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Constrained Score Statistics
Identify Genetic Variants Interacting
with Multiple Risk Factors in Barrett’s Esophagus

James Y. Dai,1,2,* Jean de Dieu Tapsoba,1 Matthew F. Buas,1 the BEACON Consortium,
Harvey A. Risch,3 and Thomas L. Vaughan1,4

Few gene-environment interactions (G 3 E) have been discovered in cancer epidemiology thus far, in part due to the large number of

possible G 3 E to be investigated and inherent low statistical power of traditional analytic methods for discovering G 3 E. We consider

simultaneously testing for interactions between several related exposures and a genetic variant in a genome-wide study. To improve

power, constrained testing strategies are proposed for multivariate gene-environment interactions at two levels: interactions that

have the same direction (one-sided or bidirectional hypotheses) or are proportional to respective exposure main effects (a variant of

Tukey’s one-degree test). Score statistics were developed to expedite the genome-wide computation.We conducted extensive simulations

to evaluate validity and power performance of the proposed statistics, applied them to the genetic and environmental exposure data for

esophageal adenocarcinoma and Barrett’s esophagus from the Barretts Esophagus and Esophageal Adenocarcinoma Consortium

(BEACON), and discovered three loci simultaneously interacting with gastresophageal reflux, obesity, and tobacco smoking with

genome-wide significance. These findings deepen understanding of the genetic and environmental architecture of Barrett’s esophagus

and esophageal adenocarcinoma.
Introduction

With the exception of rare familial cancers, cancer risk is

usually determined by a complex interplay between multi-

ple genetic and environmental factors.1 Alterations in so-

matic genome can result from exposure to external agents

(e.g., tobacco smoking) and infectious agents (e.g., Helico-

bacter pylori) and from the multifaceted effects of certain

host characteristics (e.g., obesity), all generally defined to

be ‘‘environmental exposures’’ in this report. Individuals

differ in their inherited efficiency to neutralize environ-

mental insults and repair genomic damages. Efforts have

long been focused on discovering susceptibility genes

involved in carcinogenesis and on characterizing how

these genes interact with environmental factors.2 Agnostic

searches for gene-environment interactions (G 3 E) have

been routinely conducted in genome-wide studies,3 but

with very limited success.4,5 Much discussion has been

devoted to methodological issues,6,7 such as design and

estimation,8–11 power and sample size,12 and mathemat-

ical formulation of interactions.13

When multiple environmental factors have been estab-

lished for a cancer and are available for G 3 E testing,

the standard analytical approach is to interrogate one

pair of genotype and exposure at a time and subsequently

correct for multiple testing.14,15 This strategy is well

interpretable, but not optimal when environmental risk

factors are related in cancer etiology, so that genotypes

involved in the same etiological pathway may interact

with all related exposures. This article develops con-
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strained inferential methods for testing multiple G 3 E

simultaneously, leveraging known biological knowledge

on cancer etiology. The methods are motivated by a

genome-wide G 3 E study examining esophageal

adenocarcinoma and Barrett’s esophagus (BE/EA [MIM:

614266]) from the Barretts Esophagus and Esophageal

Adenocarcinoma Consortium (BEACON), an international

consortium composed of studies in Australia, Europe, and

North America, where the incidence of esophageal adeno-

carcinoma has been rising sharply in the past four de-

cades.16–19 Esophageal adenocarcinoma cases are believed

to arise from Barrett’s esophagus, a precursor lesion,20

and both conditions share risk factors including gastreso-

phageal reflux symptoms (GERD [MIM: 109350]), obesity,

and tobacco smoking.21,22 The results of genome-wide ge-

netic association and a limited search for G 3 E among

known susceptibility loci in BEACON have been reported

elsewhere.23,24

For esophageal adenocarcinoma and its precursor lesion

(Barrett’s esophagus), all three well-established risk fac-

tors—obesity, gastresophageal reflux, and tobacco smok-

ing—have been linked to local and systemic inflammation

and the downstream consequence of oxidative stress that

promotes DNA damage and chromosomal instability.20 It

is plausible that SNPs in inflammation pathways may

modulate induced defense mechanisms against damage

caused by these exposures, thereby interacting with all

three exposures in a similar fashion. Furthermore, obesity

is associated with gastresophageal reflux in the white

population.25 Adjustments of p values from testing one
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exposure-genotype interaction at a time via Bonferroni

correction can be overly conservative. In contrast, simulta-

neously testing for G 3 E among multiple environmental

factors potentially pools small associations and increases

power.

To improve power, we consider multivariate G 3 E

testing strategies in which the directions of multiple

G 3 E interactions under the alternative hypothesis are

constrained. Suppose q1, ., qp are interaction parameters

between a genetic variant and p established environmental

factors in a logistic regression model for a cancer case-con-

trol study. The null hypothesis that there is no G 3 E for

any of environmental factors is represented by

H0 : qj ¼ 0 for j ¼ 1;.; p: (Equation 1)

Classical multivariate tests such as Hotelling’s T2 test

statistics are designed to test any departure from the

null hypothesis; they therefore lack power to detect spe-

cific types of departure that may be considered plausible

based on a priori scientific knowledge, e.g., the inflamma-

tion pathway in the etiology of esophageal adenocarci-

noma. Restricting alternative hypothesis to be one-sided,

qj < 0 for some j, for example SNPs in inflammatory path-

ways may be associated with a lower odds ratio for any of

abdominal obesity, gastresophageal reflux, and cigarette

smoking, will presumably boost the power. The constraint

can also be motivated for the other direction: qj > 0. In

the form of likelihood ratio tests, this kind of constraint

has been investigated for clinical trials with multiple

study endpoints.26,27 However, the critical values for

computing p values under the asymptotic null distribu-

tion of these one-sided statistics are generally difficult to

obtain, and maximizing the likelihood under the one-

sided constraint can be cumbersome for genome-wide

testing.

In the same vein, a more restrictive, but parsimonious,

model for interactions was proposed based on Tukey’s

1-df test:28–30 gene-gene or gene-environment interactions

are proportional to main effects by a fixed constant. In

essence, risk associations of genetic variants or environ-

mental exposures are first summed together by a genetic

risk score or an environmental risk score, assuming that

each group of risk variables share common underlying

etiological pathways. More specifically, this test can be

motivated by a latent-variable model, where each group

of measured markers serves as a surrogate of an underlying

biological phenotype.30 A single interaction parameter

then summarizes the deviation from the additive contribu-

tions of two risk predispositions, possibly in a transformed

risk scale.30 Built on this parsimonious model, it has been

proposed to jointly test for both genetic associations and

gene-gene or gene-environment interactions.30 A compli-

cation of this model is that, when there is no genetic asso-

ciation, as is true for the great majority of variants being

examined in genome-wide studies, the interaction param-

eter vanishes and is not identifiable. The usual hypothesis

testing statistics are no longer applicable and specialized
The Amer
procedures have to be developed with simulated null

distributions.

