, D and I) and age-matched WT controls (Figure 3, E, G
and I). These differences were statistically significant
(Figure 3I and Supplemental Table S4).

Morphological Investigation
Age-related changes in Cd46�/� male and female mice were
assessed by examining the morphology of the retina, RPE,
and choroid using plastic sections (1 mm thick) stained with
Toluidine Blue and Basic Fuchsin.

Retina
Loss of photoreceptors is a key feature of retinal degener-
ation associated with dry AMD.2,6 ONL, POS, and PIS were
examined for signs of cell death. No apoptotic bodies were
detected in ONL of WT animals (Figure 4, A, C, E, and G).
We found few apoptotic bodies (one to two per 10 sections)
in ONL of 2-month-old Cd46�/� mice (Figure 4B) but
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many more apoptotic bodies (one to three per section) in 12-
month-old Cd46�/� mice (Figure 4F). In Cd46�/� mice,
shortening of the inner portion of the photoreceptor was
only observed close to apoptotic bodies in ONL (Figure 4F),
but the average thickness of PIS and POS were not affected
(Figure 4J and Supplemental Table S5).

We did not observe any significant changes in thickness
of ONL among investigated groups (Figure 4, AeI and
Supplemental Table S6). However, the density of nuclei in
ONL was significantly (P < 0.05) reduced in 12-month-old
Cd46�/� mice (male and female) (Figure 4, F, H, and K and
Supplemental Table S7) compared with age-matched WT
controls (Figure 4, E and G and Supplemental Table S7).
Similar results were obtained when 12-month-old Cd46�/�

mice were compared with 2-month-old Cd46�/� mice
(Figure 4, B, D, and K and Supplemental Table S7).

Western blot analysis for rhodopsin protein was next
performed to determine whether the number of photore-
ceptors was reduced in Cd46�/� mouse. Rhodopsin, a
member of the G-proteinecoupled receptor family, is
located in photoreceptor cells of the retina and a decline in
rhodopsin content is observed with progression of AMD in
humans.37 Rhodopsin blot detected isoforms between 40
and 160 kDa in WT and Cd46�/� mouse at 2 and 12 months
of age (Figure 5A). Densitometric analysis revealed a sta-
tistically significant reduction of total rhodopsin protein in
Cd46�/� mice at 12 months of age compared with that at 2
months when normalized to WT controls at both time points
(Figure 5B and Supplemental Table S8). Finally, we
observed that all 12-month-old Cd46�/� mice (males and
2094
females) had reduced density of nuclei in ONL (Figure 5, C
and D and Supplemental Table S7).

RPE and Choroid
Histological analysis revealed that the appearance of RPE,
Bruch’s membrane, and choroidal capillaries was similar in
all WT samples (Figure 6, A, C, E, and G). In 2-month-old
Cd46�/� mice, we occasionally found RPE cells with
dark cytoplasm and condensed nuclei (Figure 6B). The
number of RPE cells was not significantly different between
Cd46�/� and WT mice at 2 and 12 months of age (Figure 6I
and Supplemental Table S9). However, the size of RPE
layer measured from apical to basal surface significantly
(P < 0.05) increased in 12-month-old Cd46�/� male and
female mice (Figure 6, F, H, and J and Supplemental Table
S10) compared with age-matched controls (Figure 6, E, G,
and J and Supplemental Table S10). We observed
macrophage-like cells containing different amounts of
pigment located in the subretinal space in all groups
(Figure 6, D, F, and K), except 2-month-old WT males.
These cells located in subretinal space were positive for
marker RPE65 (data not shown). Interestingly, the number
of macrophage-like cells in the subretinal space significantly
(P < 0.05) increased in 12-month-old male and female
Cd46�/� mice (Figure 6K and Supplemental Table S11).
We observed accumulation of dense amorphous material
(stained pink with Toluidine Blue and Basic Fuchsin) on
semithin sections. These basophilic deposits were present
between RPE and choriocapillaries (Figure 6H) only in 12-
month-old Cd46�/� mice. Zones of hypercellularity were
ajp.amjpathol.org - The American Journal of Pathology
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CD46 and Dry AMD
noted in the choroid of 12-month-old Cd46�/� mice
(Figure 6H).

