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ABSTRACT The DNA base-pair sequences that serve as
gene-regulatory sites have been selected during evolution to
provide an appropriate functional binding for a particular
protein. In most cases, the function depends on the binding
probability, which can be influenced both by the binding
strength and by the abundance of the protein in the cell. As a
consequence, the same function can be achieved with strong
binding sites and a small amount of protein as with weak
binding sites and a large amount of protein. However, increas-
ing the protein burden will decrease the growth rate ofthe cells,
even when all functions remain the same. Thus, for maximal
growth, the protein levels should be as low as possible and the
binding correspondingly strong. On the other hand, sequences
with a weaker binding can be formed in many more ways and
are, therefore, more probable, and random mutations are
more likely to produce them. Thus, the selection pressure
against an increased protein burden can be balanced against
the random mutational drift in the recognition sequences,
thereby tying together the statistics of base-pair choice, the
binding strength, and the protein burden. In terms of this
model, the selection pressure can be estimated from the prop-
erties of a gene-regulatory protein and its recognition sites. A
key feature is the mutational randomization pressure that
appears as a fundamental force shaping the optimal solutions
that provide maximal growth. The model is tested on a number
of gene-regulatory systems in Eseherichia coli. The same prin-
ciples should hold for all proteins for which overall activity in
the cell is proportional to abundance; then the selective pres-
sure to increase the efficiency of an individual protein cannot
be larger than the selective pressure to decrease the total
protein burden.

Many microbial organisms live under intense selection pres-
sure, where the primary competitive advantage, at least
sometimes, is given by a high growth rate. This situation
leads to the hypothesis that the evolutionary selection of
these organisms has optimized their cellular components to
produce a maximal growth rate (1, 2). However, this picture
cannot be complete without also considering the difficulty of
achieving the optimal situation. Opposing the tendency to-
ward ever better solutions will be the random mutations that
are always more likely to reduce fitness than to increase it.
The closer the system is to the optimal situation, the more
likely are the mutations to reduce fitness. This situation is
particularly acute for properties under intense randomization
pressure. Thus, it has been argued that gene-regulatory DNA
sites (3) and the use of nonoptimal codons (4) should be
viewed in this way; there are always so many more ways of
achieving nonoptimal DNA sequences that their presence
can never be totally selected away. Instead, the organism

must compromise some of its potential growth-rate advan-
tage for the much higher likelihood of nonoptimal solutions.

Gene-regulatory proteins can bind to a number of func-
tional recognition sites in the genome of an organism. These
sites exhibit a large variability in their DNA sequences.
Based on the assumption that each sequence has been
selected to provide some appropriate binding, the base-pair
choices can be correlated with the binding strength of any
particular sequence. In many cases-e.g., for repressor and
activator proteins-the function is directly proportional to
the probability that a certain site is occupied by the protein.
This probability, in turn, can be influenced either by the
binding constant of the site or, through mass action, by the
concentration of the protein in the cell. Thus, evolution can
be expected, in some way, to have balanced the cost of
increased protein levels (e.g., through the protein burden)
against some cost or difficulty of increasing binding strength
at the functional sites.
The first relationship to be considered below is that be-

tween the statistics of base-pair choice and binding strength
at the specific sites. This consideration leads to a measure for
the effective randomization pressure on the binding strength
of recognition sequences. The second step is to introduce a
standard population-dynamic selection model that describes
the growth and dominance of favorable phenotypes. This
model includes both the randomization pressure and the
growth reduction due to an increased protein burden. The
most likely variants to be selected are those where the growth
reduction due to increased levels of gene-regulatory protein
is balanced against the higher likelihood for weaker binding
sites. In this way it becomes possible to derive a relationship
between the selection of base pairs in the recognition sites,
the investment in protein, and the evolutionary selection
pressure on the organism.

