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Abstract

The effect of rifampin on the in vivo metabolism of the antiretroviral drug efavirenz was evaluated 

in healthy volunteers. In a cross-over placebo control trial, healthy subjects (n = 20) were 

administered a single 600 mg oral dose of efavirenz after pretreatment with placebo or rifampin 

(600 mg/day for 10 days). Plasma and urine concentrations of efavirenz, 8-hydroxyefavirenz and 

8,14-dihydroxyefavirenz were measured by LC–MS/MS. Compared to placebo treatment, 

rifampin increased the oral clearance (by ~2.5-fold) and decreased maximum plasma 

concentration (Cmax) and area under the plasma concentration–time curve (AUC0–∞) of efavirenz 

(by ~1.6- and ~2.5-fold respectively) (p < 0.001). Rifampin treatment substantially increased the 

Cmax and AUC0–12h of 8-hydroxyefavirenz and 8,14-dihydroxyefavirenz, metabolic ratio 

(AUC0–72h of metabolites to AUC0–72h efavirenz) and the amount of metabolites excreted in urine 

(Ae0–12hr) (all, p < 0.01). Female subjects had longer elimination half-life (1.6–2.2-fold) and 

larger weight-adjusted distribution volume (1.6– 1.9-fold) of efavirenz than male subjects (p < 
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0.05) in placebo and rifampin treated groups respectively. In conclusion, rifampin enhances 

CYP2B6-mediated efavirenz 8-hydroxylation in vivo. The metabolism of a single oral dose of 

efavirenz may be a suitable in vivo marker of CYP2B6 activity to evaluate induction drug 

interactions involving this enzyme.
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1. Introduction

The cytochrome P450 (CYP) 2B6 represents on average ~3–5% of the total hepatic P450 

protein content and plays a more important role than previously estimated in the 

detoxification or activation of a growing list of clinically important drugs, endogenous 

compounds, and other compound of toxicological relevance, including procarcinogens and 

environmental toxicants (reviewed in and references therein: [1–6]). The protein expression 

and activity of CYP2B6 are highly variable among human livers in vitro, in part due to 

CYP2B6 genetic variation, with distinct ethnic and racial frequencies [7,8], and exposure to 

structurally diverse inducer [3] or inhibitor drugs [5,6,9]. This variability likely reflects large 

changes in activity in vivo. Indeed, emerging evidence link altered CYP2B6 metabolic status 

with clearance and/or pharmacodynamics effect of CYP2B6 substrates (e.g., efavirenz, 

methadone, ketamine, bupropion, propofol, cyclophosphamide, and nevirapine) [5–7].

Until recently, most studies addressing CYP2B6 regulation and function largely relied on 

data derived from in vitro models. Progress towards quantitative determination and 

prediction of the in vivo consequences of the wealth of in vitro data has been greatly 

hampered by the lack of selective and easy to use clinical phenotyping probe. Bupropion 4-

hydroxylation, a reaction exclusively catalyzed by CYP2B6 [10], has been frequently used 

to assess the impact of genetic and nongenetic factors on CYP2B6 activity [9]. However, the 

utility of bupropion in assessing in vivo induction drug interactions mediated by CYP2B6 

[11] and functional consequences of CYP2B6 genetic variants [12] appear to be limited. The 

significant contributions of non-CYP-mediated pathways [13], the involvement of CYPs 

other than CYP2B6 in bupropion metabolism [14], and the complex pharmacokinetic 

properties of bupropion and 4-hydroxybupropion [11,15] appear to be a major hindrance 

towards the use of bupropion metabolism as a probe of CYP2B6 activity. Although analysis 

of individual diastereomers of 4-hydroxybupropion has been suggested to improve the use of 

bupropion as in vivo probe of CYP2B6 activity [15], analytical and sample preparation 

challenges may hinder routine use of this approach. Thus, the search for a better in vivo 
probe of CYP2B6 activity continues.

Our group has demonstrated that CYP2B6 is the principal enzyme responsible for the in 
vitro metabolism of the antiretroviral drug efavirenz to 8-hydroxyefavirenz and then to 

dihydroxylated metabolite [16–18]. Efavirenz 8-hydroxylation, which accounts for over 80% 

of the overall in vivo metabolism of efavirenz in humans [19], is the main clearance 

mechanism for efavirenz. A strong association between CYP2B6 genetic variants and 

Cho et al. Page 2

Drug Metab Pharmacokinet. Author manuscript; available in PMC 2016 August 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



efavirenz exposure was first reported in 2004 in HIV patients [20,21] and subsequent studies 

have repeatedly demonstrated the key role of CYP2B6 genetic variation not only in 

efavirenz metabolism but also in its pharmacological effects [5–7]. Available evidence 

suggests that efavirenz may be superior to bupropion or any other CYP2B6 substrates as an 

in vivo probe of CYP2B6 activity. However, although efavirenz has been recommended by 

the US Food and Drug Administration [22] and the European Medicines Agency [23] as an 

in vivo probe of CYP2B6, formal validation and the conditions of its use are lacking.

The CYP2B6 gene is highly inducible by several structurally diverse compounds [3]. 

Rifampin, corner stone drug for the treatment of tuberculosis (TB), is one of the potent 

inducers of CYP2B6 in vitro [24,25] and enhances the elimination of known CYP2B6 

substrates such as methadone [26], ketamine [27] and bupropion [15]. Based on this 

evidence and the fact that efavirenz is predominantly cleared by CYP2B6. rifampin is 

expected to enhance efavirenz elimination through induction of CYP2B6. However, 

numerous steady-state rifampin–efavirenz interaction studies conducted in HIV and TB co-

infected patients have provided conflicting results regarding the effect of rifampin on 

efavirenz exposure: marginal decrease [28], no significant effect (most studies) (e.g. 

[29,30]), or a paradoxical increase in efavirenz exposure (e.g. [31]). Several factors may 

have contributed to these findings. Efavirenz induces its own metabolism (auto-induction) 

upon repeated administration through upregulation of CYP2B6 [32], which may mask the 

full induction potential of rifampin on steady-state efavirenz metabolism. To specifically 

assess the usefulness of efavirenz as an in vivo probe of CYP2B6 activity and to quantify 

induction potential of rifampin on CYP2B6, assessment should be performed at condition 

that shows no efavirenz autoinduction of metabolism, i.e., using a single dose of efavirenz. 