In this article, we develop score statistics with aforemen-

tioned constraints for multiple G 3 E in a genome-wide

study, because score statistics are computationally attrac-

tive as regression parameters are estimated only under

the null and, further, they have the same local power as

Wald and likelihood ratio statistics. We extend the classical

one-sided test to a bidirectional test, in which multiple

G 3 E can be either negative or positive, so that one does

not have to specify the direction one at a time. For both

one-sided test and bidirectional test, we propose score sta-

tistics that are easy to compute and have an exact or easily

obtainable asymptotic distribution. For the proportional

G3E testing, we modify Tukey’s 1-df model to allow for

the interaction not dependent on the genetic main associ-

ation, and we derive finite-sample correction for the mean

and the variance of the score statistic. Such correction,

though often ignorable at the usual significance level for

one test (type I error rate 0.05), is critical to control

genome-wide type I errors, as we show in simulations

and the BEACON study. We evaluate the performance of

the proposed methods in extensive simulations and apply

them in the genome-wide G 3 E study from BEACON.
Material and Methods

Consider a genetic association study with n participants. Let Y

denote the disease status, for example cancer patients versus con-

trol subjects. Let X denote the vector of p known risk-associated

exposures, and let G denote one of many SNPs under investiga-

tion, possibly in a genome-wide study. Typically, the study also

assembles covariates including age, gender, and top principal com-

ponents of genetic variation for controlling population stratifica-

tion, collectively denoted by W. The interest hereafter is to

discover whether G modifies risk associations of some exposures

in X. The data therefore consist of n independent and identically

distributed random vectors (Yi, Xi, Gi, Wi), for i ¼ 1, ., n.

Consider a regression model investigating p statistical interac-

tions simultaneously,

gfEðY j G;X;WÞg ¼ b0 þ b1Gþ
X
j¼1

p

b2jXj þ b3Wþ
X
j¼1

p

qjXjG;

(Equation 2)

where b1 is the genetic association when all exposures are 0, b2j is

the association of the jth exposure when the genotype score is 0, qj
is the interaction between G and Xj, and g is the logit function if Y

is a dichotomous outcome or the identical function if Y is a quan-

titative trait modeled by linear regression.

The null hypothesis for multiple G 3 E in Equation 2 is ex-

pressed in Equation 1, stating that none of p exposure-risk associ-

ations changes with the genotype G. Classical multivariate tests

are designed to be unrestricted in the alternative hypothesis

H1a : qjs0 for at least one j:

Denote the parameters of interest q ¼ ðq1;.; qpÞ and the

nuisance parameters b ¼ ðb0; b1;b21;.;b2p;b3Þ. Let a ¼ ðb; qÞ,
f ðy;aÞ denote the density of Y given covariates, and let
ican Journal of Human Genetics 99, 352–365, August 4, 2016 353



[ðaÞ ¼
X
i¼1

n

logf ðYi;aÞ;
SðaÞ ¼ ðv=vaÞ[ðaÞ;

and IðaÞ ¼ Ea

�ðv=vaÞ[ðaÞ�v�vaT
�
[ðaÞ�

denote the log-likelihood, the score function, and the information

matrix, respectively. S(a) is partitioned into ðSb; SqÞ to conform

with the partition ðb; qÞ of a. Similarly, IðaÞ is partitioned into

block matrices Ibb; Ibq; I qb; I qq. Let ~a denote the maximum likeli-

hood estimator under the null hypothesis H0. Classical Rao’s score

statistic for testing H1a is

Ta ¼ ~S
T

q

�
~I qq � ~Iqb

~I�1

bb
~Ibq

��1
~Sq;

where ~S and ~I are evaluated at ~a, respectively.When the likelihood

is correctly specified, Ta has a c2
p distribution in large samples un-

der the null hypothesis.
Testing for One-Sided or Bidirectional Hypothesis
As we elaborated in the Introduction, it is sometimes plausible in

cancer epidemiology to test for one-sided multiple G 3 E simulta-

neously, for example

H1b : qj%0 for j ¼ 1;.; p

with strict inequality for at least one j. The interest here is specif-

ically in discovering genetic alleles that simultaneously link to a

lower association for each of p exposures. The one-sided test can

be motivated similarly for qjR 0, aiming to discover genetic alleles

that link to a higher association for exposures. In a complete

agnostic search such as genome-wide testing for G 3 E, it is

perhaps more sensible to formulate the following bidirectional

hypothesis

H1c : qj%0 for j ¼ 1;.; p or qjR0 for j ¼ 1;.; p

with strict inequality for at least one j. The multiple G3 E are con-

strained to be directional, either all positive or all negative. This

bidirectional test has not been seen in the statistical literature.

In what follows, we derive score tests for H1b and H1c based on

an approximated likelihood ratio test.27

Let ~b denote the maximum likelihood estimator of b under H0,

and let ~a ¼ ð~b;0Þ, where 0 is a length-p zero vector for q. Let a

sequence of local alternative hypotheses be defined by

H1n : q ¼ n�1=2d;

where d is a fixed point in Rp. By employing Taylor series

expansions, we have

n�1=2Sqð~aÞ/dNðIqq;bða0Þd; Iqq;bða0ÞÞ

and

n�1=2I�1
qq;bð~aÞSqð~aÞ/dN

�
d; I�1

qq;bða0Þ
�
;

under H1n, where a0 ¼ ðb;0Þ, Iqq;b ¼ Iqq � IqbI�1
bb Ibq. Let U ¼

n�1=2I�1
qq;bð~aÞSqð~aÞ. Since q % 0 is equivalent to d % 0, one may

define a score test as follows:

Ts ¼ n
h
UTI qq;bU � inf

n
ðU � dÞTIqq;bðU � dÞ : d%0

oi
:

This is essentially the likelihood ratio statistic for d% 0 based on a

single realization of U:31 the first term is the log-likelihood of U

under the null hypothesis d ¼ 0, and the second term is the
354 The American Journal of Human Genetics 99, 352–365, August 4
maximum log-likelihood of U under the alternative hypothesis

d % 0. If the information matrix Iqq;b is known, the asymptotic

null distribution of Ts is a chi-bar-squared distribution that is

equivalent to a weighted sum of a sequence of chi-square distribu-

tions, where the weights can be computed by algebra in closed

forms when p % 431,32 and by simulations when p > 4. Alterna-

tively, if Iqq;b is diagonal, close-form expressions of the weights

are readily available for any p. In our case, however, Iqq;b is un-

known, depending on b that has to be estimated. Furthermore,

it is unlikely to be a diagonal matrix in the context of testing

G3 E. Consequently the asymptotic null distribution of Ts is diffi-

cult to obtain.

