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Introduction
Genomic data acquisition is now trivial for biologists. Yet, moving from millions of sequence
reads to an assembled and annotated genome continues to pose a daunting challenge. The first
animal genome sequenced arose from the free-living model nematode Caenorhabditis elegans
[1]. This venture provided an unprecedented foundation for new insights into genome func-
tion and ‘omics tool development. However, the C. elegans endeavor has been tough to repeat,
even with the advent of new high-throughput DNA sequencing technologies. For example, the
first plant-parasitic nematode (PPN) genomes were published ten years after the C. elegans
genome [2,3], and only five publication-quality PPN genomes are presently available [4–6].

Fig 1 overviews the course of a typical genome project. Millions of DNA sequences are ini-
tially collected in a matter of days, thanks to new DNA sequencing technologies. Early analyti-
cal phases (quality control and initial assembly) are also quick and usually straightforward.
However, the subsequent computational stages (refining the assembly, gene prediction, and
annotation) present significant bioinformatics bottlenecks. These lengthy in silico steps require
multiple iterative stages of analysis, finally leading to a finished genome deemed “good enough”
for publication. These latter stages often take years.

The term “genome skimming” was recently coined [7–9] to describe shallow sequencing
approaches aiming to uncover conserved ortholog sequences for phylogenomic studies. Here,
we overview a genome skimming strategy applied to six PPN species but expand the scope
beyond phylogenetics and toward diverse questions relating to pathogen function and biology.
We demonstrate our strategy’s utility in rapidly revealing insights and new hypotheses relating
to nematode genome structure, effector genes, and endosymbionts.

Genome Assembly Results
We applied our genome skimming strategy (Fig 1; see S1 Text) to six PPN species: Anguina
agrostis, Globodera ellingtonae, Pratylenchus neglectus, P. penetrans, P. thornei, and Xiphinema
americanum. Five of these species are in the “top ten” list of nematode plant pathogens [10].
Our approach begins like most genome projects by creating a single unrefined assembly for
each PPN that provides a reference set of sequences for subsequent study. The lengthy down-
stream bioinformatics steps of typical genome projects, however, were simply not done. After
completing single-pass assemblies, we examined the basic properties of the assembled contigs
(Table 1). Assemblies yielded between ~10,000 and ~50,000 contigs per PPN, with average n-
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fold DNA sequence coverage values ranging from 7.7X to 30.4X. With an average coarse
genome size estimate of 107.1 Mb and average GC content of 40.5%, these 6 PPN genome
assembly patterns are consistent with known nematode genome size ranges [11,12]. We note
that our smallest estimate (38.5 Mb) came from X. americanum, whose relative in the family
Longidoridae, Longidorus kuiperi, also has a small genome size estimate of 56.5 Mb [13]. The
N50 statistic, a common statistical measure for average length of a set of sequences (see S1 Text

Fig 1. Genome skimming schematic. Boxes progressing diagonally from top left to bottom right show steps typical of conventional genome
projects. Grey boxes show steps shared by genome skimming and conventional genome projects. Red boxes, arrows, and Xs show conventional
genome project steps eliminated in the genome skimming approach. Green boxes show analyses specific to our genome skimming strategy.

doi:10.1371/journal.ppat.1005713.g001
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for more detail) was 8,863 bp on average for the six PPN species analyzed. Since nematode
genes average ~2–3 kb in length [1,11,12], the contigs resulting from our single-pass assembly
are sufficiently long to be useful database resources for BLAST [14].

Characterizing Genomic Variation
Early genome sequencing initiatives focused on model organisms such as C. elegans, in which
sequenced DNA came from highly inbred lab populations. Modern pathogen genomics, how-
ever, often requires analysis of natural populations in which numerous factors can lead to devi-
ations from the genomic uniformity of an inbred lab culture. For example, pathogens may
display population-level genetic variation, within-individual heterozygosity, and other devia-
tions (e.g., polyploidy or interspecies hybridization). These pose potential challenges but also
opportunities for discovery. Interspecies hybridization and associated genome admixture is of
increasing relevance to natural parasite populations [15].Meloidogyne incognita, the world’s
most devastating PPN species, evolved through between-species hybridization, as evidenced by
recent phylogenomic analyses and the complex ploidy state of its nuclear genome [2,16]. The
extent of hybridization among PPN species, however, remains unclear.