Such studies should first be established in healthy volunteers under controlled conditions as 

the effect of disease and the likelihood of polypharmacy prescription may confound 

rifampin–efavirenz interactions in HIV/TB co-infected patients. In addition, since sex-

dependent differences may affect CYP2B6 activity at baseline and/or after induction with 

rifampin considering that CYP2B6 expression is up-regulated by female sex hormones (e.g., 

estradiol) [33] and that sex-dependent differences in rifampin exposure have been noted 

[34], it would be important to test whether CYP2B6 activity or rifampin–efavirenz 

interaction is different in male and female subjects.

In this randomized cross-over trial in healthy volunteers, the metabolism and 

pharmacokinetics of a single 600 mg oral dose of efavirenz alone and after chronic exposure 

to rifampin were determined. The objectives were to: determine the effect of rifampin on 

CYP2B6 activity in vivo; assess whether the metabolism of a single oral dose of efavirenz is 

a selective marker of CYP2B6 activity in vivo and quantitatively captures rifampin-mediated 

induction of this enzyme; identify pharmacokinetic indices of efavirenz that may serve as a 

better and easy to use marker of CYP2B6 activity; and assess whether CYP2B6 activity is 

different among male and female volunteers.
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2. Methods

2.1. Study subjects

A total of 20 healthy volunteers (10 male and 10 female: 18–48 years old) participated in 

this study. The study protocol was approved by the Institutional Review Board 

(IRB#0302-01) of the Indiana University School of Medicine, Indianapolis, IN, USA. 

Signed and dated written informed consent form was obtained from each volunteer. Subjects 

were ascertained to be healthy by physical examination, standard clinical laboratory tests 

and medical histories. Subjects were required to abstain from taking any prescription drugs, 

over-the-counter medications, grapefruit or grapefruit juice, alcohol and caffeine containing 

beverages for 2 weeks before and during the entire study periods.

2.2. Study design

The study was a randomized, double blind placebo controlled cross-over trial, Eligible 

subjects were randomized to take either a daily 600 mg oral dose of rifampin or placebo pills 

starting day 1 through day 10. Riboflavin, which produces similar urine color as rifampin, 

was used as placebo. Riboflavin powder was purchased from local pharmacy in Indianapolis 

and packaged into red pills similar to those of rifampin oral pills. On day 11, pre-dose blood 

was collected and then subjects were administered a single 600 mg oral dose of efavirenz 

along with an additional dose (600 mg) of rifampin or placebo pills on an empty stomach 

with water. Blood samples were collected at 0.5, 1, 2, 3, 4, 5, 6, 8, 10, 12, 24, 48 and 72 h 

after efavirenz dosing for pharmacokinetic analysis. Urine was collected at baseline and 0–

12 h after efavirenz dosing and aliquot urine was saved after recording total urine volume.

After a wash-out period of 11 days, subjects started taking rifampin or placebo pills in a 

crossover fashion for 10 consecutive days and underwent the same procedure as in the first 

phase of the study. Plasma samples were separated by centrifugation for 20 min at 3000 rpm 

within an hour of blood collection. Plasma and urine samples were stored at −80 °C until 

analysis.

2.3. Quantification of drugs and metabolites

2.3.1. Chemicals—Efavirenz, 8-hydroxyefavirenz, nevirapine, ritonavir, rifampin and 25-

desacetyIrifampin were purchased from Toronto Research Chemicals Inc. (North York, 

Canada). β-Glucuronidase (Type H-2, from Helix pomatia) was purchased from Sigma–

Aldrich (St. Louis, MO, USA). All the other chemicals and solvents were of the highest 

analytical grade available.

2.3.2. Assay of efavirenz and its metabolizes—A previously published liquid 

chromatography–tandem mass spectrometry (LC–MS/MS) [API 3000, Applied Biosystems, 

Foster City, CA, USA; equipped with an electrospray ionization interface] method [35] was 

slightly modified to quantify efavirenz, 8-hydroxyefavirenz and 8,14-dihydroxyefavirenz 

concentrations in plasma and urine. Plasma or urine samples (200 µL) were incubated with 2 

mL of 0.2 M sodium acetate buffer (pH 5.0) and 100 µL of 10,000 unit β-glucuronidase at 

37 °C for 17 h. After adding the internal standard (20 µL of 5 µg/mL ritonavir) and 

alkalinized with 1 mL sodium carbonate buffer (0.1 M Na2CO3/NaHCO3, pH = 9.4), the 
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sample was extracted with 5 mL ethyl acetate. The organic layer was evaporated to dryness 

in SpeedVac; residue was reconstituted in 100 µL mobile phase and analyzed by the 

LC/MS/MS system equipped with an Agilent 1100 series HPLC system. Efavirenz, its 

metabolites and the internal standard were separated using a reversed-phase Luna C18 

column (2 mm i.d. × 100 mm, 3 µm; particle size; Phenomenex, Torrance, CA, USA) and 

isocratic mobile phase consisting of 20 mM ammonium acetate buffer (pH 3.8)/acetonitrile 

(1/9, v/v) (flow rate, 0.2 mL/min). Efavirenz, 8-hydroxyefavirenz, 8,14-dihydroxyefavirenz 

and ritonavir (internal standard) were detected using multiple reaction monitoring at an m/z 
of 314/244, 330/258, 346/262 and 721/296 respectively (efavirenz and metabolites at 

negative mode; and ritonavir at positive mode). A standard curve constructed using blank 

human plasma and urine spiked with known amounts of efavirenz, 8-hydroxyefavirenz and 

the internal standard was linear over the range of 1–2500 ng/mL efavirenz and 1–1000 

ng/mL of 8-hydroxyefavirenz. In the concentration range tested (1–2500 ng/mL for 

efavirenz and 1–1000 ng/mL for 8-hydroxyefavirenz), the coefficients of variation of the 

precision of the intra- and inter-day validation were below 15% for both plasma and urine, 

while the accuracy was between 90% and 110% (n = 6). The extraction recoveries were over 

80% for spiked efavirenz and 8-hydroxyefavirenz amount in plasma and urine. 

Quantification of 8,14-dihydroxyefavirenz was made using standard curves generated with 

8-hydroxyefavirenz as no standard reference of 8,14-dihydroxyefavirenz was available to us 

at the time of the LC–MS/MS assay.