We therefore develop an approximate score statistic for one-

sided hypotheses, in the same spirit as the approximate likelihood

ratio statistic for a normal mean vector with nonnegative compo-

nents.27 The main advantage is that, after transformation and

approximation, the asymptotic null distribution of the score sta-

tistic does not rely on the nuisance parameters involved in Iqq;b,

and therefore the significance level is much easier to compute,

an appealing feature for genome-wide testing.

Let A be a p 3 p matrix such that

ATA ¼ Iqq;b; (Equation 3)

and so z ¼ AU is asymptotically a normal vector with the identity

covariance matrix. Such A is not unique, as we discuss the choice

of A in the next paragraph. For a chosen A, the score statistic Ts
becomes

n
h
zTz� inf

n
ðz� AdÞTðz� AdÞ : d%0

oi
:

Let b ¼ Ad. Geometrically, the parameter space under the

alternative is the negative orthant. To compute Ts, one has to

minimize ðz� bÞT ðz� bÞ for all vectors in the image space

AðdÞ ¼ fAd j d%0g, which can be cumbersome. Instead, the pro-

posed test approximates the polyhedral space A(d) by the negative

orthant fb j b%0g, with A chosen to make the center directions of

the two spaces coincide. For the jth element in z, denoted by zj, if

zj R 0, inffðzj � bjÞ2 : bj%0g ¼ z2j ; if zj < 0, inffðzj � bjÞ2 :

bj%0g ¼ 0. Because zj and zj0 are independent, it follows that the

approximate score statistic for one-sided hypothesis H1b is

Tb ¼
Xp
j¼1

�
zj ^0

�2
;

where zj ^0 denote the minimum of zj and 0. Because of the inde-

pendence among zj values, the asymptotic null distribution is a

special case of the chi-bar-squared distribution,27 expressed asPp
j¼0½fp!=j!ðp� jÞ!g=2p�c2

j , where c2
j is the chi-square distribution

with j degrees of freedom and c2
0 is defined as the constant zero.

The degree of approximation depends on the information ma-

trix Iqq;b. If it is diagonal, A can be chosen such that A(d) is exactly

the negative orthant. For an arbitrary information matrix, we can

enhance the approximation by choosing the transformation A so

that the center direction of A(d), which is defined to be the direc-

tion that forms the same acute angle with any of the edge direc-

tions, coincides with the center direction of the negative orthant.

For the negative orthant in the two-dimensional space, for

instance, the center direction is (�1,�1). For a given A, the p edges

of the polyhedral cone are given by

fj ¼ Aej
.�

eTj I qq;bej
�1=2

;
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with j¼ 1,2,., p and ej is the unit vector for the j
th coordinate. The

center direction is then given by

dA ¼
	�

f1;.; fp
�T
�1

J;

where J ¼ ð�1;.;�1ÞT , the center direction of the negative or-

thant. Therefore the center direction of A is required to be

dA ¼ cJ; (Equation 4)

for some c > 0. In Appendix A, we give the details of how to

construct A to ensure A(d) has the same center direction as the

negative orthant.

Following the same derivation, the score statistic for the other

one-sided test, qj R 0 for j ¼ 1, ., p can be constructed asPp
j¼1ðzjn0Þ2, where zjn0 denote the maximum of zj and 0. The

score statistic for the bidirectional hypothesis H1c is therefore

the maximum of the two test statistics,

Tc ¼ max

 Xp
j¼1

�
zj ^0

�2
;
Xp
j¼1

�
zjn0

�2!
:

The test statistic nowdepends on the angle of zj in orthants other

than positive and negative ones, and so the asymptotic null distri-

bution is no longer a chi-bar-squared distribution. Since under the

null hypothesis zj is a vector of independent and standard normal

distributions, the null distribution of Tc can be generated by simu-

lation. For genome-wide testing, however, an enormousnumber of

simulations need to be generated to achieve the accuracy needed

for genome-wide significance (5 3 10�8). Though this requires

the generationof a largenumberof simulated statistics (in theorder

of ~109–1010) only once, it is rather cumbersome for genome-wide

testing. We propose a simple hybrid procedure that computes

p values with adequate accuracy: first, a p value is computed by

simulations to the accuracy of the third decimal place; if the

simulation-based p value is less than 0.01, then we further

compute an approximate, conservative p value by algebraic calcu-

lation. The detail of the algebraic approximation is shown in

Appendix A. In Figures S1 and S2, we show some numerical ana-

lyses comparing simulation-based p values and algebraic approxi-

mations. This algebraic approximation works remarkably well:

the smaller p value, the better approximation.

Testing for Proportional Interactions
Relative to the one-sided test, a more restrictive alternative hy-

pothesis for multiple G 3 E in Equation 2 entails

H1d : qj ¼ gb2j for some gs0 and j ¼ 1;.; p;

so that in the log-odds scale, the interactions are proportional to

the exposure main associations. One way to interpret this hypoth-

esis is as follows: because of the shared etiology, the combinatory

effect of environmental risk factors can be formulated as an envi-

ronmental risk score, similar to genetic risk scores commonly

used.33 The genetic variant modifies the disease association of

this environmental risk score as a whole. This test is slightly

different from Tukey’s 1-df test because the genetic main associa-

tion, b1, does not factor in the interactions.28 For genome-wide

association studies, b1 and g will be 0 for the majority of loci.

Given that the exposures are all established risk factors, i.e.,

b2js0, the interaction parameter g is identifiable even if there is

no genetic main effect under the null hypothesis b1 ¼ 0, avoiding

the troublesome identifiability issue.30
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The parameters are reduced to the vector a ¼ ðb;gÞ. The standard
Rao score statistic for testing g ¼ 0, however, shows severe inflated

type I errors in the BEACON genome-wide association study (see

Figure S3, the quantile-quantile plot). The problem originates in

theunique score functionderived fromthe proportional interaction

model.Theusual expressions for themeanandvarianceof~Sg needto

be corrected for the finite-sample bias, as we derive below.

