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Abstract

Background/Aim—Legalon SIL (SIL) is a chemically hydrophilized version of silibinin, an 

extract of milk thistle (Silybum marianum) seeds that has exhibited hepatoprotective and antiviral 

effectiveness against hepatitis C virus (HCV) in patients leading to viral clearance in combination 

with ribavirin. To elucidate the incompletely understood mode of action of SIL against HCV, 

mathematical modeling of HCV kinetics and human hepatocyte gene expression studies were 

performed in uPA-SCID-chimeric mice with humanized livers.

Methods—Chronically HCV-infected mice (n=15) were treated for 14 days with daily 

intravenous SIL at 469, 265 or 61.5 mg/kg. Serum HCV and human albumin (hAlb) were 
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measured frequently and liver HCV RNA was analyzed at days 3 and 14. Microarray analysis of 

human hepatocyte gene expression was performed at days 0, 3, and 14 of treatment.

Results—While hAlb remained constant, a biphasic viral decline in serum was observed 

consisting of a rapid 1st phase followed by a 2nd slower phase (or plateau with the two lower SIL 

dosings). SIL effectiveness in blocking viral production was similar among dosing groups (median 

ε=77%). However, the rate of HCV-infected hepatocyte decline, δ, was dose-dependent. 

Intracellular HCV RNA levels correlated (r=0.66, P=.01) with serum HCV RNA. Pathway analysis 

revealed increased anti-inflammatory and anti-proliferative gene expression in human hepatocytes 

in SIL-treated mice.

Conclusions—The results suggest that SIL could lead to a continuous 2nd phase viral decline, 

i.e., potentially viral clearance, in the absence of adaptive immune response along with increased 

anti-inflammatory and anti-proliferative gene expression in human hepatocytes.
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Introduction

Silymarin, an extract of milk thistle, and silymarin-derived compounds have long been 

considered hepatoprotective with antiviral, antioxidant, anti-inflammatory and 

immunomodulatory functions (1). A major component of silymarin is silibinin, which is an 

isomeric mixture of silybin A and silybin B. High doses of silibinin can be administered 

intravenously (i.v.) using an esterified modification silibinin-C-2′, 3-dihydrogen succinate, 

disodium salt (Legalon SIL). For over two decades, intravenous SIL has provided a well-

tolerated and safe treatment for Amanita phalloides-induced acute liver failure (2).

Hepatitis C virus (HCV) infection affects over 150 million people worldwide causing 

approximately 350,000 deaths annually from cirrhosis and hepatocellular carcinoma (3, 4). 

While interferon (IFN)-based therapy was a mainstay of HCV treatment for decades, more 

effective IFN-free regimens with fewer side effects are the new treatment standard (5-8). 

Legalon SIL (SIL) has exhibited high antiviral efficacy against HCV in patients with both 

compensated and decompensated liver disease with minimal side effects (1, 9-16). 

Additionally, IFN-free therapy with SIL and ribavirin has resulted in sustained virologic 

response (i.e., viral clearance) (17).

Despite these potentially broad clinically-relevant hepatoprotective and antiviral effects, the 

mechanism of action (MOA) by which SIL exerts these effects is not completely understood. 

Morishima et al (18) demonstrated in vitro that silibinin inhibited T cell proliferation and 

pro-inflammatory cytokine secretion that could potentially control hepatic inflammation and 

subsequent fibrosis progression (19). Many antiviral MOA of SIL against HCV have been 

suggested (20, 21) including inhibition of replication (20, 22) and inhibition of viral entry 

(20, 23).
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In this study HCV-infected uPA-SCID chimeric mice with humanized livers (24-26) were 

treated with SIL. Viral response kinetics in the serum and liver was monitored as was 

cellular gene expression. Mathematical modeling and gene profiling analysis were 

performed to shed light on the possible antiviral MOA of SIL and its effects on human 

hepatocytes.

