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Abstract

Early vigour is an important physiological trait to improve establishment, water-use efficiency, and grain yield for 
wheat. Phenotyping large numbers of lines is challenging due to the fast growth and development of wheat seed-
lings. Here we developed a new photo-based workflow to monitor dynamically the growth and development of the 
wheat canopy of two wheat lines with a contrasting early vigour trait. Multiview images were taken using a ‘vegeta-
tion stress’ camera at 2 d intervals from emergence to the sixth leaf stage. Point clouds were extracted using the 
Multi-View Stereo and Structure From Motion (MVS-SFM) algorithm, and segmented into individual organs using the 
Octree method, with leaf midribs fitted using local polynomial function. Finally, phenotypic parameters were calcu-
lated from the reconstructed point cloud including: tiller and leaf number, plant height, Haun index, phyllochron, leaf 
length, angle, and leaf elongation rate. There was good agreement between the observed and estimated leaf length 
(RMSE=8.6 mm, R2=0.98, n=322) across both lines. Significant contrasts of phenotyping parameters were observed 
between the two lines and were consistent with manual observations. The early vigour line had fewer tillers (2.4 ± 0.6) 
and larger leaves (308.0 ± 38.4 mm and 17.1 ± 2.7 mm for leaf length and width, respectively). While the phyllochron of 
both lines was quite similar, the non-vigorous line had a greater Haun index (more leaves on the main stem) on any 
date, as the vigorous line had slower development of its first two leaves. The workflow presented in this study pro-
vides an efficient method to phenotype individual plants using a low-cost camera (an RGB camera is also suitable) and 
could be applied in phenotyping for applications in both simulation modelling and breeding. The rapidity and accuracy 
of this novel method can characterize the results of specific selection criteria (e.g. width of leaf three, number of till-
ers, rate of leaf appearance) that have been or can now be utilized to breed for early leaf growth and tillering in wheat.
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Introduction

Vigorous growth in the early stage, affected by various genetic 
traits (Rebetzke and Richards, 1999; Rebetzke et al., 2007), 
is an important physiological trait to contribute to improved 
water-use efficiency and grain yield of wheat (Botwright et al., 
2002). Early vigour for wheat can be increased through selec-
tion of larger grain size (embryo size) (White et  al., 2012), 

but is more commonly selected using leaf traits, such as the 
maximum width of the expanded third leaf, which was shown 
to be correlated to total leaf area of young seedlings (Zhang 
et al., 2015).

In Australian wheat production systems, yield potential is 
limited by the plant-available soil water during the growing 
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season (Richards et al., 2002). Greater early vigour has been 
identified as a physiological trait to improve the water-use 
efficiency in the rain-fed environment (Siddique et al., 1990; 
Richards, 1991). Wheat genotypes with early vigour traits 
should reduce soil evaporation through quicker shading 
of the soil surface in the early growth stage, and retaining 
more water that can be available to the roots for transpira-
tion (Siddique et  al., 1990). In addition, a shaded soil sur-
face would cool the crop canopy and reduce vapour pressure 
deficit within the canopy. Both mechanisms could improve 
transpiration efficiency (Fischer, 1979), with crop seasonal 
water-use efficiency increased by up to 25% (Regan et al., 
1992) when combined with improvement of economic yield 
(López-Castañeda and Richards, 1994). A  further benefit 
of greater early vigour is to reduce the light availability at 
the soil surface and to suppress weed growth (Lemerle et al., 
1996; Coleman et  al., 2001). Quicker canopy growth soon 
after emergence also improves light interception potentially 
to enhance crop growth rate, biomass, and net grain yield 
(Regan et al., 1997). Early vigour may be associated with both 
larger leaves and quicker ground cover of leaves and tillers 
(Mullan and Reynolds, 2010), which are partly determined 
by embryo size and environmental growth factors (e.g. tem-
perature and soil moisture) (Mohsen et  al., 2011; Rebetzke 
et al., 2014).

The traditional phenotyping technologies are time-con-
suming and expensive with anthropogenic interference 
(Richards and Lukacs, 2002; Bertin et  al., 2010). Breeders 
have to select new genotypes more efficiently for target popu-
lation environments to secure food requirement in the future 
as it takes 7–15 years for a breeding cycle (Chapman et al., 
2012; Zheng et al., 2013), and crop production must double 
by 2050 to meet the global population demand (Chilcoat, 
2015). Consequently, there is now greater interest in devel-
oping rapid and non-destructive technologies for high-
throughput phenotyping (e.g. Chapman et  al., 2014; Deery 
et al., 2014). Parameters (e.g. leaf appearance rate, tillering 
rate) derived from such technologies can also be used in crop 
simulation models in order to simulate other phenotypes. 
However, measurement of these parameters is extremely 
time-consuming in dynamic plant experiments. Canopy 
reconstruction from multiview images provides an economi-
cal and non-destructive method to monitor plant growth and 
development dynamically, in order to characterize large num-
bers of breeding lines (Hartmann et al., 2011; Paproki et al., 
2012). Many commercial methods use only a small number of 
views of the plant to estimate its size, and cannot be used to 
undertake detailed analysis, such as the LemnaTec Scanalyzer 
(LemnaTecAG, Aachen; www.lemnatec.de) (Junker et  al., 
2015).

