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Abstract

Alzheimer’s disease (AD) is a progressive brain disease. Accurate diagnosis of AD and its 

prodromal stage, mild cognitive impairment, is crucial for clinical trial design. There is also 

growing interests in identifying brain imaging biomarkers that help evaluate AD risk 

presymptomatically. Here, we applied a recently developed multivariate tensor-based 

morphometry (mTBM) method to extract features from hippocampal surfaces, derived from 

anatomical brain MRI. For such surface-based features, the feature dimension is usually much 

larger than the number of subjects. We used dictionary learning and sparse coding to effectively 

reduce the feature dimensions. With the new features, an Adaboost classifier was employed for 

binary group classification. In tests on publicly available data from the Alzheimers Disease 

Neuroimaging Initiative, the new framework outperformed several standard imaging measures in 

classifying different stages of AD. The new approach combines the efficiency of sparse coding 

with the sensitivity of surface mTBM, and boosts classification performance.
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1. INTRODUCTION

Alzheimers disease (AD) is a chronic neurodegenerative disease in which amyloid plaques 

and neurofibrillary tangles accumulate in the brain. The most common early symptom is the 

difficulty remembering recent events (short-term memory loss). As the disease advances, 

patients may lack motivation, have problems with self-care, and may show behavioral 

abnormalities or even withdraw from family and society [3]. AD has a typical pattern of 

progression, with changes in the brain that correspond to the types and severity of 

symptoms. Disease progression is commonly divided into three main stages: asymptomatic 

normal aging (i.e., healthy controls; CTL), mild cognitive impairment (MCI) and AD. All of 

these classifications are defined clinically based on behavioral and cognitive assessments. 

Although a person with MCI has elevated risk of developing AD, many people with MCI 

remain stable for some time or develop other degenerative conditions pathologically distinct 

or partially overlapping with AD. Besides, some normal elderly people have elevated risk of 

developing MCI, but others may remain stable or even develop AD after only one year of the 

onset to MCI.

To diagnose different stages of disease, computer-aided diagnostic classification is 

increasingly popular in neuroimaging, especially given the vast number of features available 

to assist diagnosis in a 3D brain image [26]. Understanding which brain imaging features are 

best for diagnostic classification is also of increased interests. An important question for 

diagnostic classification based on voxel-based or surface-based morphometric maps is which 

statistics are best to analyze. Statistics derived from anatomical surface models, such as 

radial distances (RD, distances from the medial core to each surface point) [15, 23], 

spherical harmonic analysis [22, 7], local area differences (related to the determinant of the 

Jacobian matrix) [29], and Gaussian random fields [2] have all been applied to analyze the 

shape and geometry of various brain structures. Surface tensor-based morphometry (TBM) 

[6, 4] is an intrinsic surface statistic that examines spatial derivatives of the deformation 

maps that register brains to common template and construct morphological tensor maps. In 

recent studies, surface multivariate TBM (mTBM) [27, 25] was found to be more sensitive 

for detecting group differences than other standard TBM-based statistics. In this work, we 

evaluated the potential of surface mTBM and RD as imaging biomarkers for AD diagnosis 

and prognosis research.

In this context, when we applied three-dimensional statistical maps to classification, the 

feature dimension is usually much larger than the number of subjects, i.e. the so-called “high 

dimension, small sample size problem”. When a vast number of variables are measured from 

a small number of subjects, it is often necessary to reduce their dimensions. There are two 

main approaches for this: feature selection and feature extraction. Feature selection reduces 

the feature dimension by selecting a subset of original variables [9]. Feature extraction 

reduces the dimension based on mathematical projections, which transform the original 

features into a lower dimensional but more appropriate feature space [8]. Because of the low 

accuracy of image content recognition based on global features, sparse coding has been 

proposed to use a small number of basis vectors to represent local features effectively and 

concisely [13]. Recently, sparse learning has increasingly been applied in neuroimaging to 
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study genetic influences on the brain, functional connectivity and for outcome predictions 

[24, 21, 26].

In this paper, we developed a novel approach, based on surface fluid registration, radial 

distance, mTBM, and dictionary learning and sparse coding, to study hippocampal 

morphometry for AD diagnosis. We hypothesized that our surface multivariate statistics 

combined with sparse learning might improve the accuracy for classification based on 

neuroimaging data. We tested our hypothesis on the ADNI dataset used in our prior work 

[20] and studied three different classification problems. The results showed that our new 

method achieved better performance than several standard measures, on all three different 

classification tasks.