Let X i ¼ ð1;Gi;Xi;WiÞ be the vector of covariates, and let ~b

denote themaximum likelihood estimator for b under the null hy-

pothesis. The score function for b and g under the null hypothesis

can be written as

~Sb ¼
X
i

X i

 
Yi �

exp
�X i

~b
�

1þ exp
�X i

~b
�
!
;

~Sg ¼
X
i

X
j

~b2jGiXij

 
Yi �

exp
�X i

~b
�

1þ exp
�X i

~b
�
!
:

Let ~Hgb ¼ v~Sg=vb. Asymptotic distribution theories for

maximum likelihood estimator ~b lead to
ffiffiffi
n

p ð~b� bÞ ¼ ffiffiffi
n

p
~I�1

bb
~Sbþ

opð1Þ, and so the usual first-order Taylor expansion of ð1= ffiffiffi
n

p Þ~Sg
at b yields

1ffiffiffi
n

p ~Sg ¼ 1ffiffiffi
n

p Sg þ 1ffiffiffi
n

p ~Hgb

�
~b� b

�þ opð1Þ

¼ 1ffiffiffi
n

p Sg þ 1ffiffiffi
n

p ~Hgb
~I�1

bb
~Sb þ opð1Þ

The classical derivation for the large-sample distribution of a

score statistic for a composite null hypothesis usually suffice. In

this case, however, the first-order Taylor expansion turns out to

be inadequate for a genome-wide significance level at 5 3 10�8.

More importantly, ~Hgb for this proportional interaction model is

a function of the outcome variable Y,

~Hgb ¼
X
i

(
� X i

 X
j

~b2jGiXij

!
mið1� miÞ þ V iðYi � miÞ

)
;

where mi ¼ expðX i
~bÞ=f1þ expðX i

~bÞg and V i ¼ ð0;0;GiXi;0Þ. This
induces correlation between ~Hgb and ~Sb which, if ignored, will

result in bias when calculating the mean and the variance of score

statistics in finite samples, and consequently inflated type I errors.

For example, the expectation of ~Sg is no longer 0 in finite samples.

We show in Figure S1 a heavily inflated quantile-quantile plot for

the standard score test for the proportional interactions. In Appen-

dix A, we show the algebraic development of the finite-sample

correction for the mean (denoted by td) and the variance (denoted

by Sd) of ~Sg after a second-order Taylor expansion,

1ffiffiffi
n

p ~Sg ¼ 1ffiffiffi
n

p Sg þ 1ffiffiffi
n

p ~Hgb

�
~b� b

�þ 1

2
ffiffiffi
n

p �
~b� b

�T ~Hgbb

�
~b� b

�
þ op

�
1ffiffiffi
n

p

;

where ~Hgbb is the second derivative of ~Sg with respect to b. The cor-

rected score statistic for testing g ¼ 0 is therefore expressed as

Td ¼
�
~Sg � td

�
S�1

d

�
~Sg � td

�
:

The first-order correction is simpler but turns out to be inade-

quate to correct for the inflated type I error (Figure S4). In our

simulation study and application to the BEACON data shown

next, the second-order correction expressed as Td shows proper

control of the type I error in genome-wide significance.
ican Journal of Human Genetics 99, 352–365, August 4, 2016 355



Table 1. The Ratio of the Observed Type I Error Rate versus the Nominal Value for the Bonferroni Test, the Unconstrained Score Test, and
the Constrained Score Tests

Proportional

n Cases/n Controls p Value Level Bonferroni Unconstrained One-Sided Bidirectional Standard Corrected

Independent Exposures

500/500 0.05 0.99 1.01 1.1 1.02 1.17 0.88

0.001 0.97 1.01 1.57 1.07 4.4 1.05

0.0001 0.88 1.14 1.98 1.32 14.24 1.5

2,500/2,500 0.05 0.98 1.00 1.03 1 1.04 0.98

0.001 0.94 1.05 1.25 1.07 1.5 1.04

0.0001 0.98 1.04 1.34 1.10 2.68 1.40

5,000/5,000 0.05 0.98 0.99 1.02 0.99 1.01 0.99

0.001 0.96 1 1.14 0.97 1.25 1

0.0001 0.76 1.02 1.18 1.02 1.56 1

Correlated Exposures

500/500 0.05 0.94 0.99 1.09 0.99 1.10 0.91

0.001 1.03 1.01 1.65 1.1 3.08 1.18

0.0001 1.34 1.06 2.12 1.34 9.62 2.06

2,500/2,500 0.05 0.98 1.01 1.04 1.01 1.03 0.99

0.001 1.04 0.99 1.38 1.06 1.48 1.1

0.0001 0.92 0.80 1.54 0.90 1.92 0.98

5,000/5,000 0.05 0.97 0.99 1.01 0.99 1.01 0.99

0.001 0.99 1.02 1.21 0.94 1.17 0.99

0.0001 1.12 0.94 1.34 1.16 1.38 1.04
Results

Simulation

We conducted numerous simulations to evaluate the per-

formance of the proposed score statistics. Specifically, a

genotype (coded as 0, 1, 2) was generated with minor allele

frequency 0.1. Three exposure variables were generated by

a multivariate normal distribution with zero means and a

covariance matrix (either a diagonal matrix with diagonal

elements 1 or a compound symmetric matrix with diago-

nal elements 1 and off-diagonal elements 0.6). The second

and third exposure variables were dichotomized at zero.

A logistic model was used to generate a dichotomous dis-

ease outcome conditional on the genotype and the expo-

sures. The logarithm of the odds ratio was set to �0.5 for

the genotype and (0.7, 0.7, 0.7) for the three exposures.

The intercept was set to �4 to generate a disease probabil-

ity of approximately 5%, under the null hypothesis that

none of the exposures interacts with the genotype.

The two correlation structures between exposures

generate different levels of correlation in the score func-

tions for the three interaction parameters: a moderate level

of correlations for each pair of score functions (<0.5) or a

high correlation for each pair of score functions (>0.5).

The correlation would affect the performance of the one-
356 The American Journal of Human Genetics 99, 352–365, August 4
side score test and bidirectional test, because it is based

on an approximation of the correlation-transformed

orthant.27

To evaluate the type I error rate, a cohort was first gener-

ated by these probabilistic distributions with a ladder of

sample sizes (104, 5 3 104, 105). All case subjects were

sampled for simulated genotyping, together with the

same number of randomly sampled control subjects.

Table 1 shows empirical type I error rates evaluated in

5 3 105 datasets simulated under the null hypothesis,

when the nominal p value cut-off was set to be 0.05,

0.001, or 0.0001. The number of case subjects varies from

500 to 5,000, with the same number of control subjects.

The upper part shows the scenario where the three envi-

ronmental exposures are independent and the lower part

shows the scenario where they are correlated. In all sce-

narios, the Bonferroni correction for three separate tests

and the classical score test for the unconstrained alterna-

tive H1a shows adequate performance in controlling

type I errors. The one-sided test for H1b shows proper con-

trol of type I error rates except slight inflation for signifi-

cance level 0.001 and 0.0001 under 500 case subjects.