Plant architecture plays an important role to select 
advanced lines in breeding programmes (Schwartz et  al., 
1987; Sakamoto and Matsuoka, 2004; Cabrera-Bosquet 
et  al., 2012). Several technologies have been well devel-
oped to obtain 3D spatial structures of  crop canopies (Lou 
et  al., 2014; Pound et  al., 2014), such as LiDAR (Omasa 
et al., 2007), time-of-flight laser (Kazmi et al., 2014), and 

ultrasonic sensing (McCarthy et al., 2010). The technolo-
gies are expensive, with limited operation environments. 
Multiview images can be used to reconstruct 3D cano-
pies given recent advances in photogrammetry informa-
tion computing (Quan et  al., 2006; Kumar et  al., 2012). 
Combined with pixel analysis of  RGB images (Fang et al., 
2013) or high spatial resolution broadband imagery (Nigon 
et al., 2013), crop phenotypes can be extracted from images 
(Clark et al., 2011; Bucksch et al., 2014; Klukas et al., 2014; 
Zou et al., 2014).

To date, imaged-based phenotyping has been used to ana-
lyse the complete structure of  plants with wider leaves, such 
as leaf  length, width, and stem height of  Gossypium hirsu-
tum (Paproki et al., 2012). The algorithm is also suitable for 
broad cereal leaves to reconstruct a 3D point cloud and the 
leaf  surface to estimate the phenotypic parameters related 
to growth (Fang et  al., 2013; Kempthorne et  al., 2014). 
However, this photogrammetry is not suitable for narrow- 
and thin-leaved plants, such as wheat and rice. Several studies 
have been conducted for 3D barley and wheat reconstruc-
tion using multiview images (Hartmann et al., 2011), which 
presented a fully automatic approach to reconstruct the 
3D meshes of  leaves at mature stages. However, these stud-
ies are focused on the point cloud reconstruction (Kumar 
et al., 2012) which is suitable for light distribution simula-
tion, but cannot characterize other phenotypes related to 
leaf  appearance, tillering, etc., which are more likely to be 
directly related to genetic control.

The aims of our study were to (i) develop an efficient phe-
notyping workflow to capture suitable image sets for two 
cultivars with contrasting early vigour traits; (ii) reconstruct 
the point cloud and segment it into individual organs; (iii) fit 
the leaf structure using the local polynomial regression algo-
rithm; and (iv) monitor the dynamic growth development of 
wheat seedlings into the early tillering stage.

Materials and methods
This study involved five major steps to reconstruct the 3D structure 
of wheat seedling and extract phenotype based on the multiview 
images (Fig.  1): (i) capture the image set for an individual plant; 
(ii) reconstruct 3D point clouds using the VisualSFM (Wu, 2011), 
which is based on the MVS-SFM (Multi-View Stereo and Structure 
From Motion) algorithm; (iii) segment point clouds into individual 
organs; (iv) fit leaf midribs with local polynomial function; and (v) 
extract phenotype parameters from a dynamic monitoring of plant 
structure.

Glasshouse experiments
An experiment was conducted in a naturally lit glasshouse at 
CSIRO in St Lucia, Brisbane (27.50°S, 153.01°E). Two wheat 
genotypes were selected with a contrasting early vigour trait (i.e. 
Cycle-6-1 and Lincoln). Lincoln is a common commercial variety 
while Cycle-6-1 is a new high early vigour S0-derived line from 
the sixth cycle of  a broad-based recurrent selection programme 
built from 28 high vigour lines collected globally (Zhang et  al., 
2015). Cycle 6-1 and Lincoln have similar phenology with simi-
lar flowering time. Cycle-6-1 has larger leaves when young com-
pared with Lincoln. Single seeds were planted into pots (10 cm 
high, 10 cm diameter) after germination on 9 May 2015. Nine pots 
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were accommodated into a block (plot) to form a ‘minicanopy’. 
Each genotype was replicated in three plots (27 pots total), with 
the six ‘plots’ of  Lincoln and Cycle-6-1 being randomly distributed 
across a table in the glasshouse. All pots were randomly reordered 
within blocks every day to reduce the effects of  uneven light dis-
tribution on plant growth and development, and blocks were also 
randomly ordered across and along the table. Plants were irrigated 
as required for normal pot experiments. Fertilizers were applied 
at sowing, and at 8 d and 19 d after sowing as per the recommen-
dations of  the growth requirement of  Cycle-6-1 and Lincoln [i.e. 
dissolving 9 g of  fertilizer mix into 4.5 litres of  water and apply-
ing over 2 m2 of  pot area; fertilizer mix: analysis (% w/w), total 
nitrogen (N), 25.0; phosphorus (P) as water soluble, 5.0; potassium 
(K) as sulphate, 8.8]. In the glasshouse, the day and night tempera-
tures were controlled at 22 °C and 15 °C, respectively, and relative 
humidity was 65%. The actual weather conditions were recorded in 
the glasshouse by a TinyTag data logger (Hastings Data Loggers, 
UK). The actual temperatures were 21.8 ± 0.8 °C and 15.2 ± 0.7 °C 
in the day and night, respectively. Daily maximum photosynthetic 
radiation was 805.2 ± 161.0 W m−2. The actual relative humidity 
was 65.8 ± 10.5%.