2. MULTIVARIATE SURFACE TENSOR-BASED MORPHOMETRY

We have studied surface mTBM in our prior work, e.g. [27, 20]. In general, surface mTBM 

involves two steps. In the first step, a nonlinear surface registration method, such as surface 

fluid registration [20], or a constrained harmonic map [27, 26], is applied to register each 

individual surface to a common template surface. Following that, a set of multivariate 

statistics are computed by analyzing the local deformations.

Suppose ϕ = S1 → S2 is a map from surface S1 to surface S2. The derivative map of ϕ is the 

linear map between the tangent spaces dϕ : TM(p) → TM(ϕ(p)), induced by the map ϕ, 

which also defines the Jacobian matrix of ϕ. The derivative map dϕ is approximated by the 

linear map from one face [v1, v2, v3] to another one [w1, w2, w3]. First, we isometrically 

embed the triangles [v1, v2, v3] and [w1, w2, w3] onto the plane R2. Let vi, wi, i = 1, 2, 3 to 

represent the 3D position of points vi, wi, i = 1, 2, 3. Then, the derivative map J can be 

computed by

(1)

Based on the derivative map, J, we define the deformation tensors as S = (JT J)1/2. Instead of 

analyzing shape differences based on the eigenvalues of the deformation tensor, we consider 

a new family of metrics, the “Log-Euclidean metrics” [1]. These metrics make computations 

on tensors easier to perform, as the transformed values form a vector space, and statistical 

parameters can then be computed easily using standard formulae for Euclidean spaces.

As S is a positive-definite symmetric matrix, the logarithm of the deformation tensor S 
analyzed in mTBM has 3 independent components. Besides these, we also adopted the radial 

distance(RD) [15, 23] as an additional feature. RD measures the shortest distance between 

every surface point and the middle axis of a tube-shape surface. The intuition is that mTBM 

describes the surface deformation along the surface tangent plane while RD reflects surface 

differences along the surface normal directions.

Zhang et al. Page 3

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2016 August 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



3. DICTIONARY LEARNING AND SPARSE CODING

For a classification algorithm based on 3D images or surface-based features, the feature 

dimension is usually much larger than the number of subjects, e.g., mTBM features. In this 

paper, we used the technique of dictionary learning and sparse coding [12] to reduce the 

dimension before prediction. Dictionary learning has been successful in many image 

processing tasks as it can concisely model natural image patches. Stochastic Coordinate 

Coding (SCC) [11] was adopted to construct the dictionary because of its computation 

efficiency.

Given a finite training set of signals X = (x1, x2, ⋯, xn) in Rp×n image patches, each image 

patch xi ϵ, Rp, i = 1, 2, ⋯, n, where p is the dimension of image patch, we aim to optimize 

the empirical cost function

(2)

where D ϵ Rp×m is the dictionary, each column representing a basis vector, and l is a loss 

function such that l(x, D) should be small if D is “good” at representing the signal x.

Specifically, suppose there are m atoms dj ϵ Rp, j = 1, 2, ⋯ , m, where the number of atoms 

is much smaller than n (the number of image patches) but larger than p (the dimension of the 

image patches). xi can be represented into . In this way, the p-dimensional 

vector xi is represented by an m-dimensional vector zi = (zi,1, ⋯ , zi,m)T, which means the 

learned feature vector zi is a sparse vector.

Then, we can incorporate the idea of sparse patch features into the following optimization 

problem for each patch xi:

(3)

where λ is the regularization parameter, ∥ · ∥ is the standard Euclidean norm and 

. The first term of Eq. 3 measures the degree of goodness representing the 

image patches. The second term ensures the sparsity of the learned feature zi. D = (d1, d2, 

⋯ , dm) ϵ Rp×m is the dictionary. To prevent an arbitrary scaling of the sparse codes, the 

columns di are constrained by

(4)

Thus, the problem of dictionary learning can be rewritten as a matrix factorization problem 

as follows:

Zhang et al. Page 4

Proc IEEE Int Symp Biomed Imaging. Author manuscript; available in PMC 2016 August 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(5)

It is a non-convex problem with respect to joint parameters in the dictionary D and the 

sparse codes Z. However, it is a convex problem when either D or Z is fixed. When the 

dictionary D is fixed, solving each sparse code zi is a Lasso problem. But because the 

hippocampal feature dimension m is much larger than n, solving the Lasso problem might be 

time-consuming. On the other hand, when the sparse codes are fixed, it will become a 

quadratic problem. Solving the sparse coding problem also requires a lot of time when 

dealing with large-scale data sets and a large size dictionary. Thus, we choose the SCC 

algorithm [11], which can dramatically reduce the computational cost of the sparse coding 

while keeping a comparable performance.