The increased correlation hurts the performance of the

one-sided score statistic. The bidirectional score statistic

for H1c shows superior control of the type I error rate,
, 2016



Figure 1. Statistical Power of the Four
Methods Being Evaluated in Four Sce-
narios with a Small Sample Size
500 case subjects and 500 control subjects;
there is no correlation between environ-
mental exposures.
(A) The three interactions are proportional
to respective main effects.
(B) The three interactions are not propor-
tional, but one-sided.
(C) The three interactions have different
directions.
(D) Two of the three interactions are zero.
because it uses a conservative approximation in the tail of

the p value distribution. Under a relative smaller sample

size, the naive score statistic for H1d displays grossly in-

flated type I error rates when nominal significance is

0.001 or 0.0001, 4 times or 14 times more than the correct

level when the exposures are independent. This inflation

dissipates when sample size increases, suggesting that the

problem is largely driven by erroneous small-sample prop-

erties, not the large-sample behavior. In comparison, the

corrected score statistic for H1d shows adequate control of

type I error rates for all settings. In genome-wide testing

for gene-environment interactions, the power is typically

small for the genome-wide significance level (5 3 10�8),

and so the inflation of the type I error rate for the score sta-

tistic for H1d can be concerning. See, for example, the

quantile-quantile plot for the BEACON data in Figure S3.

As we show in the data analysis later, the correction we

proposed for H1d is necessary to preserve adequate control

of type I error.

In Figures 1 and 2 we show the power performance for

the five methods, in which the Bonferroni correction and

the 3-df score test are the benchmarks of the comparison.

We consider two scenarios: 500 case and 500 control sub-

jects, significance level 0.05 (Figure 1), and 2,500 case

and 2,500 control subjects, significance level 0.0001

(Figure 2). In each scenario, we generate four different

sets of interaction parameters: proportional, one-sided

(negative), two-sided, and only one non-zero interaction.

The latter two sets are designed to test the robustness of

the constrained methods when respective modeling as-
The American Journal of Human G
sumptions are violated. We show the

settings where the exposures are inde-

pendent and omit the settings with

correlated exposures, since the rela-

tive comparison between methods

did not differ substantially from Fig-

ures 1 and 2.

Figure 1 shows power performance

of various methods for 500 case sub-

jects and 500 control subjects with

the significance level 0.05. In Fig-

ure 1A, the interaction parameters

were set to be truly proportional to

the respective main effects, namely
gb2j with g increasing from 0 to 1. Clearly, the Bonferroni

method performs the worst among the five methods eval-

uated, losing 5%–10% power when compared to the un-

constrained 3-df score test. The one-sided (negative) score

statistic for H1b shows the best performance in power,

consistently higher over the unconstrained score test,

with themaximal power gain reaching 15%–20%. The pro-

portional score statistic with finite-sample correction

shows the second best performance, slightly better than

the bidirectional test. The advantage of the one-sided test

over the proportional and the bidirectional test is ex-

pected, because the latter two examine differences in

both positive and negative directions.

Figure 1B shows the setting in which the interactions are

truly one-sided but not proportional to the main exposure

effects, specifically, qj ¼ g(�0.75, �0.5, �0.25) with g

increasing from 0 to 1 and the main effects are (0.7, 0.7,

0.7). The order of the performance remains the same as

that in Figure 1A, though the difference is smaller. The

one-sided score test performs the best in this scenario,

whereas the proportional interaction test and the bidirec-

tional test appear to be next in power performance. The

Bonferroni method yields nearly identical power as the

unconstrained score test.

Figure 1C shows a scenario where the interactions do not

have the same sign, nor are proportional to themain expo-

sure effects. Specifically, qj ¼ g(�0.5, �0.75, �0.25) with

d increasing from 0 to 1. This is the setting where the

modeling assumptions for the three constrained score tests

are violated. Consequently, the unconstrained test and the
enetics 99, 352–365, August 4, 2016 357



Figure 2. Statistical Power of the Four
Methods Being Evaluated in Four Sce-
narios with a Large Sample Size
2,500 case subjects and 2,500 control sub-
ject; there is no correlation between envi-
ronmental exposures.
(A) The three interactions are proportional
to respective main effects.
(B) The three interactions are not propor-
tional, but one-sided.
(C) The three interactions have different
directions.
(D) Two of the three interactions are zero.
Bonferroni correction perform better than the constrained

tests. The one-side (negative) test and the bidirectional test

show some degree of robustness, with similarly lower

power performance. The proportional test delivers a sub-

stantially inferior power performance relative to the other

four tests.

In Figure 1D, we simulate a scenario where two out of the

three interactions are 0, qj ¼ g(0, �1.0, 0) with d increasing

from 0 to 1. In this scenario, the Bonferroni method out-

performs the unconstrained score test; the bidirectional

test is similar to the constrained test; the proportional

interaction test performs very poorly because this alterna-

tive hypothesis is not at all in the direction for which it is

designated. Interestingly, the one-sided test still delivers

the best power performance, because these interaction

parameter values still conform to the alternative hypothe-

sis H1b that the interactions lie in the negative orthant.

Figure 2 shows the settings with 2,500 case and 2,500

control subjects, p value cut-off 0.0001. We want to

examine the performance of the proposed methods in a

large-scale case-control study, like the one in BEACON,

and there are a large number of genotypes. The similar

pattern as Figure 1 was observed in power comparison:

when the alternative hypothesis is directional or propor-

tional, the three constrained score statistics performs

better than the standard 3-df test and the Bonferroni

correction; notably, the proportional interaction outper-

forms the one-sided test, suggesting that pooling three

exposures into a risk score for interaction really boosts

the power when the significance level is far out in the
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tail; the one-sided test and the bidi-

rectional test can be quite robust

against model violation, whereas the

performance of the proportional test

drops substantially when the alterna-

tive hypothesis are not in the same

direction. We also note that another

feature affecting the performance of

the proportional test is the effect size

of the main exposure effects (Fig-

ure S5). Strong exposure effects and

the large sample size, such as the

three exposures in the BEACON

study, works best for the proportional
test, because its performance depends on the variability of

the main effect estimates. Based on these simulations, it is

compelling to apply the three constrained score tests and

the unconstrained score test in the BEACON study.