2.3.3. Assay of rifampin and metabolites—Rifampin and three rifampin metabolites 

were determined using an LC–MS/MS (API 3200, Applied Biosystems, Foster City, CA) 

equipped with an electrospray probe in positive ionization mode. The extraction procedure 

of rifampin and its metabolites was the same as described above for efavirenz and its 

metabolites, Rifampin, its metabolites, and the internal standard (nevirapine) were separated 

using a Luna C18 column (2.0 by 100 mm; 3 µm; Phenomenex, Torrance, CA) with a 

gradient elution (an initial mobile phase 1:99 vol/vol methanol-formic acid, 0.1% in water; 

and a secondary mobile phase 99:1 vol/vol methanolformic acid, 0.1% in water). The 

secondary mobile phase was increased from 50 to 90% linearly from 0 to 16 min; the initial 

mobile phase conditions were resumed after 16 min and remained constant for an additional 

4 min. allowing the column to equilibrate. The eluate was introduced, without splitting, at 

0.8 mL/min to the electrospray ionization source. Rifampin, 25-desacetylrifampin, two other 

metabolites (designated as M3 and M4) and nevirapine (the internal standard) were detected 

using multiple-reaction monitoring at m/z values of 823.4/151.1, 779.6/151.2, 821.6/151.2, 

749/151, and 267/226 respectively. Since no authentic standards were available for M3 and 

M4, their concentrations were quantified based on standard curves generated using 25-

desacetyIrifampin. The limit of quantification of rifampin and 25-desacetylrifanmpin was 50 

ng/mL. The standard curve was linear over the range of 50–10,000 ng/mL. The coefficient of 

variation of the precisions of the day-to-day and within-day validation of the LC–MS/MS 

assay was less than 20% across these concentrations and quality controls, while the accuracy 

was between 85% and 115%.

Cho et al. Page 5

Drug Metab Pharmacokinet. Author manuscript; available in PMC 2016 August 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



2.4. CYP2B6 genotyping

Genomic DNA was isolated from whole blood using the QIAamp DNA Blood Mini kit 

(Qiagen, Inc., Valencia, CA). Genotyping was performed using MALDl-TOF mass 

spectrometric assay [36] for the following 15 SNPs: −82T > C(*22); 86G > C (R29T, *17): 

136A > G (M46V, *11); 12,820G > A (G99t, *12); 13,072A > G (K139E, *8, *13); 13.076G 

> A (R140Q, *14); 15,631G > T (Q172H, *6, *7, *9, *13, *19, *20, *26, *29, *34, *36, 

*37, *38); 547G > A (V1S3I); 769G > A (D257N); 18,053A > G (K262R, *4, *6, *7, *13, 

*16, *19, *20, *26, *34, *36, *37, *38); 21,011T > C (I328T, *16, *18); 21,034C > 

T(R336C, *19); 21,388T > A(I391N, *15); 21,498C > A(P428T, *21); and 25,505C > T 

(R487C, *5, *7, *33, *34). Additional genotyping was performed using an RHP PCR assay 

described by Lang et al. [37] [C64T (R22C), 15,631G > T (Q172H), 18,053A > G (K262R) 

and 25,505C > T (R487C)] and using TaqMan according to the manufacturers manual 

(Applied Biosystems) [15,631 G > T (Q172H) and 18,053A > G (K262R). CVT2B6 

haplotype assignments, base numbering and allele definitions were performed as 

recommended by the CYPallele Nomenclature Committee [38].

2.5. Pharmacokinetic analysis

Pharmacokinetic parameters were estimated from plasma concentration data by standard 

non-compartmental analysis using WinNonlin professional software (Version 5.01; 

Pharsight, Mountain View, CA).

2.6. Statistical analysis

A sample size of 20 subjects was considered to detect a 50% difference in AUC0–∞, of 

efavirenz between the placebo and rifampin treatment phases with a statistical power of 80% 

at the 5% level of significance. The pharmacokinetic variables of efavirenz and its 

metabolites between placebo and rifampin treated phases and between male and female 

subjects were compared by use of paired t-test or Wilcoxon’s signed rank test as appropriate. 

The effect of CYP2B6 genotypes on the efavirenz and its metabolites pharmacokinetic 

parameters was evaluated by Kruskal–Wallis test in placebo and rifampin treated phases. 

Correlations between efavirenz pharmacokinetic parameters were evaluated using Pearson’s 

correlation test. Period effect for the study was determined by comparison of the AUC 

values obtained from period 1 and period 2 regardless of treatment using a two sample t-test. 

Similarly, the possibility of carry-over induction effect of rifampin was also tested by the t-
test, in which the percentage increase in AUC values by rifampin treatment versus placebo 

was compared between subjects taking efavirenz plus rifampin during period 1 and during 

period 2; no period effect or carry-over effect was observed (data not shown, p > 0.05). For 

continuous variables, values were presented as means and standard deviations (SDs). All 

statistical analyses were conducted by use of the SPSS software (version 12.0, SPSS, 

Chicago, IL) and differences were considered statistically significant at p < 0.05.
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3. Results

3.1. Demographics

Demographic characteristics of subjects (n = 20) are summarized in Supplemental Table 1. 

The mean age and body weight of the subjects were 27.5 years (range, 19 to 44) and 72.9 kg 

(range 57–88). The subjects were 14 (8 females) white (70%), 5 (2 female) African 

Americans (25%) and 1 (male) Hispanic (5%). Demographic values were comparable 

among CYP2B6 genotypes or female versus male (Supplemental Table 1).

3.2. Safety of study drugs

Efavirenz and rifampin were well tolerated except mild CNS symptoms such as dizziness 

and lack of concentration after efavirenz dosing. No subject discontinued the study due to 

side effects.

3.3. Effect of rifampin on plasma pharmacokinetics of efavirenz and its metabolites

Plasma concentration–time profiles and the estimated pharmacokinetic parameters of 

efavirenz in placebo and rifampin treated phases are illustrated in Fig. 1A and Table 1. 

Compared to the placebo treated group, rifampin decreased on average the Cmax, AUC0–72h, 

and AUCo–∞ of efavirenz by 28%, 42% and 56% respectively (p < 0.001); shortened the 

elimination half-life by 34% (p = 0.001); and increased the weight-adjusted apparent oral 

clearance (by ~147%; p < 0.001) and distribution volume (by 56%; p = 0.0001). The 

individual efavirenz AUC0–∞ and oral clearance values respectively are shown in Fig. 2A 

and B; the extent of rifampin effect, as measured by percent change relative to placebo 

treatment phase, varied 2.4- and 7.9-fold respectively among subjects. The percent change in 

oral clearance and AUC of efavirenz was not dependent on the baseline oral clearance or 

AUC0–∞ values of efavirenz (Pearson r = −0.21 and −031; p = 0.37 and p = 0.67 

respectively), suggesting baseline activity was not predictive of the extent of induction.