Capturing image sets for individual plants
On 16 May (7 d after sowing), one of the nine individual plants in 
each of six plots was randomly selected, with the plants at the first 
leaf stage for Cycle-6-1 and the second leaf stage for Lincoln on 
this day. The same six selected plants were used to take image sets 
at 2 d intervals from the first or second leaf stage (16 May) to the 
sixth leaf stage on the main stem for Cycle-6-1 (9 June) and Lincoln 
(5 June). Hence, each plant was imaged 13 and 11 times for Cycle-
6-1 and Lincoln, respectively. Multiview image sets were taken from 

60–70 positions using a Canon PowerShot ELPH 110 HS camera 
with a 24–120 mm Equivalent UA Lens (http://www.usa.canon.com). 
This camera captures 16 mega pixels (4608 × 3456) and had its infra-
red (IR) filter removed, replaced by a filter to capture near infra-
red (NIR) wavelengths in the red band (http://www.maxmax.com/
RemoteSensingcamerasi.htm). It has a strong NIR reflectivity and is 
more sensitive for the colour green, so it can also be called a ‘vegetation 
stress camera’. For an image set, photos were taken in a hemispherical 
distribution around the plant, with it positioned on a grey carpet in 
a clear room with uniform illumination conditions (Fig. 2A). Other 
backgrounds of photography environments were tested, such as high 
contrast poster and QR Code. However, the algorithm of point cloud 
reconstruction was not sensitive to background (data not presented). 
The intervals between camera positions were ~20–30  ° in the verti-
cal and horizontal axes on the surface of a hemisphere. Several extra 
photos were taken directly above the plant, which were high enough 
to ensure a full view of the whole plant (Fig. 2A, positions marked 
as thick cones). In a preliminary experiment, other image acquisition 
methods were tested, namely rectangular movement trajectory of the 
camera position centring on the plant, the rectangular movement tra-
jectory of the camera position parallel to the top of the plant, and the 
circular movement trajectory of the camera position around the plant 
side. The 3D reconstruction results showed that the hemispherical tra-
jectory was the best option for wheat seedlings (data not shown). The 
lengths and maximum widths of all leaves on each of the six plants 
were manually measured using a ruler after imaging. The measured 
values were used to validate the accuracy of 3D reconstruction from 
image sets. We also tested all of our methods with a normal RGB 
camera of similar specification which worked just as well (data not 
shown). We continued with the ‘vegetation stress’ camera as we had 
also been considering looking at changes in NIR reflectance over time 
(data not presented here).

Fig. 1.  Pipeline of 3D structure fitting and phenotype parameter extraction based on the image set. The image set comprises images taken by one or 
more cameras around single plants at 60–70 positions, with reconstructed point clouds derived using the MVS-FSM (Multi-View Stereo and Structure 
From Motion) algorithm. See text for details. (This figure is available in colour at JXB online.)

Fig. 2.  (A) Camera positions for the image set and (B) operation result of 3D point cloud using the VisualSFM system (a real data example: Lincoln, 5 
June, six leaves on the main stem). The camera positions (vertexes of the cones) and directions (four edges of cones) were estimated for 61 photos 
by VisualSFM (A). The thick dots on the bottom in (A) indicate the designated shooting area of the selected camera (thick cones in A). The dense point 
clouds were generated after estimation of camera positions and directions (B). (This figure is available in colour at JXB online.)

http://www.usa.canon.com
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Three-dimensional reconstruction from the multiview image 
sequence
The 3D reconstruction of wheat seedlings from an image set was 
undertaken using VisualSFM software, which is based on the MVS-
SFM algorithm.

SFM included two main processes: (i) searching for the match-
ing points from the image sequence of multiview through a 
Scale-Invariant Feature Transform (SIFT) keypoint detector and 
descriptor using the Approximate Nearest Neighbor (ANN) algo-
rithm (Arya et al., 1998); and (ii) calculating the corresponding co-
ordinates of 3D key points and camera parameters of each image 
(position and direction). The SFM algorithm is based on the geo-
metric principle of perspective projection (i.e. establishing the rela-
tionship between 2D and 3D points through perspective projection). 
For example, X is a 3D point and x is its corresponding 2D pixel on 
one of the images. The perspective projection matrix is P:

	 P K
R
t

( )= 	 (1)

where K is the intrinsic parameter of the image including focal 
length, principal point offset, and axis skew, R is the direction of the 
camera, and t is the position of the camera. The projection equation 
is obtained by:

	 x PX= 	 (2)