4. EXPERIMENTAL RESULTS

4.1. Data Description

Data used in this work were obtained from the Alzheimer’s Disease Neuroimaging Initiative 

(ADNI) project [28]. At the time of downloading (09/2010), the baseline dataset consisted of 

843 adults, aged 55 to 90, including 233 elderly healthy controls (CTL), 410 subjects with 

mild cognitive impairment (MCI) and 200 AD patients. In this work, we studied a total of 

810 subjects, the same dataset used in our priori work [20]. Within this population, there 

were 228 CTL people, 194 AD subjects, and 388 MCI patients. Among the 810 subjects, 

142 MCI patients converted to AD within 48 months, which we called MCI converters. And 

39 CTL subjects converted to MCI within 48 months, which we called CTL converters.

4.2. Sparse Coding and Classification

After automatically segmenting the hippocampus with FSL [10] from brain MR images, we 

built parametric surface meshes to model hippocampal shapes. High-order correspondences 

between hippocampal surfaces were enforced across subjects with a novel inverse consistent 

surface fluid registration method [20]. Multivariate statistics consisting of mTBM and RD 

were computed for surface deformation analysis. In our study, each registered hippocampal 

surface has 15,000 vertices. On each vertex, we computed a set of multivariate statistics 

consisting of mTBM (3 × 1) and RD (1 × 1).

In total, we obtained a 4 × 1 feature vector on each point of two regular grids with 150 × 100 

points on both left and right hippocampal surfaces from each subject. To extract useful 

surface features, we first randomly generated a number of 10 × 10 windows on each surface 

to obtain a collection of small image patches with different amounts of overlap. An example 

of an image patch collection is shown in Fig. 1. As these patches are overlapped, a vertex 

may be contained in several patches. For such an overlapping vertex, its value in the 

restructured mesh was obtained by averaging their counterparts from the centered patches. 

The procedure is in fact equivalent to applying a high-pass filter to the original mesh. As a 

result, the geometrical structures are still present in the centered mesh, but some low 

frequencies have disappeared. Finally, we transferred the original hippocampal surface 
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features into 1008 overlapping patches. We initialized the dictionary via selecting random 

patches [5], which has been shown to be a very efficient method. Then we learned the 

dictionary and sparse codes by SCC using the initial dictionary [11]. All three experiments 

involved training for 10 epochs using a batch size of 1. When the dictionary and sparse 

codes were learned, we applied max pooling [18] to generate features for annotation. After 

feature reduction, the dataset was reduced to a reasonable size and classification was 

performed.

Like a “committee” of weak classifiers, classifier ensembles [16] may achieve more 

accuracy than any individual member classifier. In this work, we employed the Adaboost 

[17] to do the binary classification and discriminate between individuals in different groups. 

For comparison purposes, we also computed hippocampal volumes (Vol.) and surface areas 

(Area) within the MNI space model in each side of brain hemispheres [14]. The Parzen 

window classifier[19] with the linear kernel assuming a prevalence of 50% was applied to 

classify individuals based on volume and area data. An N-fold leave-one-out cross validation 

protocol was adopted to estimate classification accuracy. All subjects were randomly divided 

into N folds. The surface biomarkers were selected by training on N-1 folds and the test was 

performed on the remaining fold. We rotated this procedure for N times to estimate the 

accuracy.

We tested the new framework in three classification experiments, including (1) AD vs. CTL, 

(2) MCI converters vs. MCI non-converters, and (3) CTL converters vs. CTL non-

converters. For the last task, to make the classification fair and not confounded, we selected 

73 non-converter subjects with matched sex, age and initial memory scores. Details of 

selected subjects, including the training and testing subject numbers in each round, are 

shown in Table 1.