The influence of rifampin treatment on plasma concentrations of efavirenz metabolites (8-

hydroxyefavirenz and 8,14-dihydroxyefavirenz) is shown in Fig. 1B and C respectively. The 

corresponding pharmacokinetic parameters are displayed in Table 1. Compared to placebo 

treatment, rifampin treatment significantly increased the Cmax, AUC0–12 and AUC0–24 of 8-

hydroxyefavirenz by 125%, 78% and 36%; and of 8,14-dihydroxyefavirenz by 159%, 132% 

and 86%) respectively (Table 1).

The impact of rifampin on individual plasma metabolic ratios (AUC of metabolite/AUC of 

efavirenz) is shown in Fig. 2C–F. Rifampin substantially increased the AUC0–72 and 

AUC0–12 metabolic ratios (MRs) of 8-hydroxyefavirenz (Fig. 2C and D) and of 8,14-

dihydroxyefavirenz (Fig. 2E and F). Compared to placebo, rifampin increased the ratios of 

AUC0–72h of 8-hydroxyefavirenz to that of AUC0–72h of efavirenz and that of AUC0–72h of 

8,14-dihydroxyefavirenz to that of AUC0–72h of efavirenz by 1.7-fold (p = 0.001) and 2.4-

fold (p = 0.006), respectively (see Table 1). Similarly, the ratio of 8-hydroxyefavirenz 

AUC0–12h, to efavirenz AUC0–12h and 8,14-dihydroxyefavirenz AUC0–12h to efavirenz 

AUC0–12h was increased in the rifampin treated phase by 2.9-fold (p < 0.0001) and by 3.8-

fold (p < 0.0001), respectively. The ratio of 8-hydroxyefavirenz AUC0–72h to efavirenz 
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AUC0–72h was significantly correlated with body weight adjusted oral clearance (r = 0.81, p 
< 0.001) and AUC0–∞, of efavirenz (r = 0.62, p < 0.001) (data not shown). The ratio of 

AUC0–12h of metabolite was also correlated with that of efavirenz AUC0–12h, oral clearance 

and AUC0–∞ (r = 0.67 to 0.8: p < 0.001) (data not shown). The ratio of 8,14-

dihydroxyefavirenz AUC0–72h to efavirenz AUC0–72h was significantly correlated with body 

weight adjusted oral clearance (r = 0.51. p = 0.0006) and AUC0–∞ of efavirenz (r = −0.50, p 
= 0.0008), although the strength of correlation was somewhat lower than that with 8-

hydroxyefavirenz ratios.

Besides the plasma AUC metabolic ratios, we sought additional easy to use metabolic ratios 

that potentially reflect CYP2B6 activity in vivo. As shown in Fig. 3A. plasma concentration 

ratios of 8-hydroxyefavirenz/efavirenz (as well as 8,14-dihydroxyefavirenz/efavirenz; data 

not shown) at time points between 2 and 12 h after efavirenz dosing were substantially 

higher in the rifampin phase compared to the placebo phase. To explore whether single-point 

plasma concentrations within these time points could be used as markers of efavirenz 

metabolism and CYP2B6 induction, correlations of the ratios of plasma concentrations of 8-

hydroxyefavirenz (or 8,14-dihydroxyefavirenz) to efavirenz at the different time points (2–

12 h) with efavirenz pharmacokinetic parameters (oral clearance, AUC0–∞, and plasma 

AUC metabolic ratios) were tested (Supplemental Table 2). At all-time points (2–12 h), the 

plasma concentration ratios of 8-hydroxyefavirenz to efavirenz significantly correlated with: 

efavirenz clearance (r = 0,72–0.84; p < 0.0001); AUC0–∞ (r = −0.65 to −0.57; p = <0.0001); 

and the ratio of 8-hydroxyefavirenz AUC0–72h to efavirenz AUC0–72h (r = 0.81–0.9; p < 

0.0001) (Supplemental Table 2). The plasma concentration ratios of 8,14-

dihydroxyefavirenz to efavirenz alone also correlated significantly with efavirenz oral 

clearance, AUC as well as plasma metabolic ratios (AUC0–72h of 8-hydroxyefavirenz/

efavirenz AUC0–72h), although the strength of these correlations were less robust compared 

to the 8-hydroxyefavirenz metabolic ratios alone (Supplemental Table 2). The extent of 

effect of rifampin on the plasma concentrations of 8-hydroxyefavirenz to efavirenz ratio (and 

of 8,14-dihydroxyefavirenz to efavirenz ratio, data not shown) reached highest at earlier time 

points (2–4 h) (Fig. 3A). For example, rifampin significantly increased the 3 h plasma 

concentrations of 8-hydroxyefavirenz to efavirenz ratio (by 3.6-fold change: p < 0.001) (Fig. 

3B). The strongest correlations between efavirenz pharmacokinetic parameters (oral 

clearance. AUCs and MRs) and concentration ratios were also obtained at earlier time points 

(2–4 h) after efavirenz administration (Supplemental Table 2). As shown in Fig. 4, the 3 h 

plasma 8-hydroxyefavirenz/efavirenz concentration ratios in placebo and rifampin treatment 

phases (n = 40) were significantly correlated with efavirenz clearance (r = 0.82. p < 0.0001) 

and AUC0–∞ (r = −0.62; p < 0.0001) as well as with 8-hydroxyefavirenz AUC0–72h/

efavirenz AUC0–72h ratios (r = 86; p < 0.0001) (Supplemental Table 2). Similarly, significant 

correlations were observed with the ratios of metabolites AUC0–12h/efavirenz AUC0–12h 

(data not shown). Although significant correlation was also observed when data from the 

placebo and rifampin phases were analyzed separately, a much stronger correlation was 

observed in the rifampin than in placebo treatment phase (data not shown).
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3.4. Effect of rifampin on urinary excretion of efavirenz and its metabolites

The amounts of efavirenz, 8-hydroxyefavirenz and 8,14-dihydroxyefavirenz was measured 

in urine (n = 19) collected over 0–12 h after efavirenz administration in both the placebo and 

rifampin phases. One subject was excluded from the analysis because urine collected during 

the placebo phase was discarded by error prior to saving aliquots for analysis. The amount of 

efavirenz excreted in urine over 12 h (Ae0–12) in placebo and rifampin treatment groups 

represented 0.008 ± 0.003% and 0.011 ± 0.006% of the dose administered respectively (p = 

0.14 among rifampin an placebo treated phases). Ae0–12 of 8-hydroxyefavirenz (18.1 ± 14.8 

versus 33.5 ± 16.8 mg) and of 8,14-dihydroxyefavirenz (15.3 ± 9.4 versus 30.9 ± 16.0 mg) 

was significantly higher in the rifampin treated group than those placebo treated (p < 0.001). 