The presence of vacuoles in cytoplasm is a sign of RPE
degeneration.38e41 In WT male and female mice, none or
The American Journal of Pathology - ajp.amjpathol.org
only a few vacuoles in the cytoplasm of RPE cells were
detected at 2 and 12 months of age (Figure 6, A, C, E, and
G). We observed an increased number of vacuoles in RPE
cytoplasm of Cd46�/� mice (Figure 6, B, D, F, and H)
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compared with age and sex-matched WT controls. Auto-
phagy is activated in response to aging. This results in the
accumulation of waste material (cellular debris) within
resident ocular cells.42 RPE cells were examined to detect
the sign of autophagy: waste material by light microscopy
and autophagosome by electron microscopy. In WT mice,
no cellular debris was detected in RPE cells when epon
sections were examined under light microscope (Figure 7A).
In contrast, some RPE cells containing cellular debris were
detected in Cd46�/� mice (Figure 7B). Examination of epon
sections under the electron microscope revealed the absence
of such cellular debris in WT mice (Figure 7C). However,
vesicles and double layered structures (autophagosomes)
containing cellular organelles (mitochondria, lipofuscin, and
pigmented granules) were detected in Cd46�/� mice by
electron microscopy (Figure 7, DeG).

Examination of Choroidal Capillaries

Choroid capillaries were examined by light and electron
microscopy. WT mice showed normal structure of the
choriocapillaries (Figure 7, A and C). However, the lumen
of choroidal capillaries was reduced in Cd46�/� mice
(Figure 7, B and D). When examined by electron
microscopy, some choroidal endothelial cells in Cd46�/�

mice had no lumen or cytoplasmic fenestrae at 12
2096
months (Figure 7D). Statistically significant reduction
(P < 0.05) of the choroidal vasculature was found in
12-month-old Cd46�/� male and female mice, and this
reduction was age dependent (Figure 7H and
Supplemental Table S12).

Angiography of Choroidal Vasculature
We performed angiography of choroidal vessels in 2- and
12-month-old male animals using laser confocal microscopy
and built three-dimensional models of choroidal vessels
(Figure 8, AeD). Intense green fluorescence was observed
in the choroidal vessels perfused with FITC-dextran. FITC-
dextran perfused vessels occupied almost the entire area of
the choroid in 2- and 12-month-old WT mice and 2-month-
old Cd46�/� mice. We observed increased space (dark
zones) between FITC-perfused choroidal vessels in 12-
month-old Cd46�/� mice. The density of choroidal vessels
was measured as the percentage (%) of green fluorescence
(FITC-dextran) on the entire image. Results in Figure 8
demonstrate that the choroidal vessels were located close
to each other in 2-month-old WT and Cd46�/� mice
(Figure 8, A and B). However, at 12 months, the density of
the choroidal vessels was significantly (P < 0.05) reduced
in Cd46�/� mice (Figure 8, D and E and Supplemental
Table S13) compared with WT animals (Figure 8, C and
E and Supplemental Table S13).
ajp.amjpathol.org - The American Journal of Pathology

http://ajp.amjpathol.org


Male

Cd46-/-WT

12
 m

on
th

s
2 

m
on

th
s

A B C D

E F G H

Female

Cd46-/-WT

RPE

RPE

Choroid

Choroid

0

1

2

3

4

5

6

7

8

9

10

M, 2 F, 2 M, 12 F, 12

R
PE

 s
iz

e 
 (μ

m
)