Methods

Preparation of chimeric mice and infection with HCV

Human hepatocyte chimeric mice were prepared as described previously (27). Eighteen 

uPA+/+/SCID+/+ chimeric mice (PhoenixBio Co., Ltd., Higashihiroshima, Japan) were 

transplanted with cryopreserved human hepatocytes from the same donor. All mice used in 

the experiment had human hepatocyte repopulation rates greater than 90%. The repopulation 

index was determined by measurement of serum human albumin (hAlb) levels using the 

Human Albumin enzyme-linked immunosorbent assay (ELISA) Quantitation kit (Bethyl 

Laboratories Inc., Montgomery, TX) according to the instructions provided by the 

manufacturer. Mice were inoculated via the mouse tail vein with 100 μl of human serum 

containing 4×105 copies of HCV genotype 1b particles obtained from a patient with chronic 

hepatitis C who provided written informed consent to participate in the study. All mice 

developed measurable viremia 4 weeks after inoculation, and virus titers reached stable 

viremia (6-8 log10 copies/ml; mean 7.4 log10 copies/ml) 8 weeks after inoculation. Infection, 

extraction of serum samples, and sacrifice were performed under ether anesthesia, and all 

animals received humane care. The experimental protocol met the ethical guidelines of the 

1975 Declaration of Helsinki and was performed in accordance with the guidelines of the 

local committee for animal experiments at Hiroshima University.

SIL treatment

Chimeric mice with established HCV infection were treated with daily intravenous SIL 

doses (solubilized in saline) of 469 mg/kg (n=5), 246 mg/kg (n=5) and 61.5 mg/kg (n=5). 

SIL doses were chosen to mimic the effective SIL 5-20 mg/kg doses of SIL used in patients 

(12). Blood was obtained at days 0, 0.5, 1, 2, 3, 5, 7, 10 and 14 in order to measure serum 

human albumin (hAlb) and HCV RNA levels (Roche COBAS AmpliPrep/COBAS TaqMan 

HCV test v2.0). Three mice were sacrificed at day 0 (d0) before treatment initiation, three 

mice in each group were sacrificed at day 3 (d3) of treatment, and two mice in each group 

were sacrificed at day 14 (d14) of treatment in order to monitor intracellular HCV RNA and 

hepatocyte gene expression.

Human albumin (hAlb) Assay

Mouse serum concentration of hAlb, which is correlated with the repopulation index (27) 

was measured based on latex agglutination immunonephelometry (LX Reagent ‘Eiken’ Alb 

II; Eiken Chemical, Tokyo, Japan) as described previously (28).

Analysis of intracellular HCV RNA

Human hepatocytes were finely dissected from chimeric mouse livers, and total cellular 

RNA was isolated using the RNeasy Mini Kit (Qiagen, Valencia, CA). One microgram of 
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RNA was subjected to reverse transcription with random primers, and qPCR for HCV and 

human β-actin was performed. HCV primers were 5′-TTTATCCAAGAAAGGACCC-3′ and 

5′-TTCACGCAGAAAGCGTCTAGC-3′. Quantitation of β-actin was performed using 

TaqMan Gene Expression Assay primer and probe sets (PE Applied Biosystems, Foster City, 

CA). HCV RNA levels are expressed as a ratio relative to β-actin levels.

Mathematical Modeling

HCV viral kinetics under SIL therapy was assumed to follow the standard biphasic model 

(29):

Eq. 1

where T represents uninfected human hepatocytes (target cells), I, HCV-infected hepatocytes 

and V, free virus. Based on steady-state serum hAlb levels, we assumed that human 

hepatocyte numbers remained constant, represented by the pre-treatment level, T0=cδ/βp. 

Virus, V, infects human hepatocytes with rate constant β, generating infected cells, I, which 

produce new virus at rate p per infected hepatocyte. Infected hepatocytes are lost/cured at a 

rate δ per infected hepatocyte and virus is assumed to be cleared at rate c per virion. The 

effect of SIL on virus production/release is modeled by a factor (1-ε), where ε is defined as 

the effectiveness of the drug in blocking viral production/release. A pharmacological delay, 

t0, was estimated during which viral load remained at baseline level. After the delay, the 

viral load declined.