Ae0–12 of 8-hydroxyefavirenz represented 3.0 ± 2.5% in the placebo and 5.6 ± 2.8% in the 

rifampin treated group respectively. The Ae0–12 ratio of 8,14-dihydroxyefavirenz to 8-

hydroxyefavirenz was not significantly different between the treatment groups (p = 0.83), 

while Ae0–12 ratios of 8,14-dihydroxyefavirenz/efavirenz, of 8-hydroxyefavirenz/efavirenz 

or of (8-hydroxyefavirenz+8,14-dihydroxyefavirenz)/efavirenz were all significantly higher 

in the rifampin treated group compared to placebo treatment (p < 0.001). Efavirenz renal 

clearance was significantly higher in the rifampin treated group than the placebo treated 

group (p = 0.004), while there was either marginal or no effect of rifampin on the renal 

clearance of 8-hydroxyefavirenz (p = 0.05) or 8,14-dihydroxyefavirenz (p = 0.71) (Table 1). 

However, the data or renal clearance should be viewed as exploratory and interpreted 

carefully because of the short collection time of urine for a drug with a long elimination 

half-life.

3.5. Efavirenz pharmacokinetics in male and female subjects

To explore sex-dependent effect on CYP2B6 activity, efavirenz metabolism and 

pharmacokinetics were compared between male (n = 10) and female (n = 10) subjects. The 

demographic characteristics between male and female were comparable except that female 

subjects trended to be older (Supplemental Table 1). The elimination half-life of efavirenz 

was significantly higher) in female than male subjects in the placebo (1.6-fold, p = 0.012) 

and rifampin (2.2.-fold, p = 0.013) treated group (Table 2). The weight-adjusted distribution 

volume of efavirenz was significantly higher in female than male subjects (1.6-fold in the 

placebo, p < 0.001) and (1.9-fold in the rifampin, p = 0.028) treated groups. The ratio of 8-

hydroxyefavirenz AUC0–72h to efavirenz AUC0–72h was slightly lower in female than male 

subjects in placebo treated phase (Table 2) but not in rifampin treated phase. No statistically 

significant differences were observed between male and female subjects in other 

pharmacokinetic parameters (e.g., apparent efavirenz oral clearance, Cmax and AUCs) (Table 

2). Neither the renal clearances nor the plasma metabolic ratios show any differences 

between male and female subjects in both treatment groups (data not shown).

3.6. Associations of CYP2B6 genetic variation with efavirenz metabolism

The following genotype categories were detected in our samples: CYP2B6*1/*1 (n = 6); 

*2/*2 (n = 1); *1/*5(n = 2); *1/*6 (n = 8); and *6/*6 (n = 3). Since the functional relevance 

of *2 and *5 alleles is currently unclear (7), they were grouped with the *1/*1 genotype in 

the initial analysis. Of the 3 with CYP2B6*6/*6 genotypes, one subject also contained 
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G419A (Arg140Gln) SNP which forms the *14 allele. The specific allele designation of this 

haplotype remains to be determined [38] and it is arbitrarily designated as *1/*14/*6/*6 

genotype for this paper only. The pharmacokinetic profiles and parameters of efavirenz and 

its metabolites in placebo and rifampin treated phases stratified by the CYP2B6*6 allele are 

presented in Supplemental Figure 1 and Supplemental Table 3. Efavirenz plasma 

concentrations. AUC0–72, and AUC0–∞ were slightly higher in subjects with CYP2B6 *6/*6 
than in those with *1/*6 and *1/*1 genotypes in both the placebo and rifampin treated 

phases, but none of these pharmacokinetic parameters reached a statistically significant 

difference among the three genotype groups in either treatment phases, probably due to the 

small sample size of the CYP2B6*6/*6 carriers (n = 3).

In an exploratory analysis, we tested whether rifampin shows genotype-dependent induction 

of CYP2B6. As shown in Fig. 5. the ratios of 8-hydroxyefavirenz AUC0–72h to efavirenz 

AUC0–72h were lower in the *2/*2, *6/*6 and *1/*14/*6/*6 genotypes (0.74, 0.76 and 0.54 

respectively) than those in *1/*1, *1/5 and *1/*6 (0.95–1.12); in the rifampin treated group, 

the ratio was comparable in all genotypes (1.9, 1.33, 1.55 and 1.56 in *1/*1, *1/*5, *1/*6 

and *6/*6 respectively) except for *2/*2 (0.85) and *1/*14/*6/*6 (0.64) genotype. The 

median induction ratios (rifampin/placebo) for *1/*1, *1/*5, *1/*6, *2/*2, *6/*6 and 

*1/*14/*6/*6 were 1.8-, 1.3-, 1.6-, 1.2-, 2.1- and 1.2-fold, respectively. The extent of 

induction of the two subjects with *6/*6 (2.1-fold) appears to be similar with those with 

*1/*1 (1.8-fold) and *1/*6 (1.6-fold), while the extent of induction in those with *1/*5, 

*2/*2 and *1/*14/*6/*6 genotypes appears to be small (<1.3 fold).

3.7. Pharmacokinetics of rifampin and its metabolites

The pharmacokinetic profiles of rifampin, 25-desacetylrifampin and two rifampin 

metabolites designated as M3 (molecular mass = 821.6) and M4 (molecular mass = 749) 

were measure in 7 subjects (Supplemental Figure 2 and Supplemental Table 4). Although the 

precise identity of M3 and M4 remains to be confirmed, M3 is consistent with rifampin 

quinine and M4 with O-demethylated 25-desacetylrifampin. No statistically significant 

correlation was found between percent changes in efavirenz exposure or clearance (placebo 

versus rifampin treated) and any of the pharmacokinetic parameters of rifampin or those of 

its metabolites in this small number of subjects (data not shown).