The SFM algorithm is used to extract the matching 2D points (x1, 
x2, …) from pairs of images in the full set. Then the 3D point co-
ordinates are calculated with the corresponding 2D matching points 
and the projection equation. The sparse 3D point cloud and camera 
parameters of each image are indicated in Fig. 2A. After the camera 
parameters (position and direction for each image) were calculated in 
the SFM step, the MVS algorithm (an open source software PMVS; 
http://www.di.ens.fr/pmvs/) was used to calculate the dense 3D point 
cloud (Fig. 2B). The PMVS is a multiview stereo software that uses 
image sequence and camera parameters, then reconstructs 3D point 
clouds of the target (Fig. 2B). The point clouds were pointing to an 
arbitrary direction after reconstruction. For easier post-processing, 
the plants were moved and rotated into a standard co-ordinate system, 
which assumed the plant was grown from the origin and straight up 
(positive z-axis). The reconstructed 3D co-ordinates are unitless. For 
each reconstructed target scene presented here, the tray length (0.10 
m) was used as a scale to reproject 3D co-ordinates into the real world.

Point cloud segmentation
For each plant, the individual organs were segmented from 
the unordered point cloud using the Octree algorithm in 
CloudCompare (http://www.danielgm.net/cc/; 3D point cloud and 

mesh processing software). At each measurement date, the param-
eters of  the Octree (Octree level indicates the minimum number 
of  points per component) were adjusted to separate point clouds 
into several primary groups, which were typically slightly more 
than the number of  individual organs (Fig. 3A). Then the primary 
groups were manually merged into individual organs depending 
on the topology relationship (Fig. 3B). The step of  group merg-
ing was repeated until organs were segmented (Fig. 3C). The leaf 
ranks were identified according to positions (3D co-ordinates) in 
the adhered main stem and tillers. The tiller ranks were also iden-
tified according to positions (3D co-ordinates) and the associated 
leaf  rank in the main stem. Due to self-shading among organs, 
it is hard to segment point clouds into individual organs and to 
identify the organ ranks after the sixth leaf  stage (images were 
taken on further dates, but data are not shown here). This merging 
of  some groups (Fig. 3B) is the only manual step in the workflow 
and takes ~1–15 min depending on the organ number per image 
set. See Table 1 for the details of  the main steps in the workflow to 
process the multiview images.

Extraction of leaf midribs with local polynomial function and leaf 
width with quantile regression
At this stage of analysis, we have segmented point clouds of organs 
for each plant. We fitted the leaf midribs to these segmented point 
clouds of organs using the local polynomial regression-fitting algo-
rithm (Fig. 4A and B). Points of organs were divided in the 3D voxel 
domain (Gorte and Pfeifer, 2004) to reduce the point number of 
organs and speed up calculations. The step size of the voxel domain 
is the most important parameter and is balanced by the accuracy 
and performance. In this study, the step size was assigned by one 
rule, that each voxel included a maximum of 10 points. This reduced 
run time by 10-fold. All voxels with not more than two points were 
filtered out as the noise points. The key points of the leaf base and tip 
were extracted according to the maximum distance among all voxels 
(Fig. 4C). The key point, which was close to the stem, was assigned 
as the leaf base (e.g. the big circle at the bottom of Fig. 4C). The 
leaf base was moved to the origin and the leaf tip was rotated to the 
positive direction of the x-axis. A local polynomial regression-fitting 
algorithm was used to fit the leaf midribs using the loess function in 
R programming language (Fig.  4D) (R Development Core Team, 
2012). Two values were calculated to estimate maximum leaf width 
for each point of the leaf: (i) distance to the midrib; and (ii) distance 
from the leaf base to the corresponding point in the midrib. The leaf 
edge was identified according to the 90th percentile of all points on 
either side of the midrib using quantile regression (Koenker, 2015). 
Quantile regression was used to filter out the noise points around 
leaf edges which are generated during image reconstruction, either 
due to lower quality detection or due to small movements of leaves 
between photos. The maximum leaf width was calculated as twice 
the maximum value of the estimated leaf edge.

Fig. 3.  Processing of point cloud segmentation using the Octree model in CloudCompare (a real data example: Lincoln, 28 May, four leaves on the main 
stem). Octree level: 8 (grid step=0.0026243), min points per component: 10. (This figure is available in colour at JXB online.)

http://www.di.ens.fr/pmvs/
http://www.danielgm.net/cc/
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Extraction of phenotypic attributes
Phenotypic attributes of wheat growth and development were calcu-
lated from the segmented organs and the extracted leaf midribs; for 
example, tiller number, leaf number on each stem, plant height, leaf 
length and angle, leaf elongation rate, Haun index, and phyllochron. 
The tiller number and leaf number were directly counted as the num-
ber of groups after segmentation. The plant height was estimated as 
the length between the base point of the plant (soil surface) and the 
longest leaf tip as if it had been pulled directly vertical (Budak et al., 
1995). Leaf length was calculated as the length of the fitted leaf mid-
rib. Leaf angle was defined as the angle between the vector from the 
base point to the middle point of the leaf midrib and the horizontal 
plane (Zheng et al., 2008). The elongation rate of leaf length was cal-
culated as the increment of leaf length between two sequential images. 
The Haun index is calculated following the method of Haun (1973) 
and is based on the number of expanded leaves and a decimal score 
approximating the proportion of expanding leaves. Phyllochron was 
linearly fitted as between the accumulated thermal time after sowing 
and the Haun index (Slafer and Rawson, 1997). For leaves where leaf 
width was estimated, leaf area was computed as the product of leaf 
width and leaf length multiplied by 0.75 (Dodig et al., 2010).

