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Circulating blood cell counts and indices are important indicators of hematopoietic function and a number of clinical parameters, such

as blood oxygen-carrying capacity, inflammation, and hemostasis. By performing whole-exome sequence association analyses of hema-

tologic quantitative traits in 15,459 community-dwelling individuals, followed by in silico replication in up to 52,024 independent sam-

ples, we identified two previously undescribed coding variants associated with lower platelet count: a commonmissense variant in CPS1

(rs1047891,MAF¼ 0.33, discoveryþ replication p¼ 6.383 10�10) and a rare synonymous variant inGFI1B (rs150813342, MAF¼ 0.009,

discovery þ replication p ¼ 1.79 3 10�27). By performing CRISPR/Cas9 genome editing in hematopoietic cell lines and follow-up tar-

geted knockdown experiments in primary human hematopoietic stem and progenitor cells, we demonstrate an alternative splicing

mechanism by which the GFI1B rs150813342 variant suppresses formation of a GFI1B isoform that preferentially promotes megakaryo-

cyte differentiation and platelet production. These results demonstrate how unbiased studies of natural variation in blood cell traits can

provide insight into the regulation of human hematopoiesis.
Human genetic studies have provided important insights

into hematopoiesis. Genome-wide association studies

(GWASs) performed in large, population-based samples

have identified associations of genomic regions and com-

mon genetic (usually non-coding) variants with inter-indi-

vidual differences in blood cell traits1–5, though the causal

DNA variants and their functional mechanisms often

remain elusive. Whole-exome and targeted sequencing

approaches have been used to identify rare, sometimes pri-

vate, loss (or gain)-of-function coding variants segregating

within families with hematologic traits at the extremes of

the phenotypic distribution6–12. As of yet, whole-exome

sequencing has not been applied to large population-based

cohorts well-phenotyped for hematologic traits to identify

rare, functional variation with moderate-to-large pheno-

typic effects and to provide new biologic insight.

To this end, we performed exome sequencing in 15,459

unrelated European ancestry (EU) and African American

(AA) individuals enrolled in six population-based cohort

studies (see Supplemental Note). Replication of significant
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findings was performed in up to 52,024 additional samples

via a combination of whole-exome-based or genome-based

sequencing, genotyping, and imputation (Supplemental

Note). Our a priori hypothesis was that systematic evalua-

tion of coding variation detected by exome sequence

analysis in samples unselected for blood cell traits would

identify low-frequency variants influencing hematologic

traits and could provide functional insights into hemato-

poiesis. We analyzed platelet count and 12 other blood

cell traits (Table S1). The means of the traits were as ex-

pected in a sample of unselected healthy individuals

from the population (Table S1). Association results from

single-variant and from gene-based burden and sequence

kernel association tests (SKATs) meeting our a priori signif-

icance thresholds in either EU, AA, or trans-ethnic discov-

ery meta-analyses are summarized for both previously

known and novel (whichwe define as those not reported in

the available literature) loci in Table 1 and Tables S2–S5 and

described further in the Supplemental Note. Lambda

values showed no significant inflation (Table S6).
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Four gene-based associations were discovered for red

blood cell (RBC) traits (ACTN4, MMACHC, MYOM2, and

MRPL43). Trans-ethnic discovery meta-analyses are sum-

marized for both previously identified loci, whichwe verify

in this study, and previously unreported loci. A summary

of these findings, and driving variants, are provided in

the Supplemental Note and Table S3. None of these gene-

based SKAT or burden findings could be replicated in inde-

pendent samples. Nonetheless, a few of the individual rare

variants driving the gene-based associations in the discov-

ery sample showed suggestive evidence of association in

the replication sample (Supplemental Note and Table S3).

Among the three single-variant associations we identified

(Table 1), two coding variants were associated with lower

platelet count in our discovery sample: CPS1 rs1047891, a

common missense variant encoding p.Thr1412Asn (EU þ
AA minor-allele frequency [MAF] ¼ 0.33, EU þ AA p ¼
5.7 3 10�8) and GFI1B rs150813342, a rare synonymous

variant encoding p.Phe192 and located in alternatively

spliced exon 5 (EU MAF ¼ 0.009, EU p¼ 4.7 3 10�8; EU þ
AA MAF ¼ 0.008, EU þ AA p ¼ 2.64 3 10�8). One single-

nucleotide variant (SNV) result (rs9656446; EU þ AA

MAF¼ 0.03, EUþAAp¼ 1.483 10�7) associatedwith baso-

phils in trans-ethnic analyses was in the ATP/GTP binding

protein-like 3 (AGBL3) gene. However, the allele frequencies

in the discovery sample differed by ethnicity (EU MAF ¼
0.001 and AA MAF ¼ 0.08), and replication in samples of