Base Pair Statistics and Binding

Previously, Berg and von Hippel (3, 5-9) have studied the
relationship between the statistics ofbase-pair choice and the
functional strength of the recognition sites for certain gene-
regulatory proteins. From the statistics of base-pair occur-
rence in the set of natural recognition sites for a gene-
regulatory protein, r, one can define a dissimilarity index, D,
for any base-pair sequence {B1B2B3 . .. B,}

D= E n n=l Lnjlj + 0.5

aD= E 1
+

1'jD lN Lnwj~i+ 5 np+0g+.5 -'

[la]

[lb]

where njBj is the number of occurrences in the natural sites of
a particular base pair By (AT, TA, CG, or GC) at position j;
nm is the number of occurrences of the most common base
pair (the consensus base pair) at this position. The sums are
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taken over all positions j = 1, 2, . . . , s (where s is the site
size), except those that carry a consensus base pair. 0D is the
expected statistical uncertainty (SE) in the numerical value of
the index. The dissimilarity index (in previous communica-
tions denoted AE) is a measure of the statistical sequence
difference ofthe studied site from the consensus sequence for
the natural sites. Similar indexes-or homology scores-
have been defined and used by others (10-12), but the one
given in Eq. 1 has the advantage that it is expected to be
directly related to the functional strength of a recognition
sequence.
From theoretical analysis (3, 7, 9) and applications to

experimental data (3, 5, 8), it has been demonstrated that the
correlation between the statistics of base-pair choice and the
binding constant K of a particular site can be expressed as:

ln(K) = ln(K0) - (l/Ar)D, [2]

where Ko is the binding constant to the consensus sequence,
and the parameter Ar is determined from the slope of the
regression line. From this expression (1/Ar)D corresponds to
the reduction in binding free energy (in units of ki) due to the
presence of nonconsensus base pairs in the sequence. In this
way Ar is primarily a correlation coefficient that expresses the
coupling between statistics and function.
An interpretation of the significance of the parameter Ar

derives from a consideration of the probability density
Prmd(E) for random base-pair sequences to provide a certain
binding free energy E (in units of kT) for the protein r. It can
be shown (3, 7, 9) that:

Ar = Ed(ln(Pmd))/dE]E=E, [3a]

so that Ar expresses the rate of increase of this probability
density as binding strength decreases (increasing E) from the
level E. for the average natural site:

Pmd(E) a exp(ArE) (around E Es). [3b]

Thus, Ar expresses the asymmetry in the distribution for
random sites in the neighborhood of the specific ones; for
large Ar values there will be many more sequences with
weaker binding than the specific ones. One finds (3, 7) that Ar
increases strongly for more constrained sites (i.e., for small
EJ) and approaches zero when the average binding strength
of the specific sites approaches random binding. In this way,
A, can be seen as a measure ofthe randomization pressure on
the binding strength of the recognition sites because muta-
tions would be more likely to drive a site toward weaker
binding for which there are many more sequence possibilities
available, particularly for large Ar values. As a consequence,
it can be expected that Ar in some sense also represents a
selection pressure that balances this randomization ten-
dency. To explore the extent to which this conjecture could
be true, one needs a model for the evolutionary selection of
the system properties of the organism.

Selection

The ratio of the probabilities of selection for two genetic
variants that differ in one mutation and in their relative
growth rates by an amount si can be expressed as (14, 15):

PI/PO = exp(2Nes,), [4]

where N, is the effective population size. The selective
advantage si is negative if the variant i has slower growth.
Thus, the ratio for the probabilities of occurrence of any two
genetic variants (differing only at one position and that differ
in relative growth rates by s) is given by exp(2Ns).

Consider a number of different independent positions
where mutations produce additive changes in growth rate.
Then the probability for a set of such mutations (ijk . . .) at
positions 123 . . . in the genome is

P~k ... = PON ... exp[2Ne(sj + sje + se + . . .)]. [5]

As a consequence, the ratio between the probability for all
possible variants with the same phenotype I (same s and same
functions) that can be achieved in gi different ways and some
basic variant that can be achieved in go ways will be

PI/PO = (g1/go)exp(2Nes). [6]

In this way the degeneracy factors g must enter the proba-
bility expressions when the same function can be achieved in
different ways. These factors express the tendency for ran-
dom mutations to push toward more likely situations. If there
is no growth rate difference (s = 0), Eq. 6 simply corresponds
to random choice.