4. Discussion

The major findings of the present study were that: (a) rifampin markedly enhances the 

elimination of a single 600 mg oral dose of efavirenz in vivo and that this effect is mediated 

via induction of CYP2B6-mediated efavirenz 8-hydroxylation; (b) the metabolism of a 

single dose of efavirenz may be an appropriate in vivo probe of CYP2B6 activity in 

evaluating induction drug interactions; (c) novel and easy-to-use plasma metabolic ratios 

that potentially reflect CYP2B6 activity in vivo have been identified; and (d) female subjects 

had higher distribution volume and longer elimination half-life of efavirenz compared to 

male subjects and this difference was not due to effect of sex on CYP2B6 activity.

In the present study, rifampin significantly decreased efavirenz AUC0–∞ (by ~56%) and 

increased the weight adjusted apparent oral clearance (by ~147%). The Cmax and AUC0–12 
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of 8-hydroxyefavirenz (and 8,14-dihydroxyefavirenz) as well as the amount of these two 

metabolites recovered in urine over 12 h (Ae0–12) were also significantly increased. 

Efavirenz 8-hydroxylation is the main clearance mechanism of efavirenz in vivo [19] and 

this pathway is predominantly catalyzed by CYP2B6 [16–18]. Rifampin is known to 

enhance CYP2B6 activity in primary human hepatocytes [24,25], and, consistent with these 

in vitro data, rifampin enhances the elimination of known CYP2B6 substrates in vivo (e.g., 

ketamine [27], bupropion [15] and methadone [26]). Although efavirenz metabolite data 

were not reported to gain mechanistic insight, rifampin has been shown to significantly 

reduce the exposure of a single 600 mg oral dose of efavirenz in a small study in healthy 

volunteers [39]. Taking the present data and literature evidence together, we conclude that: 

CYP2B6 plays a central role in efavirenz clearance in vivo; the inclusion of full 

pharmacokinetic analysis of efavirenz metabolites for the first time provided plausible 

mechanism by which rifampin enhances efavirenz elimination, i.e., rifampin enhances 

efavirenz elimination through induction of CYP2B6-mediated efavirenz 8-hydroxylation; 

and a single dose of efavirenz may be a reliable biomarker in evaluating induction drug 

interactions mediated by CYP2B6. In contrast to bupropion where nonCYP2B6-dependent 

metabolic pathways contribute to the overall bupropion clearance [13,14], the fraction of 

efavirenz dose metabolized via the CYP2B6-mediated 8-hydroxylation is close to unity 

[16,17,19]. This allows validation of any efavirenz pharmacokinetic index of CYP2B6 (e.g., 

metabolic ratios) against the clearance or exposure of the parent drug as efavirenz’s overall 

elimination is not significantly affected by non-CYP2B6 metabolic pathways. Thus, 

efavirenz appears to be superior to bupropion or any other potential substrate as in vivo 
probe of CYP2B6 activity during induction drug interactions.

Considering the long elimination half-life of efavirenz after a single oral dose of efavirenz 

[40], multiple blood sampling is required to precisely estimate its elimination parameters 

(e.g., AUC and apparent oral clearance), essentially limiting their utility as markers of 

CYP2B6 activity for routine use. In the present study, we report that the ratio of S-

hydroxyefavirenz to efavirenz at single time point (between 2 and 12 h) after efavirenz 

administration correlated significantly with efavirenz oral clearance and AUC0–∞ as well as 

with the plasma metabolic ratios of AUC0–72 of 8-hydroxyefavirenz/AUC0–72 efavirenz. In 

particular, because the 3 h plasma metabolic ratio provided best separation between placebo 

and rifampin treated groups (Figs. 3 and 4), this single point sampling strategy appears 

attractive and easy to use marker of CYP2B6 in vivo in future population studies.

In contrast to the present data showing more marked changes in exposure, the impact of 

rifampin-based anti-TB drugs on efavirenz exposure in HIV/TB co-infected patients is either 

very small (<27% in exposure to no effect) or paradoxically increased efavirenz exposure 

[28–30,41,42]. More importantly, rifampin–efavirenz interactions have no meaningful effect 

on clinical outcomes of efavirenz [43–45]. We speculate that the quantitative differences in 

the extent of rifampin–efavirenz interactions observed in the present study compared to 

those published in the literature in HIV/TB co-infected patients are in part due to differences 

in study design. Ours was a healthy volunteer study where the metabolism and 

pharmacokinetics of a single 600 mg oral dose of efavirenz was determined following 10 

day treatment with rifampin. whereas in HIV-1/TB co-infection rifampin was often 

administered after steady-state of efavirenz has already been achieved. Efavirenz is an 
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inducer of CYP2B6 and thereby enhances its own metabolism (autoinduction) [32]. Thus, it 

is possible that CYP2B6 is near maximally induced under efavirenz steady-state setting, 

diminishing the full intrinsic induction potential of rifampin on this enzyme. This suggestion 

is supported by the present data and results from another study where rifampin (450 mg/day) 

treatment for a week reduced AUC0–∞ of a single 600 mg oral dose of efavirenz 600 by 

nearly 3-fold [39]. It follows that, for CYP2B6 substrates that autoinduce metabolism (e.g. 

efavirenz, artimisinin, cyclophosphamide, ifosfamide, and nevirapine) [3,4], drug 

interactions from a single dose study may not reliably predict steady-state drug interactions 

because they seem to over predict the magnitude of change as dearly shown by the 

quantitative difference between rifampin–efavirenz interactions at single (present data and 

[39]) and multiple efavirenz dosing studies, i.e., the impact of rifampin (and other inducers) 

on the steady state disposition of the autoinducer drug is likely to be small. This also appears 

to explain the lack of clinically significant effect of rifampin-based anti-TB on steady-state 

efavirenz exposure [29,30,41,42] and clinical outcomes [43–45] of efavirenz-based HIV 

therapy. On the other hand, a robust inductive effect of rifampin is expected when CYP2B6 

substrates that do not auto-induce used (e.g., methadone [46]) or when the substrates that 

autoinduce metabolism is initiated after inducer steady state is achieved. In addition, the 

extent of rifampin–efavirenz interactions in healthy volunteers may not predict interactions 

in patients where factors related to the disease (e.g., inflammation) and/or co-administration 

of multiple medications may influence the extent of interaction.