EU ethnicity from the UK10K project was not significant

(EU p ¼ 0.71). In our combined replication sample, we

replicated the associations of CPS1 rs1047891 (EU þ AA
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MAF ¼ 0.328, EU þ AA p ¼ 1.02 3 10�4) and GFI1B

rs150813342 (EUþAAp¼ 5.713 10�21) with lower platelet

counts. In the combined discovery and replication samples,

the p values for CPS1 rs1047891 and GFI1B rs150813342

were 6.38310�10 and1.79310�27, respectively. AManhat-

tan plot for single-variant associations with platelet count

and quantile-quantile (Q-Q) plots are shown in Figures S1–

S3. Forest plots of the discovery cohorts for the two repli-

cated findings (GFI1B rs150813342 and CPS1 rs1047891)

are provided in Figures S4 and S5, as well as regional

plots calculating linkage disequilibrium of SNVs in the

gene with respect to index SNVs (Figures S6 and S7).

AGBL3 is ametallocarboxypeptidase involved in process-

ing tubulins of the blood cell cytoskeleton. CPS1 encodes

carbamoyl-phosphate synthase 1, amitochondrial enzyme

involved in the urea cycle. TheCPS1 variant (or its LD prox-

ies) has been associated with various cardiometabolic

traits, including high-density lipoprotein (HDL) choles-

terol, homocysteine, fibrinogen, serum metabolite levels,

and kidney function.13–17GFI1B is a known transcriptional

repressor and a key regulator of platelet and red blood cell

development. There was no evidence that either CPS1

rs1047891 or GFI1B rs150813342 were significantly associ-

ated with other hematologic traits assessed in the discovery

sample (Tables S7A and S7B). Moreover, neither GFI1B

rs150813342 nor CPS1 rs1047891 was associated with

mean platelet volume, platelet aggregation, or expression

of platelet surface markers, though these analyses were

limited to much smaller numbers of individuals (Supple-

mental Note, Tables S8 and S10). However, a decrease in
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The Amer
the median fluorescence intensity of large, platelet-marker

positive (CD41þCD61þ) events18 was detected by flow cy-

tometry in GFI1B variant carriers even after adjustment

for circulating platelet count (p < 0.0001), which could

reflect a decrease in circulating platelet aggregates or a skew-

ing of a platelet subpopulation with regards to platelet-sur-

face-marker expression or size (see Supplemental Note).

We conducted bioinformatic and functional analyses to

understand the impact of the GFI1B exon 5 synonymous

variant and the CPS1 rs1047891 variant (p.Thr1412Asn)

on gene and protein function. The CPS1 p.Thr1412Asn

amino acid substitution is predicted to be benign and toler-

ated by SIFT and PolyPhen. Moreover, according to the

GTEx Portal database, there is no evidence of an expression

quantitative trait loci (eQTL) effect for rs1047891. None-

theless, the CPS1 p.Thr1412Asn missense substitution

is located within a region critical for N-acetyl-glutamate

binding andhas been reported to result in 20%–30%higher

enzymatic activity19 and to influence vascular function.15

We initially assessed the association of rs150813342 with

GFI1B expression by using Affymetrix GeneChip Human

Exon 1.0 ST Array data on whole-blood RNA available from

881 Framingham Heart Study participants.20 There was no

evidence for association of the rs150813342 genotype with

expression of any GFI1B exon, though statistical power is

likely limited by the low frequency of the rs150813342

variant allele,whichwaspresent inonly 7of the881 individ-

uals. According to SPANR,21 rs150813342 had a predicted

effect on splicing (difference in the percentage of transcripts

with the exon spliced in [dPSI] score of �4.6). rs150813342

was predicted to disrupt a putative exon splicing enhancer

(ESE) in exon 5 that contains a consensus SRSF1 binding

motif.22 To functionally evaluate the impact of this variant

on GFI1B transcript splicing in a relevant cell type, we used

CRISPR/Cas9 genome editing to create multiple indepen-

dent isogenic K562 hematopoietic cell lines harboring the

GFI1B synonymous single-nucleotide change (Figure 1A).

These cell lines were homozygous for the variant and ex-

hibited inclusion of less than 30%of exon 5 relative to other

surrounding exons in the GFI1B mRNA (Figure 1B). Semi-

quantitative RT-PCR showed that the presence of the

synonymous variant resulted in reduced formation of the

GFI1B isoform containing exon 5 (herein referred to as

the long isoform), aswell as preferential formationof the iso-

form lacking exon 5 (herein referred to as the short isoform)

(Figures 1C and 1D). No other isoforms or intron inclusion

events were detected (Figure 1C, Figure S8).