Let us compare the basic variant, 0, with one, I, where the
binding free energy for all the nr regulatory sites for a protein
r has been shifted by BE. Then from Eq. 3, the ratio of the
degeneracy factors would be

gl/gO = exp(nrArOE). [7]

Assuming that the difference in relative growth rate is As, the
ratio of the probabilities of occurrence for the two variants
will be

PI/PO = exp(nrArBE)exp(2Ne&S). [8]

Considering all such variations, BE, one finds that the max-
imum probability is for those that have a relative growth-rate
change:

As = -nrAr6E/2Nec [9]

This is the maximum likelihood: The binding strength of the
regulatory sites are most likely to be in a region where small
changes lead to a growth rate change as given by Eq. 9. Of
all the possible combinations, this is the one that has the
largest probability of having been selected. If there is no
difference in the degeneracy factors (i.e., Ar = 0), then Eq. 9
would correspond to growth maximization where As = 0.

Protein Burden and Gene Regulation

A small change 8Mp in the protein burden (for instance by a
nonfunctional protein) should lead to a proportional change
As in the relative growth rate constant:

Os = L-Mp/2Ne, [10]

where the parameter 1L has been defined, such that jL/2N, is
the proportionality constant. Mp is the total amount of amino
acids invested in protein in the cell. All things being func-
tionally equal (by assumption), the variant with the smaller
protein investment should have some growth advantage, and
Eq. 10 can be considered as the first term in a general series
expansion. Then using Eq. 6, one finds that two genetic
variants that differ only in their protein investment (but not
in any function or activity related to this protein) will occur
in the ratio

[11]

This relation shows that ,u as defined by Eq. 10 can be
interpreted as the selection pressure against small increases
in the protein burden.
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Consider a gene-regulatory protein r that is built up from Nr
amino acids and is present in Cr copies in the cell. Assume
further that it has nr functional recognition sites in the
genome, each with a binding constant Ki = Koexp(-E,). The
binding occupancy at each site i (i = 1, 2, . . ., fr) is

KiCr CrKOexp(-Ei)
1 + KiCr 1 + CrKoexp(-Ej)

This equation assumes that the law of mass action applies
within the cell; even if the chemical activity of a gene-

regulatory protein is not equal to the concentration, it should
be proportional. In this way nonideal intracellular solution
effects can be incorporated in the absolute values of the
binding constants. These absolute values are unknown and
irrelevant for the following discussions, which rely only on
the relative binding constants.

If the protein amount is changed by 6Cr, its functional
activity (binding occupancy at each of the nr natural sites in
the genome) will change in proportion. However, this change
could be compensated by decreasing the binding free energy
at each of the nr sites by the same amount BE = Cr/Cr. Such
a compensatory change would keep the binding relation
Crexp(-E) invariant [i.e., Crexp(-E) = (Cr + SCr)exp(-E -
BE)]. Thus, we can consider two functionally equivalent
genetic variants, one with a higher level of protein r and
weaker binding constants and the other with a lower level of
the protein and stronger binding constants.
The growth rates of the two functionally equivalent vari-

ants will differ only due to their difference in protein burden,
which is 8Mp = NrbCr. Thus the ratio of the probabilities for
the two variants will be given by Eq. 11 (using Eq. 7 for the
degeneracy factors):

PI/PO = exp(nrAkr6E - PNrBCr).