Sex, age in months

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M, 2 F, 2 M, 12 F, 12

N
um

be
r o

f n
uc

le
i i

n 
R

PE
 la

ye
r/m

m

Sex, age in months

Cd46-/-WT

I

*

*
*

*KJ

* *

0

5

10

15

20

25

30

35

M, 2 F, 2 M, 12 F, 12

R
PE

 n
um

be
r/m

m

Sex, age in months

Cd46-/-WT Cd46-/-WT

Figure 6 Age-dependent degenerative changes in retinal pigment epithelium (RPE) and choroid of Cd46�/� mouse eyes. AeH: Plastic sections
(1 mm thick) of eyes were stained with Basic Fuchsin and Toluidine Blue and observed under light microscope. Nuclei with condensed chromatin and
shrinkage of cytoplasm in some RPE cells (black arrow, B), cells containing pigmented granules located in subretinal space (white arrows, D and F)
are detected in Cd46�/� mice at 2 and 12 months of age. Basophilic deposits between RPE and choroid capillaries (red arrowheads) are detected in
Cd46�/� mice at 12 months of age. The number of RPE nuclei is similar in all investigated groups (I), but the size of RPE layer measured from apical to
basal surface of RPE is significantly increased in 12-month-old Cd46�/� mice compared with age- and sex-matched wild-type (WT) controls (J). K: The
number of cells in subretinal space (calculated per mm of the RPE layer) is significantly increased in 12-month-old male and female Cd46�/� mice
compared with WT controls. In Cd46�/� mice, more vacuoles are present in RPE cytoplasm (yellow arrowheads, B, D, F, and H). Error bars represent
means � SEM (IeK). n Z 6 to 13 mice per group (IeK). *P < 0.05 (one-way analysis of variance). Scale bar Z 10 mm (AeH). Original magnification,
�40 (AeH). F, female; M, male.

CD46 and Dry AMD
VEGF Levels
To further decipher the underlying mechanism responsible
for reduced density of choroidal vessels in 12-month-old
Cd46�/� mouse, Western blot analysis was performed to
compare VEGF levels in the retina-RPE-choroid tissue from
Cd46�/� and WT mice at 2 and 12 months of age. VEGF is
a major growth factor responsible for the maintenance of
normal choroidal vasculature.43 We observed statistically
significant reduction of VEGF isoforms (approximately 18
The American Journal of Pathology - ajp.amjpathol.org
and 43 kDa) in 12-month-old Cd46�/� mice compared with
2-month-old Cd46�/� mice when normalized to WT con-
trols at both time points (Figure 8, FeH and Supplemental
Table S8).

In summary, as the Cd46�/� mice aged, 60% accumulated
lipofuscin in the RPE, 57%hadBruch’smembrane thickening,
73% had excessive number of cells in the subretinal space,
100% lost nuclei in the ONL, 58% developed an increase in
RPE size, and 80% had a diminution in the choriocapillaris.
2097
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EeG). D: In Cd46�/� mice, Bruch’s membrane (BM)
elastic and collagenous layers are not observed; instead,
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*P < 0.05 (one-way analysis of variance). Scale bar Z 1
mm (AeG). Original magnifications: �100 (A and B);
�5000 (CeG). F, female; M, male.

Lyzogubov et al
Discussion

Dry type AMD is characterized by loss of photoreceptors, a
localized increase in thickness of Bruch’s membrane, drusen
deposits, RPE cell atrophy, and choroidal capillary alter-
ations.2,3,6 The management of patients with dry AMD re-
mains a significant challenge because dry AMD is managed
using non-specific therapies.11,12 Unfortunately, these ther-
apeutic modalities do not address the underlying primary
mechanisms of disease development. Because of the lack of
effective therapeutic options available to the patients with
dry AMD, there is a pressing need to develop additional
treatments. Animal models have played a crucial role to our
understanding of AMD pathology.18e28,38,44e77 They have
2098
provided tools necessary to understand the etiopathogenesis
of this disease and have proved to be critical for preclinical
studies testing new therapeutic agents.
A wealth of data suggests that overactivation of the

alternative pathway (AP) of the complement system is a
critical player in the pathogenesis of human AMD and its
animal models.15,16 In addition, complement activation
fragments and regulators are deposited in the retina.73,74

Genome-wide association studies have indicated that a
common polymorphic variant of complement regulator
factor H (FH) increases the susceptibility to AMD in
humans.75 Also, rare variants in FH are associated with
AMD and have been observed in familial AMD.76e78