Although GFI1B has been implicated in both RBC and

platelet production (erythropoiesis and megakaryopoiesis,

respectively),23–25 only a role for the short isoform in

erythroid cells has been suggested previously.26 We next

assessed the effect of the altered splicing of GFI1B on line-

age-specific hematopoietic differentiation. We chemically

induced differentiation of the isogenic K562 cell lines

with either hemin (to promote erythroid differentiation)

or phorbol 12-myristate 13-acetate (PMA, to promotemega-

karyocytic differentiation) (Figure 2A). Although erythroid
ican Journal of Human Genetics 99, 481–488, August 4, 2016 483
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Figure 1. The Variant rs150813342 Re-
sults in Reduced Formation of the Long
GFI1B Isoform and Preferential Formation
of the Short Isoform
(A) Chromatograms of the sequence sur-
rounding the altered nucleotide in GFI1B
exon 5 showing the wild-type (WT) se-
quence and sequences of isogenic hemato-
poietic K562 cell mutant clones (Mut 1,
Mut 2, and Mut 3) harboring the C>T sin-
gle-nucleotide variant (SNV) generated via
CRISPR/Cas9mediated homologous repair.
(B) qRT-PCR of GFI1B exons 4, 5, and 6
measured from isogenic control (Cont)
and mutant K562 cell clones showing
inclusion of less than 30% of GFI1B exon
5 relative to the surrounding exons in
GFI1B mRNA from mutant clones (n ¼ 3
per group). Error bars show SD.
(C) Semi-quantitative RT-PCR with GFI1B
exon 4 forward and exon 6 reverse primers
with progressively increasing cycle numbers
(26,28, and30cycles) demonstrates reduced
formation of the long GFI1B isoform and
preferential formation of the short isoform,
as well as no other intermediate isoforms
in the clones harboring the SNV.
(D) rs150813342 ispredicted todisruptapu-
tative exon splicing enhancer (ESE) in exon
5 that contains a consensus SRSF1 binding
motif. Disruption of this binding motif
results in reduced inclusion of exon 5 and
preferential formation of the short isoform.
The promotion of alternative splicing by
SRSF1 through the spliceosome complex is
indicated by an arrow to a light blue circle.
Forward (F) and reverse (R) PCR primers of
the respective exon are indicated.
differentiation appeared to proceed normally, as assessed

morphologically (Figure 2B), and with expression of the

surface marker GYPA (CD235a) (Figure 2C) and ter-

minal erythroid marker genes (Figure 2D), megakaryocyte
484 The American Journal of Human Genetics 99, 481–488, August 4, 2016
differentiation appeared severely

impaired; the cells retained an imma-

ture blast-like morphology and failed

to upregulate the surface marker of

megakaryocyte differentiation, CD41a

(encoded by ITGA2B), and mRNAs

whose expression is characteristic of

terminal megakaryopoiesis (Figures

2B–2D, Figure S9). The megakaryocyte

genes PPBP, SELP, and PF4 were down-

regulated by an average of 8.6-, 6.7-,

and 41.1-fold, respectively, in the

isogenic clones (p ¼ 0.0001, 0.0013,

and 0.0459, respectively) versus in the

controls (Figure 2D). These results sug-

gest that the long isoform of GFI1B is

necessary for normal megakaryocyte

differentiation.

To confirm a preferential role for

this long GFI1B isoform in megakar-
yocyte differentiation, we identified two independent

short hairpin RNAs (shRNAs) that specifically targeted

GFI1B exon 5, which would thereby selectively downregu-

late the long but not the short isoform. We utilized
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(B) RepresentativeMay-Grünwald-Giemsa-
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mutant clones, whereas the erythroid dif-
ferentiation appears unaffected.
(C) Representative flow cytometry anal-
ysis of the megakaryocyte marker CD41a
and the erythroid marker CD235a further
confirmed the impairedmegakaryopoiesis
and the retained erythropoiesis as shown
by the histogram plots with the mean
fluorescence intensity (MFI) for each
marker in unstained cells, control, and
mutant clones, respectively.
(D) Gene expression analysis by qRT-PCR
of the megakaryocyte markers PPBP, SELP,
and PF4 after 72 hr of PMA-induced differ-
entiation and of the erythroid markers
ALAS2, RHCE, and KEL after 24 hr of
hemin-induced differentiation (n ¼ 3 per
group). Error bars show SD.
lentiviral-mediated shRNA delivery in primary human

