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Plant endosomal NHX antiporters: Activity and function
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ABSTRACT
The Arabidopsis NHX antiporter family contains eight members that are divided into three subclasses:
vacuolar, endosomal, and plasma membrane. While the plasma membrane and vacuolar NHXs have been
studied extensively, the activity and function of the endosomal NHXs are beginning to be discovered.
AtNHX5 and AtNHX6 are endosomal NaC,KC/HC antiporters that share high sequence similarity. They are
localized in the Golgi, trans-Golgi network (TGN), and prevacuolear compartment (PVC). Studies have
shown that AtNHX5 and AtNHX6 mediate KC and NaC transport, and regulate cellular pH homeostasis.
Sequence alignment has found that AtNHX5 and AtNHX6 contain four conserved acidic amino acid
residues in transmembrane domains that align with yeast and human NHXs. Three of these conserved
acidic residues are critical for KC transport and seedling growth in Arabidopsis. Moreover, studies have
shown that the precursors of the seed storage proteins are missorted to the apoplast in the nhx5 nhx6
knockout mutant, suggesting that AtNHX5 and AtNHX6 regulate protein transport into the vacuole.
Further analysis found that AtNHX5 and AtNHX6 regulated the binding of VSR to its cargoes. Taken
together, AtNHX5 and AtNHX6 play an important role in cellular ion and pH homeostasis, and are essential
for protein transport into the vacuole.
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NaC,KC/HC antiporters (NHX antiporters) are HC-coupled
cotransporters that transfer the NaC or KC across a membrane
in exchange for protons (HC).1-3 Plant NHX antiporters are
critical for cellular ion homeostasis and pH regulation. They
play significant roles in NaC and KC movement, pH homeosta-
sis, vesicle trafficking, protein transport, regulation of cell cycle
and cell proliferation, salt tolerance, and growth and develop-
ment.4-10

In Arabidopsis, the NHX antiporter family contains eight
members. Based on their subcellular localizations, the AtNHX
family is categorized into three subclasses: vacuolar (AtNHX1-
AtNHX4), endosomal (AtNHX5 and AtNHX6), and plasma
membrane (AtNHX7/SOS1and AtNHX8).4-6,11 Studies have
shown that the plasma membrane NHX AtNHX7/SOS1 is criti-
cal for cellular NaC, KC and pH homeostasis, and play an
important role in salt tolerance.12-17 In addition, the vacuolar
NHXs are involved in the regulation of cellular ion and pH
homeostasis, and are critical for salt tolerance, KC homeostasis,
and plant growth and development.1,4,5,18

The activity and function of the endosomal NHXs are begin-
ning to be explored. AtNHX5 and AtNHX6 share high
sequence similarity (78.7%).4,19 They are localized in the Golgi,
TGN, and PVC.10,20,21 Recent studies have found that the endo-
somal NHXs play an important role in cellular ion and pH
homeostasis, and are essential for plant growth and
development.10,20,21

AtNHX5 and AtNHX6 regulate ion and pH homeostasis in
Arabidopsis

Studies have shown that the Arabidopsis vacuolar NHXs22-25

and plasma membrane NHXs13,14,16 mediated KC and NaC

transport in Arabidopsis. Do the endosomal NHXs share a
common mold of action with the plasma membrane and vacu-
olar NHXs and are involved in KC and NaC transport in
Arabidopsis?

Wang et al. recently show that the endosomal NHXs
AtNHX5 and AtNHX6 mediate KC and NaC transport in Ara-
bidopsis.21 Using a yeast expression system, they found that
AtNHX5 and AtNHX6 recovered yeast tolerance to high KC or
NaC. They show that AtNHX5 and AtNHX6 function at high
KC at acidic pH while AtCHX17 at low KC under alkaline con-
ditions, suggesting that AtNHXs and AtCHXs may have differ-
ent modes of action in mediating KC homeostasis. Wang et al.
further examined the role of AtNHX5 and AtNHX6 in KC

homeostasis in plants.21 They found that root growth of nhx5
nhx6 was inhibited significantly at low KC; overexpression of
the AtNHX5 or AtNHX6 genes in nhx5 nhx6 recovered root
growth to the wild-type level. In addition, they found that the
KC levels in nhx5 nhx6 were dramatically reduced compared to
the wild type seedlings.21 On the other hand, Bassil et al. char-
acterized the role of AtNHX5 and AtNHX6 in salt tolerance.20

They found that nhx5 nhx6 was sensitive to salt stress: the fresh
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weight of nhx5 nhx6 was significantly reduced under the stress
of 150 mM NaCl. They further show that seedling growth of
nhx5 nhx6 was arrested after cotyledon emergence under salt
stress.20 These results suggest that AtNHX5 and AtNHX6 are
critical to KC and NaC homeostasis in Arabidopsis. These
results also suggest that AtNHXs share a common mold of
action with the plasma membrane NHXs and the vacuolar
NHXs.