The present data show significantly higher weight-adjusted distribution volume and longer 

elimination half-life of efavirenz in female subjects than male counter-parts with no 

differences in other elimination parameters such as clearance, exposure of metabolites and 

metabolic ratios in both placebo and rifampin treatment groups. Considering that efavirenz 

has high lipophilicity (octanol/water partition coefficient of ~5.4), the sex-dependent 

difference in body fat content may impact efavirenz distribution volume and thus its half-

life, as observed in this study. Consistent with this suggestion, distribution volume of 

efavirenz was doubled in female compared to male in another population pharmacokinetic 

study [47]. Although some studies have reported small differences in CYP2B6 activity 

between male and female, the data in the literature is inconsistent [47–50]. We found no 

evidence for sex-dependent effect on CYP2B6 activity either at baseline or after rifampin 

induction. Although the contribution of sex-dependent drug transport cannot be excluded, 

the role of drug transporters on efavirenz disposition remains unclear.

Subsequent to the demonstration that CYP2B6 is the principal enzyme in efavirenz 

metabolism [16], understanding of the functional consequences of CYP2B6 genetic 

variation has been accelerated [7]. We explored the impact of CYP2B6 genetic variants on 

efavirenz metabolism. Although the small number of subjects (n = 3) with *6/*6 genotype in 

the present study did not allow proper evaluation of associations of genetic variants and 

efavirenz elimination, the AUC0–∞, of efavirenz and the ratio of 8-hydroxyefavirenz 

AUC0–72h to efavirenz AUC0–72h were higher in CYP2B6 *6/*6 genotype than in *1/*6 and 

*1/*1 genotypes. These data are broadly consistent with many studies showing that CYP2B6 

genetic variants (typically *6/*6 carriers) are associated with efavirenz metabolism in vitro 
[18] and steady-state clearance and/or effects of efavirenz in HIV patients [7]. The 

magnitude of such association appears to be smaller when data from a single dose of 
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efavirenz are analyzed compared to steady-state conditions, which could reflect the 

nonlinear pharmacokinetics of efavirenz [32] and its interaction with processes involved in 

its disposition in a genotype dependent manner at steady-state [51]. Indeed, while two 

subjects with *6/*6 genotype were equally susceptible to rifampin-mediated induction as 

those with *1/*1 and *1/*6 genotypes (Fig. 5), rifampin had marginal effect on certain 

genotypes (*2/*2 and one subject with *6/*6 genotype that coexists with another SNP 

tagging the *14 allele). These data raises the possibility that certain haplotypes, probably 

linked to promoter variants, may exhibit differential autoinduction, leading to a more 

amplified genetic effect and excessive accumulation of efavirenz in *6/*6 genotype at steady 

state than at single dose of efavirenz.

5. Conclusions

In summary, rifampin enhances efavirenz elimination in vivo through induction of CYP2B6-

mediated 8-hydroxylation, suggesting that the metabolism of a single dose of efavirenz is a 

suitable in vivo marker of CYP2B6 phenotyping in assessing induction drug interactions are 

evaluated. We identified the ratio of 8-hydroxyefavirenz to efavirenz concentrations at single 

time point (~3 h after efavirenz dosing) as a potentially reliable and easy to use marker of 

CYP2B6 activity. By including metabolite data, we clarified that the difference in efavirenz 

exposure is unlikely to be due to sex-dependent differences in CYP2B6 activity. While 

CYP2B6 genotypes appear to affect efavirenz disposition, consistent with published data, 

the sample size was small to make firm conclusion in this study. Further, the resent data 

indicate the complexity of evaluating steady-state induction drug interactions when the 

victim is an autoinducer of metabolism and the perpetrator is an inducer of the enzyme 

involved in the autoinduction of the victim drug.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Plasma concentration–time profiles of efavirenz (EFV) and its metabolites after the 

administration of a single 600 mg single oral dose of EFV to healthy volunteers (n = 20) 

pretreatcd with placebo or 600 mg rifampin once daily for 10 days. (A) EFV; (B)) 8-

hydioxyEFV (8-OHEFV); and (C) 8,14-dihydroxyEFV (8,14-diOHEFV). Each point 

represents mean ± SD.
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Fig. 2. 
Pharmacokinetic parameters of efavirenz (EFV) and its metabolite after administration of a 

single 600 mg oral dose of efavirenz to healthy volunteers (n = 20) pretreatcd with placebo 

or 600 mg rifampin once daily for 10 days. (A) Area under the concentration–time curve 

(AUC) of EFV; (B) weight adjusted oral clearance (Cl/F) of EFV; (C) ratio of AUC0–72h, of 

8-hydroxyEFV (8-OHEFV) to AUC0–72h of EFV; (D) ratio of AUC0–12h of 8-OHEFV to 

AUC0–12h of EFV; (E) ratio of AUC0–72h of 8,14-dihydroxyefavirenz (8,14-diOHEFV) to 

AUC0–72h of EFV; and (F) ratio of AUC0–12h of 8,14-diOHEFV to AUC0–12h of EFV.
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Fig. 3. 
Metabolic ratios of plasma concentrations of 8-hydroxyefavirenz (8-OHEFV)/efavirenz 

(EFV) after administration of a single 600 mg oral dose of efavirenz to healthy volunteers (n 
= 20) pretreated with placebo or 600 mg rifampin once daily for 10 days. A) Ratios at 

different sampling time points post efavirenz administration; and B) individual ratios 3 h 

after efavirenz administration.
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Fig. 4. 
Correlations analysis of the 3 h ratio of plasma concentrations of 8-hydroxyefavirenz (8-

OHEFV) to that of (EFV) with; weight adjusted apparent oral clearance of EFV (A), 

AUC0–72 of EFV (B); AUC0–∞ of EFV (C); and the ratio of 8-OHEFV AUC0–72h to EFV 

AUC0–72h (D) after administration of a single 600 mg oral dose of EFV to healthy 

volunteers pretreatcd with placebo or 600 mg rifampin once daily for 10 days. Pearson's r is 

provided.
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Fig. 5. 
Plasma ratios of area under the concentration–time curve (AUC0–72h) of 8-hydmxyefavirenz 

to AUC0–72h of efavirenz (EFV) according to specific CYP2B6 genotypes in healthy 

volunteers administered a single 600 mg single oral dose of EPV after pretreatment with 

placebo or 600 mg rifampin) once daily for 10 days. A) plasma metabolic ratios after 

placebo (open circles) and rifampin treatment (closed circles); horizontal line represents 

median value; and B) fold induction (rifampin/placebo), with median and interquartile 

range. One subject who carried *6/*6 genotype was also heterozygous for a valiant (419G > 

A; R140Q) tagging *14 and presented individually.
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Table 1

Pharmacokinetic parameters of efavirenz (EFV) and its metabolites after the administration of a single 600 mg 

oral dose of EFV to healthy volunteers (n = 20) pretreated with placebo or 600 mg rifampin once daily For 10 

days.