Data Application

All 1,516 esophageal adenocarcinoma case individuals and

2,416 Barrett’s esophagus individuals in the discovery

phase of the BEACON GWAS were included in this investi-

gation, together with 2,187 control participants. A descrip-

tion of the genome-wide study has been published

previously.23 All recruited participants gave informed

consent, and this study was approved by the ethics boards

of each participating institution. Genetic data for which

the authors have IRB permission to make public are

available from the dbGaP database (accession numbers

phs000869.v1.p1 and phs000187.v1.p1). Three estab-

lished risk factors were investigated for potential interac-

tion with 922,031 SNPs that were genotyped by the

Illumina HumanOmni1-Quad platform and passed quality

control: cigarette smoking, body-mass index (BMI), and

gastresophageal reflux symptoms. These variables were

coded as ever smoking (yes or no), BMI (<25, R25

to <30, R30 kg/m2), and at least weekly heartburn or

weekly reflux (yes or no). A logistic model was fitted for

every SNP and the three exposures, separately for EA and

BE. Each model included age, sex, the first four principal

components derived from genome-wide SNP data to ac-

count for population stratification, the SNP main effect

(coded as two indicator variables), the three exposure



Figure 3. The q-q Plots for Genome-wide
Testing for G 3 E on Barrett’s Esophagus
by the Three Score Statistics
(A) Unconstrained score test.
(B) One-sided score test for negative G 3 E.
(C) Bidirectional test.
(D) Score test for proportional G 3 E.
main effects (all coded categorically), and the product of

the SNP value (0, 1, or 2, treated quantitatively) and each

of the three exposures. The multivariate SNP-exposure in-

teractions were tested by the unconstrained score test,

the one-sided test, and the proportional test.

Figure 3 shows the q-q plots for the four genome-wide

G 3 E testing methods for Barrett’s esophagus. The one-

sided results for the positive interaction for Barrett’s

esophagus, as well as all G 3 E tests for esophageal adeno-

carcinoma, did not yield any significant results and

therefore were not presented. Figure 3A shows that the un-

constrained 3-df score statistics yield two genome-wide sig-

nificant SNPs on chromosome 7 that are highly correlated

(r2 ¼ 1; rs11765529, p value 3.48 3 10�9; rs7798662,

p value 6.06 3 10�9). The same two SNPs remain

genome-wide significant when tested by one-sided (nega-

tive) score statistics, the bidirectional test, and the propor-

tional interaction test shown in Figures 3B–3D. The

proportional interaction test resulted in one additional

genome-wide significant SNP, rs4930068 in chromosome

11 (p value 3.51 3 10�8, Figure 3D). In Figure S3, we

show the q-q plot with seriously inflated type I error rates

when the finite-sample correction is not applied to score

statistics for proportional interactions.

Table 2 shows the estimated odds ratios of the three envi-

ronmental factors stratified by the number of alleles for the

two genome-wide significant SNPs. Barrett’s esophagus

and esophageal adenocarcinoma were investigated as cases

separately in logistic regression models with three SNP-

environment interactions. The interpretation of these

ORs is conditional on genotype, age, gender, and the other

two exposures being fixed at certain levels. The right half

of Table 2 shows the p values from various score tests for

G 3 E testing. For almost every combination of SNP, expo-

sure, and disease combination, the OR decreases with the

number of increasing-risk alleles. This decreasing OR

with the number of alleles is most strongly seen in
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GERD, the strongest risk factor, and

the trend we found for Barrett’s

esophagus is similar to that for esoph-

ageal adenocarcinoma, though the

latter does not have a genome-wide

significance level. Since both the cases

of Barrett’s esophagus and the cases of

esophageal adenocarcinoma were

compared to the same control group,

the findings for esophageal adenocar-

cinoma are not independent replica-
tions. Nonetheless, the consistency between Barrett’s

esophagus and esophageal adenocarcinoma adds to the

evidence for true G 3 E in the etiological pathway.

Association analyses were further conducted for imputed

SNPs based on the 1000 Genomes Project around geno-

typed SNPs that showed significant interactions with one

of the three risk factors. Thedetails of the imputationproce-

dure have been presented previously.23 Figure 4 shows the

regional interaction associations around rs11765529 and

rs4930068, including both genotyped and imputed SNPs

within a 1 Mb interval centering around the index SNPs.

The index SNPs are marked as purple squares, other geno-

typed SNPs are marked with squares, and imputed SNPs

are marked by circles. The rs11765529 variant is located in

a gene-poor intergenic region, ~160–180 kb from the near-

est protein-coding gene, POM121L12 (transmembrane nu-

cleoporin-like 12 [MIM: 615753]). The rs4930068 variant

at 11p15.5 is located 5.4 kb upstream (50) of the transcrip-

tional start site forASCL2 (MIM: 601886). None of adjacent

SNPs showedmore significantpvalues than the indexSNPs.

We conducted in silico functional characterization of

these SNPs in several bioinformatics databases. The two

variants at 7p12.1 (rs7798662 and rs11765529) are situ-

ated in a gene-poor intergenic region, ~160–180 kb from

the nearest protein-coding gene, POM121L12 (Figure S6A).

These two SNPs are separated by ~24 kb, are in strong link-

age disequilibrium (LD) (r2 ¼ 1), and are highly correlated

(r2 ¼ 1) with >100 additional variants in a 40-kb region,

based on data from the 1000 Genomes Project34 (Table

S1A). rs7798662 modifies a predicted binding motif for

the transcription factor Smad3 (MIM: 603109), whereas

rs11765529 alters motifs for HDAC2 (MIM: 605164).35

Several correlated SNPs lie in regions marked by enhancer

histone modifications or DNase hypersensitivity in multi-

ple tissues or cell lines, based on data from the NIH Road-

map Epigenome Project and ENCODE.36,37 Recruitment of

the transcription factor JUND (MIM: 165162) has been
enetics 99, 352–365, August 4, 2016 359



Table 2. The Odds Ratio of the Three Environmental Factors Associated with SNP Genotypes for Barrett’s Esophagus and Esophageal
Adenocarcinoma, and the Three Score Tests for Multiple G 3 E Simultaneously

