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The function of hydrogen sulphide in iron availability: Sulfur nutrient or signaling
molecule?
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ABSTRACT
Hydrogen sulphide (H2S) has traditionally been considered as a phytotoxin, having deleterious effects on
the plant growth and survival. Recently, it was recongnized as a potential signaling molecule involving in
physiological regulation similar to nitric oxide (NO) and carbon monoxide (CO) in plants. In a recent study,
we mainly focused on the signaling function of H2S in improving adaptation of Zea mays seedlings to iron
deficiency. We reported that H2S was closely related to iron uptake, transport, and accumulation, and
consequently increased chlorophyll biosynthesis, chloroplast development, and photosynthesis in Z. mays
seedlings. Here, we provide more commentary on the signaling roles of H2S in coping with Fe deficiency
in plants through increasing sulfur containing metabolites and regulating the expression level of iron
homeostasis and sulfur metabolism-related genes in maize seedlings.
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Iron (Fe) is an essential microelement for plants and all
other living organisms, which is a component of a number
of proteins and enzymes with functions in key metabolic
process and Fe.1 Despite being the fourth most abundant
element in the earth’s crust, Fe deficiency is one of the
major limiting factors for crop production in calcareous
soils all over the world.2 Higher plants have two strategies
for the uptake of Fe(III) from the rhizosphere. Strategy I
plant species respond to lack of Fe by three steps including
acidification of rhizosphere by an HC-ATPase, reduction of
Fe (III) to Fe (II) by ferric-chelate reductase and uptake of
Fe(II) by iron transporters in the roots.3-5 In contrast, in
Strategy II plants, iron acquisition includes biosynthesis of
phytosiderophores (mugineic acids, MAs) inside the roots;
secretion of phytosiderophores to the rhizosphere; solubili-
zation of insoluble iron in soils by chelation of phytosidero-
phores; and uptake of the ferric-phytosiderophore complex
by the roots.6,7 However, strategies I and II are not suffi-
cient to support the iron requirement for plant development
when iron availability is under a threshold level, thus stress
symptoms become evident in iron-deficient plants.

In the last few years, there has been a renewed interest in the
effect of hydrogen sulphide (H2S) on plant physiology.8 Litera-
tures published from the last 30 y showed that this gas can
affect the growth of plants, but more recent works suggested
H2S can act as a signaling molecule similar to nitric oxide (NO)
and carbon monoxide (CO) in plants at low concentrations by
participating in various biological process.9,10 For instance, pre-
vious studies showed that H2S promoted seed germination,

alleviated oxidative damage, inhibited boron toxicity, salt toxic-
ity, and aluminum toxicity and so on in plants.11-13

H2S is endogenously generated during the metabolism of
L-cysteine by the catalysis of cystathionine b-synthase and cys-
tathionine g-lyase in plants.14 Besides, H2S is thought to be
released from cysteine via a reversible O-acetyl-L-serine(thiol)
lyase (OAS-TL) reaction in plants.15 Moreover, the uptake of
H2S is largely dependent on its rate of metabolism into cysteine
by OAS-TL and subsequent assimilation into other organic sul-
fur compounds.16 Therefore, H2S as an important compound
involved in plant sulfur metabolism. It is noteworthy that S
supply could help plants cope with the Fe shortage.17-20 For
instance, Astolfi et al.,18 reported that barley exhibited a posi-
tive correlation between the S nutritional status and its capabil-
ity of coping with Fe deficiency emerged. Moreover, one of the
responses to Fe deficiency in strategy II plant is the extrusion of
phytosiderophores in the root rhizosphere in order to chelate
and solubilize Fe3C.18,19 Phytosiderophores are derived from
nicotianamine that is synthesized from three molcules of S-
adenosyL-methionine, thus representing another possible junc-
tion between Fe and S metabolism. Under S deficiency condi-
tion the release of phytosiderophores was reduced.19,21

However, it is not clear whether H2S as sulfur compound or
signaling molecule play a key role in response to Fe deficiency
in plants?

In our recent published study, we presented compelling
data that revealed a novel effect of H2S on iron nutrition.22 In
our experiment, the S content by exogenously applied H2S
was much lower than that of nutrition solution itself which
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was only 1%. However, a profound change in chlorophyll
content, iron uptake, and iron homeostasis-related gene
expression including S-adenosyl homocysteine nucleosidase
(ZmMTN), nicotianamine synthase (ZmNAS1 and ZmNAS3),
deoxymugineic acid synthase 1 (ZmDMAS1), transporter of
MAs (ZmTOM2 and ZmTOM3), iron-regulated transporter
(ZmIRT), iron binding protein (ZmIBP), ferric-chelate reduc-
tase (ZmFRO1), and yellow stripe 1 (ZmYS1) happened in
iron-deficiency Z. mays seedlings when treated by exogenous
H2S (Fig. 1). Therefore, we concluded that H2S as a signaling
molecule played a vital role in improving adaptation of maize
seedlings to iron deficiency rather than sulfur nutrition.

The supply of H2S would directly feed into cysteine and glu-
tathione biosynthesis. Many studies have reported that H2S
exposure generally results in an increased content of water-sol-
uble non-protein thiol compounds including GSH and cysteine
in shoot, particularly, in some species an increase of sulfate
content in shoot has been observed.16,23–25 In our study, a high
accumulation of endogenous H2S in maize seedling leaves and
roots caused by exogenously applied NaHS was observed under
–Fe (0.1 mM FeIII-EDTA) or CFe (50 mM FeIII-EDTA) condi-
tions. Meanwhile, NaHS treatment caused GSH and NPTs
increase in roots and leaves under –Fe or CFe conditions.
Besides, H2S also could regulate sulfur metabolism-related
genes expression including sulfate transporter (ZmST1), sulfate
reduction-related genes (ZmATPS and ZmAPR), O-acetyl-L-

serine(thiol)lyase (ZmOASTL1 and ZmOASTL2), and cysteine
desulfhydrase (ZmDES) (Fig. 1). These results indicated exoge-
nously applied NaHS was not only directly feed into cysteine
and glutathione biosynthesis by regulating sulfur metabolism-
related enzymes activities and genes expression, but also
increased the content of endogenous H2S in plants.22

Therefore, our results suggested that H2S as a signaling mol-
ecule could cope with iron deficiency through increasing sulfur
containing metabolites including GSH and NPTs and regulat-
ing the expression level of iron homeostasis and sulfur metabo-
lism-related genes in maize seedlings. The detailed signaling
pathway of H2S-regulated iron assimilation need to further
study.
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Figure 1. Heat map of the transcripts of iron homeostasis-related genes and sulfur metabolism-related genes of maize seedling leaves. Maize seedlings were pre-treated
with 100 mM NaHS for 8 d and then grown in a nutrient solution containing 1 mM Fe(III)-EDTA or 50 mM Fe(III)-EDTA for 12 d. Red color represents higher relative expres-
sion and blue color represents lower relative expression when compared with the control samples (¡Fe). Scale is the log2 of the mean concentration values after normali-
zation (n D 4).
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