Results

Reconstruction of wheat canopies and extraction of 
leaf midribs

The point clouds were reconstructed from the multiview 
image sequence for two genotypes from the first leaf stage of 
Cycle-6-1 and the second leaf stage of Lincoln to the sixth leaf 

stage for both lines (Fig. 5A and E). The total point numbers 
ranged from ~10 000 at the second leaf stage to ~100 000 at 
the sixth leaf stage for each individual plant. Compared with 
the photos from the camera, the reconstructed point clouds 
visually represented canopy structures of wheat seedlings (e.g. 
Cycle-6-1 and Lincoln at the sixth leaf stage, Fig. 5B and F).

At the final time point, organs were well defined (e.g. 
Fig. 5C and G for Cycle-6-1 and Lincoln, respectively, at the 
sixth leaf stage), with the total number of points per organ 
ranging from 700 to 17 000 depending on organ size. The 
stems were grouped into main stems and tillers based on the 
topology of organs [e.g. main stem (MS), T1, T2, and T3 in 
Fig. 5C and G]. It required the user to take ~1 min per leaf 
to group some of the point clouds when stems or leaves were 
split. There were 13 and 17 organs in each individual plant for 
Cycle-6-1 and Lincoln, respectively, and the fitted leaf mid-
ribs reflected the 3D structure of organs (Fig. 5D and H for 
Cycle-6-1 and Lincoln, respectively).

A total of 322 leaf length observations were manually 
measured for Cycle-6-1 (154 measurements) and Lincoln 
(168), ranging from 50 mm to 340 mm. Good agreement 
was found between measured and estimated lengths (Cycle-
6-1, n=154, RMSE=10.7 mm, R2=0.97, y= −1.4+1.0x; 
Lincoln, n=168, RMSE=6.5 mm, R2=0.99, y= −3.0+1.0x; 
Fig. 6). Estimated leaf widths were also in good agreement 
with observed values for the key leaves L3 and L4 (n=25, 
RMSE=1.7 mm), with slightly larger error for leaves L1 and 
L2 (n=36, RMSE=2.1 mm). Relative to the mean measured 
leaf widths, this relative error was acceptable for L3 [mean 
measured leaf width for all plants=11.8 ± 1.3 mm; mean 
absolute error=0.9 mm (8%)] and L4 [14.4 ± 1.1 mm; 1.7 mm 
(12%)], but was relatively large for L1 [6.6 ± 1.5 mm; 2.2 mm 
(33%)] and L2 [8.2 ± 1.2 mm; 1.6 mm (20%)].

Comparison of phenotypic attributes for two early 
vigour contrasting genotypes

The dynamic evolution of  phenotypic attributes of  Cycle-
6-1 and Lincoln was calculated from the segmented organs 
and fitted leaf  midribs (Fig. 7). By the sixth leaf  stage, the 
tiller number increased to 2.4 ± 0.6 and 4.0 ± 0.0 for Cycle-
6-1 and Lincoln, respectively. Lincoln always had one or 
two more tillers than Cycle-6-1 for the entire seedling stage 

Table 1.  Detailed description of the workflow to process multiview images into individual organs including the manual measurement for 
validation of estimated phenotyping

The time requirements of manual measurements only include leaf width and length. The runtime of organ segmentation involves the 
computing time and manual interference.

Step Image acquisition 3D reconstruction Segmentation Phenotyping extraction Manual measurement time

Software/ equipment Canon Power Shot VisualSFM CloudCompare R Ruler (length) Vernier caliper 
(width)

Time (min) 5–10 (manual) 20–40 (computer) 1–2 (manual)
1–14 (computer)

Less than 1 (computer) 1–20

Data size 50–70 images One scene Per plant All the data Per plant
URL http://www.usa.canon.com; 

http://www.maxmax.com
http://ccwu.me/vsfm/ http://www.danielgm.

net/cc/
https://www.r-project.org/

Fig. 4.  Diagram for the extraction of a leaf structure, 3D tip, and base 
points. (A) Point cloud of an individual wheat plant, Lincoln, 5 June, 101 
363 points, 17 leaves, four tillers. (B) Point cloud of an individual leaf (black 
points in A). (C) The big circle at the top: tip point; the big circle at the 
bottom: base point; small points: voxel domain; solid line: fitted structure. 
(D) The fitted leaf midrib. (This figure is available in colour at JXB online.)