The data for some gene-regulatory systems from Esche-
richia coli have been collected from the literature and listed
in Table 1 (refs. are given in the first footnote). The main
problem is to find reasonable estimates for the number of
proteins per cell; only cases where the uncertainty in this
numberis afactorof5 orless have been included. From Table
1 one finds that ;L calculated from Eq. 14 is fairly constant
around ju. 1O- in E. coli. The invariance holds reasonably
well, considering the large uncertainties -in many of the
numbers involved. A possible exception is the arg repressor
(r = 4 in Table 1), which, if it is, indeed, present in only 40
copies in the cell, would seem to have a stronger selection
against increasing this number than expected. [Recent results
(13) in Salmonella typhimurium, however, indicate that the
arg repressor binds simultaneously to two sites. This binding
would reduce by half the number of sites, nr, and thereby
bring the corresponding ;L value more in line with those of
other systems.]
The extent to which the growth rate is decreased by an

increased protein burden has been a matter of some contro-
versy (20, 21). Naively one might expect that the relative
decrease in growth rate is equal to the relative increase in
protein investment:

As= 6Mp/Mp. [15]

Using a theoretical model for growth maximization (2), one
can show (O.G.B., unpublished work) that this is, indeed, a
lower limit for the optimal relation. Also experimentally this
relationship could hold, although interpretations of the ex-
perimental data have been difficult (21). Using the estimate
for 8A from Eq. 15 above and Eqs. 10 and 14, one finds that
the effective population size would be given by

Ne = Arnr/2fr,[13]

By considering all such functionally equivalent variants for
which BE = 6Cr/Cr, one finds that the maximum probability
is given by those variants for which

nfrAr = ANrCr. [14]

In this way, the selective growth advantage of one variant is
balanced against the larger number of possibilities for the
other. The parameter choices most likely to occur are those
that have the maximal probability under the constraints that
produce the observed functional properties of the organism.
Eq. 14 provides the fundamental relation between the statis-
tics of base-pair choice (through Arnr) in a set of recognition
sites and the investment (NrCr) in the relevant regulatory
protein coupled via the selection pressure A& as defined by Eq.
10.

Consequences

Eq. 14 relates the properties of the binding sites with the
investment in gene-regulatory protein through the selection
pressure ,u. When the exact binding relations (Eq. 12) are
considered, which involve the free and not the total protein
amounts, one finds that the quantity Cr that enters Eq. 14
would be the excess amount of the protein (i.e., the amount
not bound at functional sites). It does not matter whether
some or most ofthis excess is bound at nonspecific DNA sites
because the concentration of free protein is expected to be
proportional to the concentration of the excess; then Eq. 14
holds with Cr being the excess amount. In most cases the
difference between the total and the excess amounts is not
very large. From Eq. 14 one expects that the ratio Arnr/NrCr
= A should be an invariant for all gene-regulatory systems of
an organism.

[16]

wherefr = NrCriMp is the fraction of the total protein mass
that is invested in the excess of the gene-regulatory protein
r under consideration. This is also listed in Table 1. The
resulting estimate for Ne between 2 x 104 and 8 x 104 would
be unreasonably low (14) if it were an estimate of a real
population size. However, in this application, N, is best

Table 1. Testing of model on gene-regulatory systems from E.
coli

IL x 2N. x
r* nr Art Nr Crt 105§ fr1 10-511
1 1000 1.0 4000 1200-6000 20-4 0.007-0.01 1.4-1
2 17 1.3 2 x 202 650 8 0.00013 1.7
3 100 0.8 2 x 209 3000 6 0.0013 0.6
4 16 2.1 6 x 156 40-200 90-20
5 1 4 x 347 10 7 0.000017 0.6
6 3 2 x 115 30-150 40-9 0.00008 0.4

nr, Number of recognition sites in genome; Nr, number of amino
acids in the active multimer of the protein.
*Type of regulatory protein: r = 1, RNA polymerase (3, 16); r = 2,
LexA protein (8, 17); r = 3, cAMP receptor protein (5); r = 4, arg
repressor (8, 18); r = 5, lac repressor; r = 6, trp repressor (19).