Furthermore, multiple studies have also implicated
ajp.amjpathol.org - The American Journal of Pathology
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CD46 and Dry AMD
common and rare variants in the complement proteins C3,
factor B, and especially factor I in modulating the risk of
AMD.17,79

FH is the major plasma regulatory protein of the AP; its
cellular (membrane) counterpart in nonrodent primates is
CD46.29e32 CD46 is expressed nearly ubiquitously in
humans.31,32 In the mouse, CD46 was previously thought to
be only expressed on the inner acrosomal membrane of
spermatozoa. However, we recently described that CD46
mRNA and protein are present in the neuronal retina, RPE,
and choroid of the C57BL/6 mouse.28 Herein, the eyes from
male and female WT and Cd46�/� mice were analyzed at
The American Journal of Pathology - ajp.amjpathol.org
the age of 2 (adult) and 12 (aged) months. We investigated
the role of complement-mediated pathophysiology in dry
AMD and indicate that Cd46�/� mouse is a promising
model for dry AMD.

Systemic and ocular (local) complement activation in the
Cd46�/� mouse was investigated. Our results demonstrate
that Cd46�/� mouse has normal AP activating ability in
serum. This result indicates that deficiency of CD46 in
limited (two) sites has no detectable impact on serum AP
homeostasis. However, the absence of ocular CD46 leads to
dysregulated local AP activation in the eye, resulting in an
AMD phenotype. Surprisingly, although a trend was noted,
2099
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we did not detect an age-related increase of MAC deposition
in RPE-choroid of WT or Cd46�/� mice. This may, how-
ever, relate to the presence of the inhibitors of MAC as-
sembly, especially CD59. Together, these results are
consistent in the mouse with the expression pattern of CD46
and play a key regulatory role in retinal tissue.28,31,32

In our experiments, the eyes from male and female
Cd46�/� mice were analyzed at the age of 2 (adult) and 12
(aged) months for age-related histological changes. We
observed that, as the Cd46�/� mice age, they spontaneously
develop a phenotype that closely resembles the dry form of
human AMD.

Lipofuscin accumulation is a sign of impaired intracel-
lular digestion of waste material and aging. RPE cells in
human dry AMD contain elevated quantities of the auto-
fluorescent material lipofuscin.80,81 We detected signifi-
cantly higher RPE autofluorescence in aged Cd46�/� mice.
In parallel, the size of RPE was increased in these animals.
Vacuolization of RPE cytoplasm is a sign of RPE degen-
eration and has been reported in aged mice.38,40,45 We
suggest that vacuolization may contribute to the increased
RPE size observed in our present study. Electron micro-
scopy revealed the presence of macroautophagosomes in
RPE of Cd46�/� mice. Macroautophagosomes have double
layered membrane and contain cytoplasm and organ-
elles.41,80 Their presence in a cell is a sign of autophagy.
Our data suggest that autophagy may be activated in
response of impaired RPE function in Cd46�/� mice,
leading to the formation of macroautophagosomes. Auto-
phagy is activated in RPE cells in response to stress and
helps in the clearance of damaged cellular components.42,82

Dysfunction of autophagy may contribute to accumulation
of waste material inside the RPE (lipofuscin) and within the
Bruch’s membrane (drusen deposits).11,42,73,80,83e85 The
mechanism of how autophagy is initiated in Cd46�/� mice
requires further study. Interestingly, no reduction in RPE
nuclei number was observed in Cd46�/� mice. These results
suggest that RPE cells may be relatively resistant to cell
death caused by the increased complement activation or that
the presence of other regulators checks the complement
system’s ability to perturb membranes.

Using a terminal deoxynucleotidyl transferase-mediated
dUTP nick-end labeling assay and caspase 3 staining, RPE
cell death was not detected in Cd46�/� mice at 2 and 12
months of age (our unpublished results). However, it is
possible that in animals >12 months, cell death of RPE may
be detected using these techniques.