http://www.usa.canon.com
http://www.maxmax.com
http://ccwu.me/vsfm/
http://www.danielgm.net/cc/
http://www.danielgm.net/cc/
https://www.r-project.org/
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(Fig. 7A). The total leaf  number in the main stem and till-
ers showed the same trend as the primary tiller number 
(Fig.  7B; e.g. up to 11.0 ± 2.0 and 15.7 ± 0.6 for Cycle-6-1 
and Lincoln, respectively, at the sixth leaf  stage). Plant 
height (from the plant base to the tip of  the maximum leaf) 
increased to 487.4 ± 45.2 mm and 340.3 ± 25.6 mm for Cycle-
6-1 and Lincoln, respectively (Fig. 7C). Although the aver-
age elongation rate of  leaves on the main stem was similar 
for the two genotypes (1.7 ± 0.5 mm °Cd−1 for Cycle-6-1 and 
1.7 ± 0.4 mm °Cd−1 for Lincoln), there was a significant dif-
ference in the trend of  leaf  elongation rate across different 
leaves (Fig.  7D). The elongation rate of  L2 for Cycle-6-1 
(2.1 ± 0.3 mm °Cd−1) was significantly greater than that 
of  L1 (0.9 ± 0.3 mm °Cd−1, respectively, P<0.01). The leaf 
elongation rate of  Lincoln showed a continued growth trend 
from L2 (1.3 ± 0.6 mm °Cd−1) to L5 (2.1 ± 0.4 mm °Cd−1) and 
then decreased to 1.6 ± 0.4 mm °Cd−1 for L6.

Dynamic growth of leaf geometry was obtained from 
serial photography (e.g. Fig.  8A and B for leaf length and 
Fig. 8C and D for leaf angle). For the main stem, the final 
leaf length gradually increased from 105.3 ± 3.8 mm for L1 to 
284.7 ± 37.7 mm for L5 for Lincoln, and from 191.6 ± 16.3 mm 
to 308.0 ± 38.4 mm for Cycle-6-1. In general, leaves of Cycle-
6-1 were longer than those of Lincoln for each leaf rank on the 
main stem (Fig. 8A and B). The average estimated leaf width 
of L3 and L4 was 15.0 ± 2.1 mm and 17.1 ± 2.7 mm, respec-
tively, for Cycle-6-1, and 8.5 ± 0.9 mm and 10.8 ± 1.4 mm, 
respectively, for Lincoln, with significant difference between 
the two genotypes (P<0.01). The measured values of leaf 
width of L3 and L4 for Cycle-6-1 were 15.6 mm and 18.2 mm 
and for Lincoln were 8.1 mm and 10.6 mm.

The extraction leaf angle (above the horizontal) decreased 
with the accumulated thermal time for both of the genotypes 
on all phyllotaxy (L1–L6; Fig. 8C and D), indicating upright 
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Fig. 6.  Comparison of leaf lengths between manual measurement and estimation from reconstructed canopies using multiview image sets. (This figure is 
available in colour at JXB online.)

Fig. 5.  The 3D reconstruction (A and E), the segmentation results (C and G), and leaf midrib extraction (D and H) at the final imaging for Cycle-6-1 and 
Lincoln. There were 13 imaging dates for Cycle-6-1 and 11 imaging dates for Lincoln, but only six represented stages are shown in this figure. The 
images in the seventh column were the original photos for Cycle-6-1 (B) and Lincoln (F). For the final photography, Cycle-6-1 had 13 leaves and two 
primary tillers at the final imaging on 9 June and Lincoln had 17 leaves and three primary tillers at the final imaging on 5 June. All reconstructed canopies 
were segmented into individual tillers and leaves. The lines were the fitted leaf midribs using a local polynomial regression-fitting algorithm for the 
structures segmented by leaf rank (Cycle-6-1. D; Lincoln. H). (This figure is available in colour at JXB online.)
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leaves at the early stage, then tilting to more horizontal at 
later stages as the leaves grew longer. This was more notable 
in Lincoln than in Cycle-6-1, which had less change in angle 
over time. Comparing leaf angles of the two genotypes, that 
of Lincoln was 25 ° greater (more erect) than that of Cycle-
6-1 at the earlier time of seedling stage and it presented a uni-
form and stable reduction of ~5–7  ° between two adjacent 
measurements. Cycle-6-1 showed a much smaller decreasing 
trend of ~1–3  ° between measurements, especially for the 
higher phyllotaxy (L3, L4, and L5).

The Haun index and phyllochron of the two genotypes 
were calculated using the leaf number and leaf length. 
Phyllochron was 90.9 °Cd for both of the genotypes (Fig. 9; 
R2=0.99 for Cycle-6-1 and 1.00 for Lincoln). The intercepts 
of the regression lines, however, were significantly different 
(−1.1 for Cycle-6-1 and −0.2 for Lincoln, respectively).