Parameter Estimation

Since the 2nd phase of serum HCV decline cannot be seen in mice that were treated for only 

3 days, the biphasic model (Eq. 1) was fit only to serum HCV kinetic data obtained from the 

6 mice which were treated for 14 days (2 in each dosing group). To avoid parameter 

identifiability issues, the HCV clearance rate constant from blood was set to c=6/day (as 

previously done in (9, 11)). In addition, a two-step fitting procedure was performed; first, the 

baseline viral load V0, and the pharmacokinetic delay t0 were estimated using Berkeley-

Madonna software (v 8.3.18); then the values of V0 and t0 were fixed to estimate the values 

of the parameters ε and δ and their standard error using DEDiscover (https://

www.dediscover.org/).

Statistical Analysis

A linear regression model was fit to hAlb levels using R software (v3.2.0). To estimate the 

transition time between the 1st and 2nd phases and their slopes, we used the segmented linear 

regression package called ‘segmented 0.5-0.0’ in R 3.2.0. Pearson correlation was calculated 

between serum HCV RNA and intrahepatic HCV RNA. The Mann-Whitney test was used to 

determine whether viral kinetics between groups was significantly different. A P-value≤0.05 

was considered significant.
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Microarray Analysis

The effect of SIL on gene expression in human hepatocytes was assessed by microarray 

analysis at d0 (n=3) in untreated mice, at d3 (n=3) in 469 mg/kg SIL-treated chimeric mice 

and at d14 (n=3) in two 469 mg/kg and one 265 mg/kg SIL-treated chimeric mice. Human 

hepatocytes were finely dissected, and total RNA was extracted as above for use in 

microarray analysis. As outlined in Fig. S1A, Amino Allyl aRNA was synthesized using the 

Amino Allyl MessageAmp II aRNA Amplification Kit (Ambion, Tokyo, Japan). CyeDye 

coupling and fragmentation were performed following the protocol supplied by the 

manufacturer (Toray Industries Inc., Tokyo, Japan). RNA samples were hybridized to Toray 

3D-Gene Human 25kVer 2.10 chips (24460 probes) for 16 h at 37°C by rotary shaking (250 

rpm). Microarrays were scanned using a 3D-Gene Scanner, and images were quantified 

using Toray Extraction software. Spot data was normalized by substitution with the mean 

intensity of the background signal, which was determined by the 95% confidence interval of 

the signal intensities over all blank spots. Duplicate spots with signal intensities greater than 

2 standard deviations (SD) above background signal intensity were used for analysis. Gene 

expression levels were normalized across microarrays using quantile normalization (Fig. 

S1B). Probes for which one or more samples contained missing data were removed, 

resulting in a final set of 17084 probes. Differential expression was analyzed using the 

Limma package (30), which fits a linear model to each gene using moderated t statistics and 

empirical Bayes analysis. P-values were adjusted for multiple testing using the Benjamini–

Hochberg false discovery rate (PFDR). Gene set enrichment in canonical pathways was 

analyzed using Ingenuity Pathway Analysis software (Ingenuity Systems, CA, USA; http://

www.ingenuity.com). Notably, because there was no difference in gene expression observed 

in the SIL-treated mice analyzed on day 3 and day 14 as observed by hierarchical clustering 

(Fig. S3) data from the 3 control mice was compared to the 6 SIL treated mice as a single 

group. Microarray data generated in this study have been deposited in NCBI's Gene 

Expression Omnibus (GEO) and are accessible through GEO Series accession number 

GSE79103.