We developed a simple BLASTN-based method to quickly screen for evidence of genomic
variation, using a list of 65 conserved single copy orthologs found in the genomes of C. elegans
and G. rostochiensis (S1 Table) and our PPN genome assemblies. G. rostochiensis orthologs

Table 1. Genome skimming summary information and effector gene hits.

Aa Ge Pn Pp Pt Xa

Genomics Summary
Number of nematodes 17,000 37,000 48,000 14,700 79,000 1,000

μg DNA yield 1.6 5.4 9.0 1.45 9.4 1.5

Number of reads 9,133,652 10,453,612 11,109,554 10,653,645 8,517,724 7,937,548

Bases sequenced (Mbp) 2.5 2.8 3.0 2.9 2.3 2.2

Insert size (mean +/- SD) 525 +/- 114 530 +/- 99 552 +/- 130 496 +/- 153 560 +/- 57 556 +/- 78

Maximum RAM for assembly (Gb) 60.1 57.7 60.8 94.7 53.8 57.0

Assembly time (min) 16 18 26 27 24 18

% of reads assembled 61.8 61.5 69.2 16.1 61.7 32.6

Number of contigs 35,380 18,033 13,212 37,555 47,845 31,176

Contig lengths sum (Mbp) 154.2 100.8 129.8 56.3 163.2 38.5

N50 (bp) 7,409 11,355 26,618 1,309 5,673 936

Largest contig (bp) 97,848 172,336 333,542 39,629 105,621 48,513

Average coverage 9.76 30.4 15.1 7.7 8.6 16.3

% G+C 39.0 36.7 43.9 38.5 40.0 44.6

Effector Genes Hits

Annexin + + + + + +

β-1,4-Endoglucanase + + + + + +

Cellulose Binding Protein – + – – – –

Chorismate Mutase – – – – + –

Fatty Acid & Retinol Binding Protein + + + + + –

Peroxiredoxin + + + + + +

Pectate Lyase – – + + + –

SPRYSEC – + – – – –

Transthyretin-like Protein + + + + + –

Venom-like Allergen Protein + + + + + –

doi:10.1371/journal.ppat.1005713.t001
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were used as queries against our G. ellingtonae contig database; single hits were found for all
orthologs in the latter species, suggesting a high degree of genomic uniformity in the sample
sequenced for this species. For the other 5 PPN species, however, more variable results were
observed (Fig 2A). The median number of orthologs was equal to 1 for 2 species (A. agrostis, X.
americanum), with small variances in copy number among the 65 genes (0.56 for A. agrostis,
1.25 for X. americanum). This small variation likely reflects some small genetic variation
among the nematodes sequenced and/or the occurrence of lineage-specific duplicates for some
of the orthologs. The median number of orthologs detected was 2 for all 3 Pratylenchus species.
For the P. penetrans sample, it was known that nematodes from many field populations were
combined in the sample used for the Illumina run, and thus, this genomic diversity is reflected
in the high variance in ortholog copy number calculated for this species (4.46). The sequenced
DNA samples for P. neglectus and P. thornei, however, each came from single nematode popu-
lations. The variances for these two species (0.67 and 0.95, respectively) were similar to those
calculated for A. agrostis and X. americanum. The median value of two copies per ortholog for
P. neglectus and P. thornei, combined with their low variance, suggests possible tetraploidy in
these species. This hypothesis is supported by cytological evidence collected nearly 50 years ago
[17] suggesting tetraploidy for P. neglectus and diploidy for P. penetrans.