Thickness of the BM increases with age in humans.9,86

Risk of AMD is associated with an abnormal increase in
thickness of BM as the quantity of basal laminar deposits
strongly correlates with the presence of AMD.6,86,87 In the
present study, we demonstrated accumulation of dense
deposits and increased thickness of BM in 12-month-old
Cd46�/� mice. It is possible that in these animals the
basophilic material represents dense deposits in Bruch’s
membrane. In previous articles, increased thickness of BM
2100
was reported in aged Ccl-2 or Ccr-2 deficient mice57 and
transgenic mice overexpressing the human biglycan and
apolipoprotein b-100 genes.70 Together, our results sug-
gest that Cd46�/� mice generate more waste material
because of excessive complement activation due to the
lack of CD46. The debris accumulates within RPE cells as
autofluorescent material and also is deposited in BM as
dense deposits.
Loss of photoreceptors is a final irreversible event in

AMD. We observed the presence of apoptotic bodies in
ONL and age-related loss of photoreceptors (measured by
ONL nuclei density) in all Cd46�/� mice. Photoreceptor
loss started early in life (2 months) in Cd46�/� mice and
continued until at least 12 months of age. Shortening of
photoreceptor outer and inner segments was observed close
to apoptotic bodies. We hypothesize that in Cd46�/� mice,
dying photoreceptors were not able to regenerate cellular
components, which led to shortening of PIS and POS.
Apoptotic bodies and cellular debris moved toward RPE
cells and possibly were phagocytosed by RPE cells and
macrophage-like subretinal cells. The increased load of
cellular material may thus contribute to accumulation of
lipofuscin and dense deposits in Cd46�/� mice.
The presence of cells in the subretinal area in Ccl2

knockout mice has been reported. The authors detected
macrophages and pigment in subretinal cells and concluded
that they were the source of sub-RPE deposits.56

We investigated choroidal vasculature using light and
electron microscopy as well as FITC-dextran angiography
because it is reported that reduction of choroidal vasculariza-
tion may contribute to dry AMD.2e4 Although FITC-dextran
angiography is not a commonly used method to quantify
choriocapillary density in naive animals, it is a well-accepted
method to investigate choroidal neovascularization.18e25 We
found that at the age of 12 months the density of the choroidal
vessels was significantly (P< 0.05) reduced inCd46�/�mice
compared with WT animals. Significantly decreased levels of
VEGF in 12-month-old Cd46�/� mouse observed in our
current studymay lead to reduced density of choroidal vessels.
However, we cannot completely rule out the possibility of dye
leakage in our model. Using similar method, though, the
reduction of choroidal capillaries was observed in a study
using retinal dystrophic (rd)-mice.53

The connection of the complement system to AMD has
been reported in some murine models of dry-type
AMD.25,44,51,52,54,57,62 Retinal abnormalities have been
described in aged FH deficient (Cfh�/�) mice.51 However,
the disease phenotype was modest because these animals
displayed a partial phenotype of dry AMD. Lipofuscin
accumulation in RPE cells was not accompanied by accu-
mulation of deposits or drusen formation. Electron micro-
scopy revealed that in Cfh�/� mice there was no loss of
photoreceptors.51 The authors suggested that apical secretion
of FH is important in maintaining complement regulation in
the retina of these mice. However, Cfh�/� mice have negli-
gible AP activating capacity. In these mice, the AP is almost
ajp.amjpathol.org - The American Journal of Pathology
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completely inactive secondary to the fluid phase AP turn-
over.51,88 Both FH (plasma protein) and CD46 (membrane
bound protein) are regulators of the AP.29,30 In mice, FH is
ubiquitously present,31,32 whereas CD46 is expressed only
on spermatozoa31,32 and in the eye.28 More important, our
current study shows thatCd46�/�mice have normal systemic
AP-activating ability but the lack of ocular CD46 leads to
dysregulated complement activation in the retina and
choroid. To summarize, our data suggest that the local
(ocular) but not systemic control of the AP is crucial in the
pathogenesis of dry AMD.