OR Stratified by the Number of Minor Alleles G 3 E p Value

Disease Risk Factor 0 1 2 Unconstrained One-Sided Bidirectional Proportional

rs11765529

BE BMI 1.94 (1.74, 2.17) 1.64 (1.24, 2.16) 1.28 (0.08, 19.7) – – – –

smoking 1.67 (1.41, 1.98) 0.79 (0.51, 1.21) 0.94 (0.80, 11.1) – – – –

GERD 6.39 (5.35, 7.64) 2.09 (1.36, 3.21) 0.69 (0.06, 8.09) 3.48 3 10�9 7.10 3 10�10 1.42 3 10�9 1.81 3 10�9

EA BMI 1.51 (1.31, 1.74) 1.17 (0.81, 1.69) – – – – –

smoking 1.87 (1.50, 2.35) 1.20 (0.64, 2.27) – – – – –

GERD 3.83 (3.07, 4.77) 2.34 (1.33, 4.11) – 0.013 0.004 0.0072 0.003

rs4930068

BE BMI 2.11 (1.80, 2.49) 1.91 (1.64, 2.22) 1.32 (1.01, 1.72) – – – –

smoking 1.56 (1.22, 1.99) 1.73 (1.38, 2.18) 0.85 (0.56, 1.28) – – – –

GERD 7.91 (6.08, 10.30) 4.75 (3.76, 6.02) 2.86 (1.88, 4.35) 1.53 3 10�6 3.38 3 10�7 6.76 3 10�7 3.51 3 10�8

EA BMI 1.46 (1.19, 1.79) 1.43 (1.17, 1.74) 1.41 (0.99, 1.99) – – – –

smoking 2.14 (1.54, 2.99) 1.67 (1.23, 2.27) 1.08 (0.60, 1.95) – – – –

GERD 4.80 (3.48, 6.60) 3.04 (2.26, 4.08) 2.21 (1.24, 3.92) 0.007 0.002 0.004 0.004

Abbreviations are as follows: BE, Barrett’s esophagus; EA, esophageal adenocarcinoma.
reported ~6.5 kb away from rs11765529. Of potential inter-

est, rs7798662 and rs11765529 lie within a 3.3 Mb region

designated as a long-range epigenetic activation (LREA)

domain in prostate cancer cells; this region, which encom-

passes a total of ten genes (including POM121L12) was

identified as transcriptionally active in prostate cancer

cell lines relative to normal primary prostate cells.38 The

POM121L12 protein is largely uncharacterized with

respect to biological function, but is related to the

POM121 transmembrane nucleoporin, a key component

of the nuclear pore complex, which enables transport

into and out of the nucleus.39,40

The rs4930068 variant at 11p15.5 is located 5.4 kb up-

stream (50) of the transcriptional start site for ASCL2, which

encodes the Achaete-Scute Family bHLH Transcription

Factor 2 (Figure S6B). rs4930068 is in strong LD (r2 > 0.8)

with 41 additional variants located within 20 kb, including

30 SNPs within 8 kb (r2 > 0.90).34 rs4930068 lies in a

7,400-bp region characterized as heterochromatin in

esophageal tissue, according to chromatin state segmenta-

tion data derived from the Roadmap Epigenome Project.37

Multiple SNPs strongly correlated with rs4930068,

rs11021967, rs7396048, rs2285567, rs11022026, and

rs6578259 are located within segments marked by

enhancer histone marks in the esophagus and/or distal

gastrointestinal (GI) mucosa and appear to hold high

regulatory potential (Table S1). Several of these variants

lie within regions characterized by DNase hypersensitivity

and transcription factor recruitment (TAL1 [MIM: 187040],

USF1 [MIM: 191523], E2F6 [MIM: 602944], ELF1 [MIM:

189973], MAX [MIM: 154950]) in various cells/tissues

and modify predicted regulatory binding motifs.36 Some
360 The American Journal of Human Genetics 99, 352–365, August 4
of these SNPs (rs7396048, rs2285567, rs11022026) are

potential expression quantitative trait loci (eQTLs) in

whole blood or other tissues.36

The ASCL2 protein is a member of the basic helix-loop-

helix (HLH) family of transcription factors, which dimerize

and bind to DNA via their HLH and basic domains, respec-

tively.40 bHLH proteins play important general roles in cell

fate specification and lineage-specific transcriptional con-

trol. ASCL1 (MIM: 100790) and ASCL2 are essential factors

in the development of the neuroectoderm and trophecto-

derm, respectively,41,42 and both proteins are frequently

expressed in human cancers. ASCL2, an apparent target

gene of the Wnt signaling pathway, was shown to be upre-

gulated in colorectal neoplasia43 and has been linked to an

intestinal stem cell expression signature that defines a ma-

jority of colorectal cancers (MIM: 114500)44 and may be

present in precancerous adenomas.45 Low-level expression

of ASCL2 mRNA has also recently been reported in BE46

while studies in human esophageal cell lines have

described induction of ASCL2 mRNA and protein in a

sub-population of stem-like spheroid cells derived in cul-

ture.47 Of particular interest, ASCL2 was shown to suppress

expression of the homeobox transcription factor CDX2

(MIM: 600297),48 a known early marker of BE,49 subse-

quently downregulated during EA pathogenesis.50

Based on our in silico functional characterization of

rs4930068 and correlated variants, a potential regulatory

role for these SNPs in influencing ASCL2 expression

levels appears plausible. However, future laboratory-based

studies are clearly required to assess possible functional

effects. Recent evidence has suggested that Barrett’s esoph-

agus may represent the outgrowth of a residual embryonic
, 2016



Figure 4. Regional Association Plot of
Genotyped and Imputed SNPs in Prox-
imity to Two Newly Discovered SNPs
with Genome-wide Significance
The top portion of the figure has phys-
ical position along the x axis, and
�log10(p value) for the interaction term
on the y axis. The index SNP is marked as
a purple square, other genotyped SNPs
are marked with squares, and imputed
SNPs are marked by circles. The color
scheme represents the pairwise correlation
(r2) between a given SNP and the index
SNP. The bottom portion of the figure
shows the position of genes across the
region.
(A) Genotyped and imputed SNPs around
rs11765529, the p values are from the un-
constrained score test.
(B) Genotyped and imputed SNPs around
rs4930068, the p values are from the score
test for proportional interactions.
epithelial cell population, rather than squamous-to-

columnar trans-differentiation of resident stratified epithe-

lium.51,52 In this context, it is intriguing to consider the

possibility that the observed interaction between

rs4930068 and GERD in relation to risk of BE might in

part reflect alterations in the expression level of ASCL2, a

transcription factor with known roles in both develop-

ment and cancer.
Discussion

In summary, we have proposed constrained testing strate-

gies for identifying interactions between a genotype and
The American Journal of Human G
multiple related environmental expo-

sures: the one-sided interactions, the

bidirectional interactions, and the

proportional interactions (on the log

OR scale relative to respective main

environmental associations). Several

statistical contributions were made

in this work. First, an approximate

score statistic was developed for the

one-sided test, which circumvents

the difficulty of obtaining an exact

asymptotic distribution, and further

extended to the bidirectional test.

Second, for the proportional interac-

tion test, we proposed a second-order

correction to the mean and the vari-

ance of the score statistic, which

resolved the issue of the inflated

type I error rate in genome-wide

testing. Our proposed methods were

applied to the BEACON study and

identified several loci that interact
with three environmental exposures in Barrett’s esophagus

with genome-wide significance.

Our work is exploratory in nature, as other methodolog-

ical developments in genome-wide association testing.