Results

HCV kinetic data

Baseline serum HCV RNA (median 7.5 [Q1-Q3:7.2-7.8] log10 IU/ml) and hAlb (median 7.1 

[Q1-Q3:7.0-7.2] log10 mg/ml) were similar (P>0.4) among the three dosing groups (Table 

S1). Intravenous SIL infusion was well tolerated. In all mice hAlb levels remained constant 

during treatment, i.e., hAlb slopes were not different than zero, P≥0.10 (Fig. 1). The median 

viral decline from baseline to d1 or d2 was 0.4 log10 IU/ml with no difference (P>0.7) 

among the dosing groups (Table S1). A significantly (P=0.016) higher viral drop from 

baseline was observed in the 469 mg/kg dosing group at d3 (median 0.9 log10 IU/ml) 

compared to the 246 mg/kg (median 0.6 log10 IU/ml) and the 61.5 mg/kg (median 0 log10 

IU/ml) groups. While the two lowest dosing groups showed a 2nd phase plateau in viral load 

from d2/d3 to the end of treatment, the 469 mg/kg dosing group exhibited continued viral 

decline with more than 1 log10 IU/ml decline at d10 and up to ∼1.5 log10 IU/ml decline by 

d14 (Fig. 1; Table S1). Consistent with this analysis, a segmented linear regression model 

indicates that serum HCV RNA declined in a biphasic manner, consisting of a rapid 1st 
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phase (median 0.7 [Q1-Q3: 0.60-0.88] that lasted 1.3 days [Q1-Q3:0.7-1.7 day]. The two 

lower dosing groups exhibited a 2nd phase plateau, while mice in the 469 mg/kg dosing 

group (n=2) had a continuous 2nd phase viral decline with slopes of 0.1 and 0.12 log10 

IU/ml/day/w (Table S2). Finally, a comparison of intracellular HCV RNA levels with serum 

HCV RNA levels in individual mice showed a significant positive correlation (r=0.66, 

P=0.01; Fig. S2).

Mathematical modeling

Modeling was performed using the standard HCV biphasic model (29) (Equation 1). Results 

suggest a delay t0≥12 hr in 3 mice, one in each dosing group (Table 1). SIL effectiveness in 

blocking viral production was not different among the dosing groups (median ε=77% [Q1-

Q3:72%-83%]. However, the rate of decrease in infected human hepatocytes, δ, was higher 

in mice (n=2) treated with 469 mg/kg SIL (0.23/day [standard error, se=0.06] and 0.31/day 

[se=0.04]) compared to mice (n=2) treated with 246 mg/kg SIL (0.09/day [se=0.10] and 

0.10/day [se=0.00]) or mice (n=2) treated with 61.5 mg/kg SIL (0.07/day [se=0.07] and 

0.01/day [se=0.08]).

Microarray analysis

Preliminary hierarchical clustering analysis initially revealed no significant differences in 

gene expression between mice treated with SIL for 3 days compared to 14 days (Fig. S3, 

moderated t-tests not shown) suggesting that changes in gene expression in response to SIL 

treatment that occurred by day 3 remained constant through day 14. When the SIL-treated 

mice (n=6) were compared as a group to the untreated mice (n=3), no genes were found to 

be significantly up- or down-regulated after correction for multiple testing using the false 

discovery rate. However, among the top 20 genes with the largest fold changes, most were 

down-regulated in SIL-treated mice (Table 2), suggesting an inhibitory trend. Also 

noteworthy, 30% of these top differentially expressed genes have been previously implicated 

in HCV infection in various ways (31-38). Although no genes were significantly 

differentially regulated, gene set enrichment analysis (http://www.broadinstitute.org/gsea/

msigdb/annotate.jsp) of the top genes with the largest fold changes revealed significant over-

representation of genes belonging to the “Genes involved in Chemokine receptor binding” 

signaling pathway (e.g., CXCL10, CCL20, and CXL6; P=5.3×10-4) (Table 2). Ingenuity 

Pathway Analysis (IPA) of linear models for microarray (limma) results suggested effects on 

immune-related pathways, including antigen presentation, granulocyte adhesion, and IL-17A 

signaling (Fig. 2). Consistent with previous findings (39, 40), IPA Upstream Regulator 

Analysis suggested that these results could be explained by inhibition of various 

inflammation-related cytokines and transcription regulators in SIL-treated mice, including 