In another study, chimeric FH proteins were expressed in
Cfh�/� mice (CfhTg/mCfh�/�). In the eyes of these animals,
a dry AMD phenotype was more severe than in Cfh�/�

mice.49 Using enzyme-linked immunosorbent assay, the
authors reported that CfhTg/mCfh�/� mouse has normal
serum C3 levels, indicating a fully functional systemic AP
in these animals. Chimeric mice in which the serum C3 was
normal indicates that an intact AP is required to develop a
more full-blown model of AMD.

In 2013, a survey of strains in the JAX Mouse Repository
detected a number of founder mutations, including
Pde6brd1and Crbrd8among the mouse strains.89 Because
retinal pathology may occur in the presence of Pde6brd1or
Crbrd8mutations, genotyping was performed to determine
whether Cd46�/� mice carry these mutations. Using PCR
analysis, we observed that Cd46�/� mice do not carry
Pde6brd1but carry Crbrd8 (data not shown). In contrast, WT
animals do not carry the Crbrd8mutation (data not shown). It
is possible that Crbrd8mutation detected in Cd46�/� mouse
was derived from the embryonic stem cells used for the
generation of these animals. Many embryonic stem cell lines
used to generate genetically modified mice carry the
Crbrd8mutation.89

To investigate if the spontaneous age-related degenerative
changes in the retina, RPE, and choroid of Cd46�/� mice
observed in our study are in some way related to Crbrd8, we
analyzed ocular tissue (retina, RPE, and choroid) from
Cd46�/�fB�/� double knockout mice at 12 months of age.
Because factor B is an integral component of the AP, its
activation is abrogated in Cd46�/�fB�/� mice. Our unpub-
lished and ongoing studies indicate that Cd46�/�fB�/� ge-
notype is protective against development of the key features
of dry AMD in our Cd46�/� model system. Furthermore, it
has been reported that photoreceptor degeneration in mice
with Crbrd8mutation strongly varies with the genetic back-
ground.90 Thus, on the basis of these background data and our
results with Cd46�/�fB�/� mice, we conclude that sponta-
neous age-related degenerative changes in the retina, RPE,
and choroid of Cd46�/� mice are caused by the lack of ocular
CD46.

Collectively, our results show that, as Cd46�/� mice age,
they develop degenerative changes in the retina, RPE, and
choroid. These alterations are similar to those observed in
patients with the dry type of AMD. The AP’s amplification
loop is a finely tuned and powerful membrane perturbing
The American Journal of Pathology - ajp.amjpathol.org
system and mediator of inflammation. An overaggressive
response, because of deficiency of CD46, will lead to
excessive AP activity in the retina. This could both initiate
and accelerate retinal and choroidal damage, resulting in the
phenotype of Cd46�/� mice that closely resembles the dry
form of human AMD.

We envision two scenarios as to how AMD could arise.
From birth, these animals have reduced regulatory activity
(a hyperinflammatory phenotype), which could initiate
progressive damage to the predispositional ocular tissue. In
other words, it is the primary (etiology) cause of the disease.
A second possibility is that the gradual retinal degeneration
and debris accumulation are parts of the aging process,
being accelerated in the Cd46�/� mouse, and thus leading to
earlier and more severe dry AMD-like changes.

In conclusion, our results provide powerful evidence that
a defect in the local (ocular) control of the AP contributes to
the etiopathogenesis of dry AMD. Selective tissue distri-
bution of CD46 (only expressed by the inner acrosomal
membrane of spermatozoa and in the eye) combined with
the normal systemic AP activity gives the Cd46�/� model of
dry AMD a unique advantage over other mouse models
using knockout strains in the complement system. We are
excited by the many possibilities of using this mouse model
system in which the AP is intact, as it is in humans with
AMD. Thus, the Cd46�/� mouse model could become a
valuable tool in the investigation of dry AMD pathology
and in analyzing potential targets to which complement-
mediated therapy could be applied.

Thus, we propose that deficient ocular (local) comple-
ment regulation because of lack of CD46, in conjunction
with an intact systemic AP, facilitates the development of
dry AMD pathogenesis.
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