4.3. Classification Results

The output of each classification experiment was compared to the ground truth, and a 

contingency table was computed to indicate how many class labels were correctly identified, 

as members of one of the two classes. The rows of the contingency table represent the true 

classes and the columns represent the assigned classes. The cell at row r and column c is the 

number of subjects whose true class is r while their assigned class is c. A possible 

combination of ground truth and predicted classification for two classes may be represented 

by a matrix  Four performance measures: Sensitivity, Specificity, Positive 

predictive value, and Negative predictive value, were computed as follows: 

, , , 

. Besides them, we also computed the area-under-the-

curve (AUC) of the receiver operating characteristic (ROC). Tables 2,3,4 show classification 

performance in the three sets of experiments.
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In Table 2, the Area has the worst performance, when used alone. The sensitivity of RD is 

zero, which means that RD feature cannot generate a good classification between the AD 

and the healthy control group. It predicts all of the test cases to be negative. The mTBM, 

used on its own, performs better than the RD feature, but after several rounds of feature 

reductions, it performs not so well as the proposed multivariate statistics consisting of RD 

with mTBM. In Table 3, although the volume achieves a good performance on MCI 

converters vs. non-converters, the mTBM receives higher accuracy. Besides, our new 

method also improve the accuracy, sensitivity and specificity compared with other features 

or other methods. In Table 4, as the number of subjects becomes smaller and the 

morphometric differences between groups more subtle, the classification become even more 

challenging, only volume feature and the combined statistics achieved meaningful results. 

The results show that RD, mTBM and Area cannot be used to learn a good model, as they 

tend to classify all subjects into one class. The comparison also shows that our new 

framework selected better features and made better and more meaningful classifications.

Using our new framework, we achieved an accuracy of 0.81, 0.77, and 0.71 in the three 

experiments, respectively. Our work also achieved high sensitivity values: 0.83, 0.82, and 

0.71, as well as reasonable specificity and AUC in all three experiments. Throughout all the 

experimental results, the best specificity, sensitivity and negative predictive value were 

achieved when we used RD+mTBM features.

To further demonstrate our algorithm performance, we also generated ROC and computed 

AUC measures with our new multivariate statistics in Fig. 2. In Fig 2, AD vs. CTL achieved 

the best AUC measures (0.78). The comparison demonstrated that our new framework may 

be useful for AD diagnosis and prognosis research.

5. CONCLUSION AND FUTURE WORK

In this paper, we present a novel framework that combines surface mTBM with dictionary 

learning and sparse coding to deal with high dimensional features before classification. We 

applied the Adaboost classifier to classify different AD stages. Our comprehensive 

experiments showed that our method achieve stable performance and higher accuracy than 

some standard morphometric measures. In the future, we will extend this framework to 

multi-label classification to better detect earlier stages of Alzheimer’s disease.
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Fig. 1. 
Visualization of computed image patches on a pair of hippocampal surfaces. The zoom-in 

picture shows some overlapping areas between image patches.
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Fig. 2. 
ROC for Classification with RD + mTBM features
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Table 1

Statistics of three experimental test data-sets.

Group #1 #–1 #Train #Test #Features

AD-CTL 194 228 360 62 120000

MCI C-NC 142 246 207 181 120000

CTL C-NC 39 73 70 42 120000
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Table 2

Results of AD vs. CTL

Vol. Area RD mTBM RD+mTBM

Accuracy 0.70 0.58 0.65 0.66 0.81

Sensitivity 0.63 0.5 0 0.83 0.83

Specificity 0.80 0.58 0.65 0.61 0.78

Npv 0.72 0.97 1 0.97 0.83

AUC 0.69 0.57 0.53 0.74 0.78
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Table 3

Results of MCI Converters vs. Non-converters

Vol. Area RD mTBM RD+mTBM

Accuracy 0.72 0.53 0.68 0.74 0.77

Sensitivity 0.70 0.57 0 0.67 0.82

Specificity 0.73 0.52 0.67 0.69 0.76

Npv 0.84 0.82 1 0.99 0.95

AUC 0.61 0.56 0.55 0.61 0.75
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Table 4

Results of CTL Converters vs. Non-converters

Vol. Area RD mTBM RD+mTBM

Accuracy 0.64 0.39 0.67 0.67 0.71

Sensitivity 0.62 0.22 0 0 0.71

Specificity 0.69 0.42 0.67 0.67 1

Npv 0.77 0.64 1 1 1

AUC 0.57 0.38 0.62 0.62 0.67
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