Moreover, Reguera et al. investigated the role of AtNHX5
and AtNHX6 in regulating the pH of endomembrane compart-
ments.10 They used organelle specific pHluorin-based pH sen-
sors to measure the luminal pH of Golgi, TGN, and the late
prevacuolar compartment (LPVC). They found that nhx5 nhx6
had a reduced pH in these endosomal compartments relative to
the wild type.10 This observation was supported by Wang
et al.21 They showed that nhx5 nhx6 had a reduced pH in the
mature roots and the cell sap extracted from rosette leaves, as
measured by the fluorescein-based ratiometric pH indicator
BCECF (20,70-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluores-
cein) and a semimicroelectrode, respectively. These results sug-
gest that AtNHX5 and AtNHX6 regulate cellular pH
homeostasis.

Three conserved acidic residues in AtNHX5 and AtNHX6
are critical for KC transport and growth in Arabidopsis

Sequence alignment has found that there are four conserved
acidic residues in the transmembrane domains of the NHX
antiporters from bacteria, yeast and mammals.26 Mutation of
three of these conserved acidic residues in yeast ScNhx1p
blocked protein trafficking in yeast, suggesting that these con-
served amino acids are crucial for vacuolar trafficking in yeast.
In addition, mutation of E262 in human NHE1 (E262 is equiv-
alent to E225 of yeast ScNhx1p) abolished ion exchange activ-
ity, suggesting that these conserved residues are essential for
ion transport activity.27 Homology modeling shows that two of
the residues (Asn262 and Asp267) of human NHE1are local-
ized within TM5.28 TM5 is located close to TM4 and TM11,
which form an assembly structure and involve in conformation
change at the cation-binding site following pH activation.28,29

Thus, localization of these acidic residues in the proximity of
the core structure suggests that they may function in binding
and translocating cations in the process of ion exchange.28,29

Wang et al. reported that AtNHX5 and AtNHX6 contain ur
conserved acidic amino acids in transmembrane domains that
align with the ScNhx1p and human NHE1 sequences.21 The
four acidic residues of AtNHX5, D164, E188, D193 and E320,
align with the D201, E225, D230 and E355 of ScNhx1p, respec-
tively; similarly, the D165, E189, D194 and E320 of AtNHX6
line up with the D201, E225, D230 and E355 of ScNhx1p,
respectively.21 They further showed that mutation of three of
the conserved residues in both AtNHX5 and AtNHX6 failed to
recover yeast growth in high KC and hygromicin B. In addition,
they expressed these mutated genes of AtNHX5 and AtNHX6
in nhx5 nhx6, and found that the mutants failed to complement
the growth of the nhx5 nhx6 seedlings. These results suggest
that the conserved acidic residues play critical roles in KC

transport and growth in Arabidopsis.21 In addition, these results
suggest that AtNHX5 and AtNHX6 may share similar core

structure and transport mode to their yeast and human coun-
terparts, and these conserved acidic residues may involve in
binding and translocating cations in ion exchange.21

AtNHX5 and AtNHX6 regulate protein transport toward
the vacuole

In plants, seed storage proteins are synthesized as precursors in
the endoplasmic reticulum (ER). Then they are transported
into the protein storage vacuoles (PSVs) and are converted to
mature forms.30-32 Studies have shown that proteins are trans-
ported to the vacuole through a vesicle-mediated trafficking
pathway that includes the ER, Golgi, TGN, and MVB/PVC.33

Hence, the Golgi, TGN and MVB/PVC are major protein sort-
ing stations in vacuolar transport.34,35 Since AtNHX5 and
AtNHX6 are localized to the Golgi, TGN and PVC, where they
overlap with the protein trafficking pathway, it is interesting to
ask whether these two endosomal NHXs function in protein
trafficking toward vacuole? If yes, how?

Reguera et al. recently reported that AtNHX5 and AtNHX6
were involved in protein trafficking toward vacuole.10 They
found that the precursors of the seed storage proteins 2S albu-
min and 12S globulin were missorted to the apoplast in the
nhx5 nhx6. They further showed that the interaction between
VSR2;1and its cargoes aleurain and 12S globulin was reduced
in nhx5 nhx6. Moreover, they found that the luminal pH of
VSR compartments as well as the trans-Golgi network and pre-
vacuolar compartments was more acidic in nhx5 nhx6 than the
wild type.10 These results suggest that AtNHX5 and AtNHX6
regulate the binding of VSR to its cargoes; endosomal pH
homeostasis is critical for vacuolar trafficking of the seed stor-
age proteins. How pH regulates the interaction between VSR
and its cargoes, however, remains to be studied.
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