TNFα (Fig. 3A), IFNγ, IL1A/B, IFNλ, and components of the NFκB signaling pathway 

(Fig. 3B, Table S3). Integrating predicted upstream regulators with projected downstream 

effects, the IPA Regulator Effects tool predicted that the gene expression profile of SIL-

treated mice may result in inhibition of cellular immune responses and T lymphocyte 

chemotaxis in addition to suppression of myeloid and tumor cell movement and proliferation 

of connective tissue cells (Fig. 4).
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Discussion

Even with potent oral DAAs available for the treatment of HCV infection, intravenous SIL 

still may hold a niche as an efficacious IFN-free treatment option for chronically-infected 

patients who do not respond to or cannot be treated with DAA regimens including post-liver 

transplantation (10). Additionally, elucidating the enigmatic activities of SIL is potentially of 

interest for the treatment of other viruses such as HIV (41) and liver disorders, such as 

cirrhosis, cancer and liver damage by toxins (42, 43). The study of HCV treatment response 

in SIL-treated uPA-SCID-chimeric mice provides the opportunity to investigate the MOA of 

this drug in vivo in the absence of any secondary effects mediated by subsequent activation 

of the adaptive immune response.

Although the mouse numbers in this study are limited, the median estimate of SIL 

effectiveness in blocking viral production, ε=77%, has a high degree of confidence and 

indicates that the viral decline at d1 and d2 were similar among dosing groups. The 

estimates of HCV-infected human hepatocyte decline rates were higher in the two 469 

mg/kg treated mice (median δ=0.27/day) than the mice in the other treatment groups 

(median δ=0.08/day). While the lower dosing groups' viral load reached a plateau, it is 

noteworthy that the first phase viral decline was similar among all dosing groups with the 

effect of increasing the dose being reflected by an increase in the second phase decline. The 

observed 2nd phase decline in mice treated with the highest SIL dosing might reflect a 

delayed effect of SIL on HCV RNA replication and/or on the stability of HCV replication 

complexes reminiscent of the proposed mechanism of action of high IFN dosing in vitro 

(44). That being said, the observed second phase loss rate (δ∼0.27/day) in the 469 mg/kg 

dosing group is much less than the loss rate (∼0.7/day) seen in SIL-treated patients (9, 11), 

which may reflect the importance of the adaptive immune effects of SIL in patients as these 

are missing in the uPA-SCID mouse model.

In the chimeric mouse model, serum hAlb is used as a surrogate measurement for human 

hepatocyte numbers. The observation that hAlb remained constant throughout therapy 

suggests that the 2nd phase viral decline is mediated by loss of intracellular HCV and not the 

death of infected cells. Another possibility, though less likely since there is no adaptive 

immune response, is that the hAlb levels remain constant due to the loss of infected cells 

being balanced by replication of non-infected human cells. In addition, due to the lack of 

SIL pharmacokinetic data in these chimeric mice, the effect of SIL pharmacokinetics and 

pharmacodynamics on the observed 2nd phase viral decline cannot be ruled out. 

Interestingly, while the intrahepatic HCV RNA data for this study is sparse, it is notable that 

the finding that HCV RNA decline in the serum and liver are correlated (r=0.66, P=0.01) is 

also consistent with the 2nd viral decline phase observed in serum being governed by an 

intrahepatic viral genome loss rather than death of HCV-infected hepatocytes.

Microarray analysis of SIL-treated versus non-treated control mice revealed no significant 

changes in gene expression after correction for multiple testing. The lack of significant 

changes may reflect the relatively small number of mice (3 controls and 6 SIL treated mice), 

or the subtle nature of the gene expression changes observed may reflect the fact that there is 

no adaptive immune response in these mice to amplify the more direct initial effects of the 
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SIL treatment through secondary amplification effects of the innate immune response (e.g. 