tAr values estimated from the statistics-activity correlation given in
Eq. 2.
tExcess number of protein molecules in the cell; a range of numbers
refer to different growth conditions for RNA polymerase and trp
repressor and to experimental uncertainty in the other cases.
Presumably, the uncertainty is much smaller for the cases where no
range is given.
§Proposed invariant ratio A is calculated from Eq. 14. In the three
cases where Ar is unknown, Ar = 1 has been used.
lFraction of the total protein mass invested in protein r, fi =
NrCr/Mp; only cases where this fraction has been explicitly given in
the literature are listed.
12N. from Eq. 16, assuming that 5s/8Mp = -1/Mp.
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considered as a parameter describing the intragenomic se-
quence variability in individual cells, or clones, rather than
the variability between different clones. It is noteworthy that
a study (22) ofthe codon bias in E. coli also leads to a similarly
small value of N-.
The relationship above was derived from a consideration of

the most likely variants with given functional properties. It is
also interesting to consider what will happen to the growth
rate of the cells if there is a mutational change in the level of
some gene-regulatory protein. A small increase SCr in such a
level will lead to a change in growth rate both due to the cost
of the increased protein burden and due to the functional
change from the increased occupancy levels at the regulatory
sites. Using Eqs. 9, 10, and 14, one finds that these two
effects cancel, so that the total change in the growth rate is
zero. Thus, in this model the growth rate is maximized with
respect to level of the gene-regulatory protein but is not
maximized with respect to strength of the binding sites. A
small increase in all binding constants combined with a small
decrease in protein amount would lead to a higher growth
rate. The maximum likelihood applies to the system param-
eters, which-like the DNA base-pair choice-is under
strong randomization pressure and corresponds to growth-
rate maximization for the parameters that are not under
strong randomization pressure. (Actually, in the general
picture there would be a small contribution to the level of
gene-regulatory protein also from the randomization pres-
sure, for instance, on the promoter of its gene.)
As an example, where the repressor level could be opti-

mized in this way to produce a maximal growth rate, let us
consider an operon where a repressor controls the production
of a number of enzymes. Under repressed conditions, the
concentration (the basal level) of enzymes to a first approx-
imation is expected to be inversely proportional to the
concentration of repressor in the cell. Consequently, a small
decrease in repressor level will lead to a small increase in
level of enzymes. It can easily be shown that these two
changes will cancel and keep the total protein burden con-
stant if the mass invested in the basal level of enzymes is
equal to the mass invested in repressor (this is actually
approximately the case for the lac operon in E. coli). Thus,
if these enzymes and the repressor have no other activities in
the cell, a small change in repressor level will leave the
protein burden and, therefore, also the growth rate invariant.
In this case the system would be growth maximized with
respect to the repressor level. As a consequence, the growth
rate would also be insensitive to small statistical fluctuations
in the repressor numbers. Conversely, if these investments
are very different, it would imply that the repressor or the
enzymes have other functional effects in the cell.
The implications of these calculations are similar to those

for the mutation-selection balance that has been proposed for
the nonrandom use of synonymous codons (4, 14, 15, 22, 23).
In this case the relationship between base-pair choice and
function is not as straight-forward as in the case of the
recognition sites described here, but the basic result is the
same: when selection is not sufficiently strong, the random-
ization pressure will lead to nonoptimal choices ofbase pairs.
An optimal solution for the system parameters can be found
only in the context of balancing the randomization pressure.
One can expect that similar considerations will apply to the

function of enzymes; there should be many more amino acid
sequences providing a lower activity than a maximal one.
Thus, there may be a strong randomization pressure also on
these sequences, so that the selection pressure is not suffi-
ciently strong to push the constructions to their limits. Hartl
and coworkers (24) have shown how enzymes evolving
toward higher kinetic efficiency will reach a point where
further improvements will lead to such small increases in
fitness that they will be effectively neutral. To this picture we

should add the asymmetry in the mutational pressure: the
closer to perfection an enzyme is, the stronger the random-
ization pressure must be. From the actual peak, all paths
must go downhill. The randomization pressure on the func-
tional protein sequences, however, is not easily described
because there is no straight-forward relationship between
sequence choice and functional activity. For many enzymes,
it could also be possible to get the same overall activity by
increasing their amounts rather than the functional efficiency
per enzyme. In such cases the selective pressure to increase
efficiency cannot be larger than the pressure to decrease the
total protein burden. Thus, it may, in fact, be possible to
improve significantly on Nature's designs in many cases.