There is a paucity of established G 3 E, much due to lower

power of such exploration. The goal of our work is to

enrich G 3 E findings that may lead to further validation

and functional studies. These G 3 E could help in risk pre-

diction and stratification, or possibly individualized pre-

vention for modifiable exposures.

Our simulation study suggests that the one-side test

nearly always outperforms, if only slightly, the propor-

tional interaction test, even in the scenario where interac-

tions are generated to be proportional. This is primarily
enetics 99, 352–365, August 4, 2016 361



due to the proportional test being a two-sided test, and its

increased variability because of its dependence on the

main associations of environmental exposures. When the

latter were estimated with quite some uncertainty, for

example, when the sample size is small, the proportional

test is not very appealing in power performance. However,

in consortium studies where investigators can assemble a

large sample size, the proportional test can be advanta-

geous when the interactions are truly directional (Figures

2A and 2B). When such constraint is violated, the propor-

tional test can be powerless as shown in Figures 1C, 1D,

2C, and 2D. The directional test strikes the balance be-

tween power and robustness, performing competitively

under true model constraints and displaying robustness

against model violations.

In cancer epidemiology, if several exposures share some

etiological pathways, our simulation shows that testing

one exposure at a time is inferior in power to simulta-

neously testing multiple G 3 E altogether. We show an

example of applying such testing strategies in the BEACON

study and we found several interesting genome-wide sig-

nificant hits. We note that the suitability of the proposed

constrained inference depends heavily on study context

and a priori scientific knowledge. Other plausible settings

include multiple measures of the same underlying expo-

sure profile, such as measures of smoking and diet intake.

Investigators should exercise caution when applying the

constrained inference since, as we show in the simulation,

violations of model constraints can result in deteriorated

power.

Beyond the multivariate G 3 E testing we consider, con-

strained inference strategies for a single G 3 E test have

been explored. For example, it is often reasonable to

constrain the interaction to be quantitative, because epide-

miologists believe such interaction is generally unnatural

and rare, if it exists at all.53 Some works have been

developed along this line, possibly incorporating the

powerful but controversial gene-environment indepen-

dence assumption.54,55 From a methodological point of

view, the latter assumption could be incorporated into

the constrained score statistics we developed in this article,

with some additional work. For the BEACON study,

however, this assumption does not hold because BMI

and GERD are both phenotypes with substantial genetic

susceptibility.56,57

We close with a brief discussion on generalizing the pro-

posed methods. The Tukey’s test has been formulated to

study interactions between multiple genes and multiple

environmental exposures. In principle, the one-sided and

bidirectional testing strategies can be applied equally to

one exposure of interest and a set of SNPs in the gene, or

a set of known risk loci. The proportional interaction test

naturally applies to this setting. One complexity for the

one-sided test is that, in contrast to the BEACON study

where all three exposures are known to be hazardous, it

may be entirely unknown which alleles of the SNPs in a

gene may modify the exposure association in the same di-
362 The American Journal of Human Genetics 99, 352–365, August 4
rection. Therefore it requires a bit more understanding of

the function of the alleles prior to motivating the direc-

tional hypotheses for one exposure of interest and a set

of SNPs in the gene. The other potential issue for one expo-

sure and a set of SNPs is that the number of SNPs has to be

limited, because the dimensionality would affect the de-

gree of freedom in the chi-bar-squared distribution, which

will in turn influence power performance.
Appendix A

Construction of the Transformation Matrix A

As stipulated in Material and Methods, ATA ¼ Iqq;b and its

center direction should coincide with the center direction

of the negative orthant. In addition, it would be appealing

that A(d) is invariant to the order of the elements in U,

since the order of the interaction terms tested in the alter-

native hypothesis should not change the test statistic. We

adopt a linear orderingmethod previously developed to re-

arrange U and Iqq;b.
58 Next we find A that satisfies Equa-

tions 3 and 4. Let H ¼ (h1,., hp) be the orthogonal matrix

obtained by applying the Gram-Schmidt orthonormaliza-

tion to the independent set of vectors (J, e1,., ep). Let

CTC ¼ Iqq;b be the Choleski decomposition of Iqq;b. Let

dc denote the center direction of the image space

CðdÞ ¼ fCd j d%0g, and let V¼ (v1,., vp) be the orthogonal

matrix obtained by applying Gram-Schmidt orthonormal-

ization to the independent set of vectors (dc, e2,., ek). Then

A ¼ HVTC satisfies the conditions of Equations 3 and 4.

Computation of Tail p Values for the Bidirectional

Hypothesis by Algebraic Approximation

It is instructive to show the approximation when p ¼ 2.

The calculation in a higher dimension follows without dif-

ficulty. Specifically, let (z1, z2) denote the standard bivariate

normal variables. The four quadrants are denoted by Q1,

Q2, Q3, and Q4, respectively. The p value for the observed

Tc ¼ t is the sum of components from each quadrant. The

components of p value in Q1 and Q3 follow a standard c2
2

distribution. For components in Q2 and Q4,

PrðTc > t j ðz1; z2Þ˛Q2WQ4Þ ¼ Pr
�
z22 > t; j z2 j

R j z1 j j ðz1; z2Þ˛Q2WQ4

�
þPr

�
z21 > t; j z1 j > j z2 j j ðz1; z2Þ˛Q2WQ4

�
< Pr

�
z22 > t j ðz1; z2Þ˛Q2WQ4

�
þPr

�
z21 > t j ðz1; z2Þ˛Q2WQ4

�
¼ Pr

�
c2
1 > t

�þ Pr
�
c2
1 > t

�
It is clear that the bigger t, the better approximation. In

Figures S1 and S2, we show a comparison of simulation-

based p values and approximation-based p values. For

p values < 0.01, the difference is essentially negligible.

Correcting the Mean and the Variance of the Score

Statistic for the Proportional Interaction

For dichotomous outcomes, the exact computation of the

mean of the second-order Taylor expansion of ~Sg, namely
, 2016
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;

where ~Kgb;i ¼ ViðYi � miÞ and ~Sb;i are respective individual

contribution from the ith subject, ~Kgb;i1 and ~Sb;i1 are

contributions from the ith subject, evaluated at Yi ¼ 1,

and ~Kgb;i0 and ~Sb;i0 are contributions from the ith subject,

evaluated at Yi ¼ 0. The second-to-last equality uses

the independence between the ith subject and the jth

subject, if isj. The last equality uses the unique feature

that Yi takes two values (1,0) with probability mi and

ð1� miÞ, respectively. Similar, but more tedious, calculation

applies to

Sd ¼ Var

�
Sg þ ~Hgb

~I�1

bb
~Sb þ 1

2
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:

Let D ¼Pi � X ið
P

j
~b2jGiXijÞmið1� miÞ. The key terms

involved in the calculation are expressed below:
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