Finding Effector Genes
Discovery and functional characterization of effector genes, whose products directly engage in
attacks on host defenses, is a central aim of any pathogen genome project. Protein sequences
for 10 effectors, well characterized in other PPN species (S2 Table), were used as TBLASTN
queries to screen our PPN contig databases for homologous matches. Our search revealed 42
matches (out of 60 possible) distributed across the PPN genomes (Table 1). As expected, more
hits were observed in the 5 tylenchid PPN species analyzed (ranging from 6 to 8) compared to
the very distantly related X. americanum, in which only 3 hits were observed. These 3 genes
(annexin, β-1,4-endoglucanase, peroxiredoxin) were found in all 5 of the other species studied;
a previous study revealed evidence for an expressed endoglucanase effector in X. index [18], a
congener of X. americanum. The 3 X. americanum hit e-values (averaging 7.1 E-30) and hit

Fig 2. Box and blob plots. (A) Box plots reporting results for numbers of homologs detected for 65 highly conserved orthologs in 5 PPN species
analyzed. Results forG. ellingtonae are not included because this species was found to encode a single homolog for all 65 orthologs. (B) and (C)
Blob plot results for X. americanum and P. penetrans, respectively. Colors indicate BLASTmatches to different species of bacteria.

doi:10.1371/journal.ppat.1005713.g002
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lengths (averaging 459 bp) were larger and shorter, respectively, compared to averages for
these 3 genes in the other 5 species (1.0 E-42, 632 bp). The addition of a simple single BLAST
step to our genome skimming strategy quickly revealed the presence of numerous putative
effector genes in the PPN species, though follow-up experimentation and analysis remains nec-
essary to evaluate whether or not bona fide effectors are encoded by the DNA sequences
identified.

Discovering Endosymbionts
Bacterial endosymbionts, such asWolbachia spp., are well known and widespread components
of diverse arthropods. Genome sequencing efforts in filarial nematode species revealed the
presence ofWolbachia, which functions as an obligate mutualist in these pathogens of animals
and humans [19,20].

We combined “Blob plot” approaches [21] with BLAST to uncover bacterial genomes asso-
ciated with our PPN species. For the X. americanum analysis, evidence for its known endosym-
biont Xiphinematobacter sp. [22] was observed as expected (Fig 2B). This genome-skimming
result led to the hypothesis that the contigs in this blob constituted the Xiphinematobacter sp.
genome. Follow-up bioinformatics, functional genomics, and fluorescence in situ hybridization
(FISH) microscopy work supported this hypothesis and suggested that the endosymbiont func-
tions as a nutritional mutualist with its nematode host [23].

A second interesting case was P. penetrans, in which 1,593 contigs matched bacterial DNA
of diverse origins. Although many of these sequences contained high %GC, which were likely
environmental contaminants (Fig 2C), two bacterial blobs of higher %AT were found contain-
ing contigs matching DNA of the known endosymbiontsWolbachia sp. and Cardinium sp.
The only PPN previously reported to harborWolbachia is Radopholus similis [24]. A P. pene-
trans contig matched the 16S rDNA gene forWolbachia in R. similis at 98% identity. Further
bioinformatic and FISH work is underway to validate and build upon these initial endosymbio-
sis hypotheses arising from the P. penetrans genome skimming data.

Conclusions
Genome skimming provides a rapid and affordable avenue for biological inquiry and hypothe-
sis generation that avoids the time delays that accompany most genomic endeavors. A single-
pass assembly followed by BLAST-based and other simple analyses revealed evidence for
potential genomic hybridization, effector genes, and endosymbionts in the PPN genomes stud-
ied. Although genome skimming provides an effective approach to hypothesis generation, fol-
low-up work remains necessary for hypothesis evaluation. Genome skimming alone will not
suffice for biological questions requiring gene prediction and annotation (e.g., patterns of gene
family expansion, instances of horizontal gene transfer). Nonetheless, our genome skimming
pilot experiment provided quick and exciting biological insights and community genomic
resources, essentially doubling the number of PPN species for which published genome
sequence resources are available. How might our understanding of nematode pathogens
change if genome skimming were applied to 600 PPN species instead of 6?
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