Discussion

Characterization of crop structure using photography

The point cloud is the basic data set for further extraction 
of phenotyping attributes (Paproki et al., 2012; Paulus et al., 
2013) and can be generated by many technologies, such as a 
3D digitizer (Falster and Westoby, 2003; Zheng et al., 2008), 
LiDAR (Omasa et al., 2007), time-of-flight laser (Kazmi et al., 

2014), and ultrasonic sensing (Krammer and Schweinzer, 
2006). Compared with other technologies, image acquisition 
techniques provide an economic, efficient, and convenient 
method to generate point clouds in a range of plant science 
applications (Chapman et al., 2014; Lou et al., 2014; Pound 
et al., 2014). In this study, the point clouds were reconstructed 
using the VisualSFM system based on the SFM-MVS algo-
rithm from the multiview image set (Fig. 2). Although normal 
RGB cameras are suitable to phenotype wheat seedlings (data 
not shown), customized cameras can provide extra benefits 
through enhancing the contrast of leaves and background, 
such as the vegetation stress camera in this study or multiple 
band cameras (MicaSense Red Edge; www.micasense.com). 
The ‘vegetation stress’ camera is more sensitive to green 
colour as it has a strong NIR reflectivity. Manual methods 
involve labour-intensive handling, and destruction of plants 
for some types of phenotyping. The non-destructive meas-
urement took ~15 min to image a single plant (60–70 images). 
However, an automated camera platform could minimize 
intervention and provide the capacity for high frequency 
of sampling (i.e. 3–5 times each day) or lots of treatments 
(Hartmann et al., 2011).

The extraction of plant phenotypic parameters (e.g. leaf 
length, angle, and elongation rate) requires segmenting of the 
reconstructed 3D point cloud into individual organs. In this study, 
we introduced a semi-automatic method for this step (Fig. 3).  
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Fig. 7.  Plant phenotype parameter extraction result for two lines including (A) the dynamic growth of tiller number; (B) the dynamic growth of total leaf 
number; (C) the dynamic growth of plant height; and (D) leaf growth elongation for different phyllotaxy on the main stem. The error bars indicate the SD 
from three replicates. (This figure is available in colour at JXB online.)
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Consequently, we can reliably segment wheat seedlings with 
up to 10–15 leaves per plant and having 2–3 tillers (Fig. 5). 
The organ segmentation from point clouds becomes difficult 
for older plants due to occlusion among tillers and leaves. 
Until now, research on 3D reconstruction from image sets and 
phenotype parameter extraction of wheat mainly focused on 
the target of individual plant or canopy scale (Grieder et al., 
2015; Vadez et al., 2015). Totally automatic segmentation has 
only been realized on some broad-leaf plants without tillers 
or with few leaves, such as Gossypium (Paproki et al., 2012) 
and Hordeum vulgare with just three leaves (Dornbusch et al., 
2007). Completely automatic segmentation is still a challenge 
for narrow-leaf crops such as wheat and rice (Wahabzada 
et al., 2015).

In this study, we mainly focused on extraction of wheat 
structure related to crop phenology and morphology (Ward 
et al., 2014). The estimated leaf length from midribs has good 
agreement with the measurements (RMSE=8.6 mm; Fig. 6). 
The underestimation of leaf length was caused by (i) fewer 
pixels detected at the small leaf tips which were lost during 
reconstruction; and (ii) blade bases not clearly segmented 

from the point cloud. A sensitivity analysis was conducted to 
check the influence of image number and distribution on 3D 
reconstruction. The results indicated that more images (>60) 
did not improve the resolution of image reconstruction, and 
was sometimes worse. However, the uniform distribution of 
images in the hemisphere was a key strategy to reconstruct 
the point cloud.

The maximum leaf  width estimates showed reasonable 
results for larger leaves (e.g. L3 and L4), but were less 
accurate for smaller leaves (e.g. L1, L2, and new leaves). 
The higher relative errors for smaller leave appeared to be 
associated with (i) rolled leaf  shape; (ii) lower accuracy of 
vernier caliper measurement; (iii) the relatively low reso-
lution of  the images; and (iv) self-shading by high rank 
leaves. Algorithms of  leaf  surface reconstruction have 
been successfully applied for broad leaves such as cot-
ton, chenopodium (Dorr et  al., 2014; Kempthorne et  al., 
2014), anthurium, and frangipani (Oqielat et  al., 2007, 
2009). These algorithms, however, are difficult to apply for 
the surface of  thin wheat leaves in the early stage (i.e. leaf 
width is ~6–15 mm up to the sixth leaves; data not shown). 

Fig. 8.  The dynamic growth of leaf length and leaf angle (degrees above horizontal) for leaf rank L1–L6 on the main stem for Cycle-6-1 and Lincoln. The 
leaf length is estimated from multiview images. The leaf angle is estimated from multiview images and defined as the angle between the vector from the 
base point to the middle point of the leaf midrib and the horizontal plane. The error bars indicate the standard deviation from three replicates. (This figure 
is available in colour at JXB online.)
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Moreover, wheat leaves are twisted in the glasshouse and 
natural growing conditions, which creates more challenges 
to fit with simple surface equations. Others have used the 
discrete smoothing D2-spline algorithm to fit the twisted 
leaf  surface of  wheat (Kempthorne et al., 2015). However, 
the point cloud in that work was obtained from a 3D Artec 
S scanner, which was evenly distributed in 3D space. The 
point cloud, reconstructed from multiview images, was 
unevenly distributed, with missing sections caused by self-
shading among leaves. A new algorithm is required to build 
surfaces of  thin and twisted leaves, especially from point 
clouds reconstructed from multiview image sets.