Discussion

The results were derived from the selection model that leads
to Eq. 6. One major problem is that this result requires some
equilibrium in the mutational selection, a mutation-selection
balance. This is not likely to be strictly accomplished in a
global sense because the system will never have time to
explore all mutational variations. Thus, Eqs. 4-6 must be
considered locally for variations around some variant that
may be the accidental result ofthe evolutionary history ofthe
organism.
The results are also based on the assumption that a change

in the amount of a gene-regulatory protein, while keeping the
binding probability at the specific sites constant, will only
affect the fitness of the organism through the protein burden.
This assumption is obviously an oversimplification. For
instance, a large protein excess will lead to faster binding at
a site, and this could also be of functional importance.
Similarly, the cost of increasing the amount of a gene-
regulatory protein may not be only in the increased protein
burden; an excess amount could bind at the wrong places in
the genome and interfere with the regulation of other genes.
Thus, the excess levels of protein could be associated with
some advantage and/or cost unrelated to the protein burden.
Nevertheless, the binding probability at the functional sites is
probably the main functional requirement. Some of the
least-abundant proteins (e.g., the lac repressor) could already
have reached levels where random fluctuations in their
numbers could become detrimental if the levels were further
reduced (25, 26). However, this constraint should not be a
problem for most proteins listed in Table 1.
The basic assumption is the maximum likelihood expressed

through Eqs. 13 and 14, which simply requires that the
system parameters are the most probable ones that can give
rise to a certain function. In this case the system is function-
ally constrained such that the required levels of the gene
products are strongly selected for and not subject to genetic
drift; the levels ofgene-regulatory protein and the strength of
the recognition sites can be chosen in many ways to produce
these gene-product levels. The most likely situations to occur
are those where selection and randomization pressures bal-
ance each other.
The model has no free parameters. Both 8s/6Mp and N.

should be independently determinable. Application of this
selection model to some gene-regulatory sites in E. coli gives
,u = -2Ne(8s/8Mp) 10-4; as discussed above, this implies
that the effective population size is much smaller for this
situation than usually assumed. Alternatively, the random-
ization pressure on the DNA sites is not sufficient to account
for the excess protein numbers that could be set at a high level
due to some other requirements. However, the approximate
proportionality between the number of sites and the mass of
gene-regulatory protein, as displayed by the invariance of ,u
in Table 1, is the predicted result from the model. It would be
more difficult to explain were it not, in some way, based on
a consideration of the protein burden; alternative consider-
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ations based on the function (e.g., association rates or
interference at the wrong sites) would be likely to involve the
concentration and not the mass of the protein. More and
better data, primarily on the protein abundances, are required
to substantiate this selection model. If it holds, the model
opens up the possibility of using the results for one gene-
regulatory protein to estimate properties of another or even
comparing properties of different organisms.
Although many of the details of this model are undoubtedly

oversimplified, these basic principles should hold also for
proteins other than the gene-regulatory ones: (i) The mutational
pressure on the sequences (DNA or protein) toward lower
functional activity increases the closer a system is to maximal
activity. (ii) The most likely situation to occur is the one where
randomization pressure and selection pressure balance each
other. (iii) For proteins for which overall activity in the cell is
proportional to abundance (mass action), the selective pressure
on the functional activity per protein will be limited by the
selective pressure on the total protein burden.
Through an expansion of the growth-maximization princi-

ple to include the randomization pressure it has been possible
to tie together the statistics of base-pair choice with the
amounts invested in gene-regulatory proteins and the selec-
tion pressure on the protein burden for the organism. This
expansion adds another dimension to the description of
functional recognition sites. The particularly simple combi-
natorics of the linear DNA sequences that constitute the
recognition sites allowed quantitation of the expected rela-
tionships.
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