Pharmacokinetic parameter Placebo phase Rifampin phase Ratio (R/P) p-Value

EFV

  tmax (h) 2 (1–6) 3 (1–5)

  Cmax (ng/mL) 2.06 ± 0.60 1.43 ± 0.51 0.7 <0.001

  t1/2 (h) 65.1 ± 20.5 42.8 ± 20.0 0.7 0.001

  AUC0–72h (h ng/mL) 45.3 ± 14.1 25.6 ± 10.1 0.6 <0.001

  AUC0–∞ (h ng/mL) 83.9 ± 28.9 36.8 ± 16.4 0.4 <0.001

  Vd/F (L/kg) 10.0 ± 3.5 15.6 ± 8.1 1.6 0.001

  CL/F (mL/min/kg) 1.9 ± 0.6 4.5 ± 1.8 2.5 <0.001

  Clrenal (mL/h kg) 0.055 ± 0.022 0.121 ± 0.074 3 0.004

8-HydroxyEFV (8-OHEFV)

  tmax (h) 3 (2–24) 3 (1–5)

  Cmax (ng/mL) 1.12 ± 0.36 2.55 ± 1.35 2.2 <0.001

  AUC0–12 (h ng/mL) 7.7 ± 0.3 13.5 ± 7.2 1.8 0.00014

  AUC0–72h (h ng/mL) 40.2 ± 16.6 36.5 ± 15.2 1.0 0.28

  Clrenal (mL/h kg) 28.9 ± 12.2 39.1 ± 17.1 1.7 0.05

  AUC0–72h 8-OHEFV/AUC0–72h EFV 0.90 ± 0.27 1.55 ± 0.72 1.7 0.001

8,14-DihydroxyEFV (8-diOHEFV)

  tmax (h) 3 (2–5) 3 (2–5)

  Cmax (ng/mL) 0.16 ± 0.09 0.38 ± 0.24 2.6 <0.001

  AUC0–12 (h ng/mL) 1.1 ± 0.83 2.1 ± 1.1 2.3 <0.0001

  AUC0–72h (h ng/mL) 5 7 ± 5.2 6.2 ± 3.78 1.3 0.14

  Clrenal (mL/h kg) 224 ± 138.5 239 ± 165.4 1.4 0.74

  AUC0–72h 8,14-diOHEFV/AUC0–72h EFV 0.13 ± 0.14 0.27 ± 0.16 2.4 0.006

Data are expressed as mean ± SDs except for tmax, which are presented as median and range.

tmax time to maximum plasma concentration; Cmax, maximum plasma concentration; t1/2, terminal elimination half-life; AUC0–72h, area under 

the concentration–time curve to 72 h; AUC0–∞, area under the concentration–time curve extrapolated to infinity; Vd/F, apparent volume of 

distribution; CL/F, apparent oral clearance; EFV, efavirenz; 8-OHKFV, 8-hydroxyefavirenz.
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Table 2

Pharmacokinetic parameters of efavirenz (EFV) in healthy male (n = 10) and female (n = 10) volunteers 

administered a single 600 mg single oral dose of EFV after pretreatment with placebo or 600 mg rifampin 

once daily for 10 days.

Pharmacokinetic parameters Placebo phase P value Rifampin phase P value

Male (n = 
10)

Female (n = 
10)

Ratio (F/M) Male (n = 
10)

Female (n = 
10)

Ratio (F/M)

tmax (h) 3 (1–4) 2 (1–6) 3 (1–5) 3 (1–5)

Cmax (ng/mL) 2.14 ± 0.62 1.97 ± 0.59 1.0 0.55 1.45 ± 0.44 1.41 ± 0.60 1.0 0.89

t1/2 (h) 54.1 ± 23.3 76.1 ± 8.9 1.6 0.012 28.3 ± 10.1 57.3 ± 16.5 2.2 <0.001

AUC0–72h (h ng/mL) 50.8 ± 13.0 39.8 ± 13.7 0.8 0.08 26.7 ± 10.7 24.45 ± 9.8 1.0 0.66

AUC0–∞ (h ng/mL) 85.6 ± 35.7 82.2 ± 21.8 1.1 0.80 33.0 ± 17.2 40.6 ± 15.5 1.4 0.09

Vd/F (L/kg) 7.9 ± 1.8 12.2 ± 3.6 1.6 0.013 11.4 ± 2.2 19.8 ± 9.4 1.9 0.028

CL/F (mL/min/kg) 1.9 ± 0.8 1.8 ± 0.4 1.1 0.65 5.1 ± 2.2 3.9 ± 1.3 0.9 0.16

Clrenal (mL/h kg) 0.06 ± 0.03 0.049 ± 0.016 0.96 0.28 0.097 ± 0.071 0.141 ± 0.073 2.0 0.27

AUC0–72h (8-OHEFV/EFV) 1.03 ± 0.28 0.77 ± 0.18 0.8 0.028 1.78 ± 0.91 1.32 ± 0.39 0.9 0.14

AUC0–72h ratio (8,14-DiOHEV/EFV) 0.15 ± 0.19 0.10 ± 0.05 1.0 0.80 0.30 ± 0.21 0.23 ± 0.09 1.0 0.65

Data are expressed as mean ± SDs except for tmax, which arc presented as median and range.

tmax, time to maximum plasma concentration; Cmax, maximum plasma concentration; t1/2, terminal elimination half-life; AUC0–72h, area under 

the concentration–time curve to 72 h; AUC0–∞, area under the concentration–time curve extrapolated to infinity: Vd/F, apparent volume of 

distribution; CL/F, apparent oral clearance: EFV, efavirenz; 8-OHEFV, 8-hydroxyefavirenz; 8,14-diOHEFV, 8,14-dihydroxyefavirenz.
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