Dynamic monitoring of growth and development with 
photography

Vigour in the early stage of growth can increase yield poten-
tial and has been selected in breeding, as wheat shows less vig-
our than other winter cereals (Regan et al., 1992, 1997; Zhang 
et al., 2015). The traditional phenotyping technologies, how-
ever, are time-consuming and destructive due to anthro-
pogenic error and instrument interference (Richards and 
Lukacs, 2002; Bertin et al., 2010). In recent years, interest in 
high-throughput phenotyping platforms is increasing in pub-
lic and private research (Furbank and Tester, 2011; Fiorani 
and Schurr, 2013). Digital photography provides a promising 
approach for phenotyping breeding lines with relatively low 
investment. Data analysis tools enable accurate estimation of 
ground cover, plant colour, and green biomass at the canopy 
scale (Casadesús et al., 2007; Mullan and Reynolds, 2010) and 
for angle, length, and area for individual organs (Clark et al., 

2011; Paproki et al., 2012). In this study, the reconstructed 
point cloud from multiview image sets visually reflected the 
structures of wheat canopies (Fig. 5A and E). For each time 
point, the estimated tiller numbers were the same as the meas-
ured values based on the integrity of the reconstructed point 
cloud. The extracted traits [tiller, leaf length, Haun index, etc. 
(Figs 7–9)] can be used to evaluate phenotypic variation of a 
breeding population (Rebetzke et al., 2007, 2008; Vos et al., 
2010; Dreccer et al., 2013). Further, the derived parameters 
can be used to run simulation models that could be used to 
estimate the canopy growth and development in different cli-
matic environments (Chapman et al., 2012; Lobell et al., 2015; 
Zhang et al., 2016). With the advances of photogrammetry 
and image processing techniques, automated high-through-
put phenotyping shows great promise in plant breeding and 
agriculture (An et al., 2016). The non-automation part of the 
workflow can be further improved if  new aggregation deci-
sion rules can be found.

Application of phenotyping in breeding programmes 
and models

Early vigour is the fast development of  leaf  area at early 
stages (Rebetzke and Richards, 1999; Maydup et al., 2012). 
The trait can be achieved through a bigger tiller and leaf 
number, larger leaf  size (Regan et  al., 1992), and a vigor-
ous root system (Sprigg et al., 2014). Other traits could be 
changed to co-ordinate with the vigorous growth of  leaves. 
Phyllochron interval is significantly correlated with length of 
leaves (Rebetzke and Richards, 1999) as longer leaves tend to 
take longer to emerge. However, with the method described 
here, it may be possible to identify lines with a faster elonga-
tion rate and or shorter phyllochron and which have early 
vigour through a different mechanism. In general, the early 
vigour genotype Cycle-6-1 had the same phyllochron as the 
non-vigour genotype Lincoln (Fig. 9). However, the Haun 
index of  Lincoln was one unit faster than that of  Cycle-6-1 
(Fig. 9), which was caused by the longer length of  the first, 
second, and third leaves of  the early vigour genotype (1.7-, 
1.5-, and 1.4-fold difference in leaf  length between Cycle-6-1 
and Lincoln; Fig. 8A and B); that is, the appearance rates 
of  the first three leaves were much slower for Cycle-6-1 and 
this variation of  leaf  appearance and large leaves may have 
influenced carbon demand and partitioning to suppress 
tiller production, as seen in sorghum (van Oosterom et al., 
2011). Indeed, the larger leaves of  Cycle-6-1 were associated 
with fewer tillers (Fig. 7). Either combination of  fewer till-
ers with larger leaves or greater tiller number with smaller 
leaves can increase early vigour to achieve higher biomass 
(Regan et al., 1992). The estimated maximum leaf  width for 
the third leaf  for the early vigour cultivar was almost twice 
the width of  that of  the non-vigour cultivar, with the esti-
mated area of  leaf  three being 3350 mm2 in Cycle-6-1, much 
larger than the value of  1420 mm2 for Lincoln. The width 
of  leaf  three had been used in the breeding programme to 
select advanced lines (Zhang et al., 2015) and can be easily 
estimated from the photography method when the third leaf 
has appeared.
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The complex interaction of  early vigour (G), environ-
ment (E), and management (M) requires a selection-specific 
trait in the target population environment (Cooper and 
Hammer, 1996; Wilson et  al., 2015). Crop models can be 
useful tools to evaluate the G×E×M interaction in multi-
ple scenarios (Asseng et  al., 2003; Chapman et  al., 2012; 
Zheng et al., 2013; Hammer et al., 2014), including future 
climates (Lobell et al., 2015). Current crop models, however, 
need to be modified to reflect new knowledge about early 
vigour (Asseng et al., 2016), such as variation of  the Haun 
index (Fig. 9) and leaf  area development. High-throughput 
phenotyping provides a new capability to assess large num-
bers of  genotypes in a short period (Montes et  al., 2007; 
Cabrera-Bosquet et  al., 2012; Araus and Cairns, 2014). 
Data from the method provided here can be used to param-
eterize a crop model to improve prediction of  the impact of 
early vigour traits on seasonal growth, water use, biomass, 
and yield.
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