NK cells). Regardless, the majority of the top most differentially expressed genes were 

down-regulated in SIL-treated mice, suggesting an inhibitory trend. Importantly, the results 

of pathway analysis suggest that SIL may exert anti-inflammatory effects through upstream 

inhibition of cytokine signaling as well as TNFα and NFκB-associated transcriptional 

regulation, which is consistent with previous studies demonstrating suppression of cell 

growth and metabolism in peripheral blood mononuclear cells (41) and inhibition of TNFα 

and NFκB-mediated pro-inflammatory gene expression in hepatic and other cell types (40, 

45-47). While further experiments are needed to reveal the nature of the observed anti-

inflammatory gene expression and whether the human hepatocytes were responding to the 

SIL directly and/or via signals from the mouse hepatic non-parenchymal cells, it is 

interesting that significant anti-HCV effects of SIL were observed in vivo in the absence of a 

secondary adaptive immune response and perhaps explains why SIL has been effective in 

HCV infected patients post-transplant (13, 14, 16).

Interestingly, quite a few of the genes that exhibited the largest change in expression in 

response to SIL (Table 2) have been previously implicated in HCV infection in various ways 

(31-38). Particularly notable, it has been reported that HCV infection up-regulates IL8 (33), 

NNMT (34), and SPP1 (i.e. osteopontin) (37) resulting in enhanced HCV replication and/or 

pathology, and all three of these genes were down-regulated in the mice treated with SIL. 

Also consistent with inhibition of HCV, the up regulation of HAMP (i.e. hepcidin) in SIL-

treated mice would be expected to down regulate the HCV entry factor transferrin receptor 1 

(35, 36, 48). While it is unclear if any of these gene expression changes were involved in the 

inhibition of HCV observed in the SIL treated mice, one could speculate that these perhaps 

more broadly hepatoprotective effects of SIL may also contribute to the antiviral effects 

observed.

In conclusion, the present study provides insights about HCV kinetics in blood and within 

human hepatocytes along with resulting gene expression changes in the human hepatocytes 

in mice treated with SIL. The viral kinetics indicate a biphasic viral kinetic pattern with 

continuous viral decline during the 2nd phase in the highest dosing group while gene 

expression analyses indicate that SIL treatment is associated with anti-inflammatory and 

anti-proliferative effects. The much slower 2nd phase viral decline observed in these SCID 

mice compared to in patients suggests that in addition to the reported direct antiviral effects 

of SIL (20, 22), perhaps in patients the adaptive immune response might also facilitate 2nd 

phase HCV clearance.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Serum HCV RNA and human albumin (hAlb) kinetics with model curves
Chronically HCV infected uPA-SCID chimeric mice with humanized livers were treated 

intravenously with the indicated doses of SIL. Blood was drawn from mice daily. Serum 

HCV RNA level (solid black squares) and human albumin level (open grey triangles) are 

graphed as log10 IU/mL and ng/mL, respectively. HCV model curves (black lines) and hAlb 

linear regression (grey dashed lines) are shown. See Tables S1 and 1 for viral kinetic and 

estimated parameter values, respectively.
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Figure 2. Ingenuity Pathway Analysis (IPA) canonical pathway analysis
Linear Modeling of Microarray (limma) results were analyzed using IPA. P-values were 

calculated using the right-tailed Fisher exact test and reflect the likelihood that the 

association between SIL-related genes and genes in a given canonical pathway is due to 

random chance. Bar length represents the –log10 P-value; therefore, the longer the bar, the 

less likely the association is due to chance; i.e. the pattern of differentially expressed genes 

in SIL-treated versus control mice suggests involvement of the antigen presentation and 

granulocyte adhesion pathways. Bars crossing the red threshold line have P-values less than 

0.05.
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Figure 3. Predicted TNFα and NFκB –mediated regulatory effects downstream of SIL
IPA software uses pathway information to identify potential upstream regulators that could 

explain the observed pattern of gene expression. The blue square in (A) and circle in (B) 

indicate that inhibition of the predicted upstream regulator TNFα (A) and NFκB (B) could 

directly or indirectly result in inhibition (blue arrows and green shapes) or activation (orange 

arrows and red shapes) of the target genes shown.
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Figure 4. Predicted regulatory effects of gene expression profiles in response to SIL
Differential gene expression patterns in SIL-treated versus control mice were used to infer 

perturbed upstream regulators and then predict the downstream effects on hepatocytes.
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