adult mobilized peripheral-blood hematopoietic stem

and progenitor cells (HSPCs), which are capable of differ-

entiation toward the erythroid and megakaryocyte line-

ages under appropriate culture conditions.27 We observed

a knockdown efficiency of the GFI1B long isoform by

~50% for both shRNAs, whereas the short isoform levels

increased conversely (Figures 3A and 3B), which resulted

in a 1.5- to 1.8-fold reduction in the formation of

CD41aþ megakaryocytic cells (relative to lineage-marker

negative cells) in HSPCs undergoing differentiation

(Figure 3C). In contrast, CD235aþ erythroid cells appeared

to be present in comparable percentages and numbers

(Figure 3C). Moreover, whereas numerous morphologi-
The American Journal of Human G
cally mature erythroblasts could be

readily visualized in both groups,

fewer mature megakaryocytic cells

were seen with knockdown of the

long isoform than in the controls

(Figure 3D, Figure S10). Overall cell

growth appeared comparable be-

tween the knockdown and control

cells (Figure S10). These findings are

in line with our exome-sequence

association findings, in which no

significant effect was seen on circu-

lating RBC levels.
GFI1B private, loss-of-function mutations (nonsense,

frameshift) in the DNA-binding fifth and sixth zinc (Zn)-

finger domains have recently been identified in families

with an autosomal-dominant form of Gray Platelet syn-

drome (GPS) or related forms of thrombocytopenia, which

are characterized by dysmegakaryopoiesis, thrombocyto-

penia, large platelets, and platelet a-granule deficiency

(MIM: 187900)28,29. The truncating GFI1B mutations re-

ported in GPS appear to have a dominant-negative effect

and inhibit transcriptional activity of the GFI1B wild-

type form. Our population study extends the allelic spec-

trum of naturally occurring GFI1B coding sequence vari-

ants associated with a lower circulating platelet count to

include a more frequent, synonymous change that alters
enetics 99, 481–488, August 4, 2016 485
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Figure 3. The Long GFI1B Isoform is Critical for Megakaryopoiesis in a Human Primary Cell Model
(A) qRT-PCR of GFI1B exons 4, 5, and 6 on day 4 after infection showing the identification of two short hairpin RNAs (shRNAs) that
specifically target GFI1B exon 5 and thereby selectively downregulate the long isoform by ~50%, but not the short isoform (n ¼ 3
per group). Error bars show SD.
(B) Semi-quantitative RT-PCRwithGFI1B exon 4 forward and exon 6 reverse primers with progressively increasing cycle numbers (26, 28,
and 30 cycles) demonstrates reduced formation of the long GFI1B isoform and increased formation of the short isoform, as well as no
other intermediate isoforms in cells with targeted knockdown of GFI1B exon 5.
(C) Representative flow cytometry analysis of thrombopoietin (TPO)- and erythropoietin (EPO)-stimulated primary human hematopoi-
etic stem and progenitor cells on day 11 of differentiation with assessment of CD41aþ megakaryocytic (Meg) cells and CD235aþ

erythroid (Ery) cells.
(D) Representative May-Grünwald-Giemsa-stained cytospin images of megakaryocytic cells (from day 7 of differentiation) and erythroid
cells (from day 13 of differentiation) showing immaturemegakaryocytemorphology in cells with knockdown of the longGFI1B isoform,
in comparison with the control. In contrast, maturation of erythroblasts appears unaffected.
an exonic splicing enhancer, resulting in the skipping of

exon 5, containing the first and second Zn-finger domains.

Heterozygous carriers of the synonymous exon 5 variant in

GFI1B have an average platelet count that is reduced

by 25,000 to 30,000 platelets per microliter, which

would be a clinically detectable effect. We also provide

additional support for distinct roles of GFI1B long- and

short-isoforms, which are differentially expressed at

various stages of differentiation during normal hemato-

poiesis.23,30 The long GFI1B isoform is expressed in

HSPCs and lineage-committed myeloid, erythroid, and

megakaryocytic progenitors. The abnormalities in mega-

karyocyte maturation with reduced formation of the

GFI1B long isoform in the isogenic K562 cell clones con-

taining the rs150813342 variant and in primary HSPCs

with targeted suppression of the long isoform are consis-

tent with an essential role for the GFI1B long isoform

in megakaryopoiesis and platelet production. This

finding is also congruent with prior work showing that

the GFI1B short isoform is required for erythropoiesis26

and provides insight into how these different

splice variants function in distinct aspects of human

hematopoiesis.
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In summary, whole-exome sequence association analysis

performed in over 15,000 samples discovered SNVs associ-

atedwith a lower platelet count in community-dwelling in-

dividuals, including a common variant in CPS1 and a rare,

synonymous variant in GFI1B. Follow-up genome editing

and targeted knockdown experiments identified a mecha-

nism by which alternative splicing associated with the

GFI1B rs150813342 variant allele suppresses formation of

a specific GFI1B long isoform that is required for line-

age-specific megakaryocyte differentiation, while being

dispensable for erythropoiesis. Functional studies coupled

with an association finding demonstrated a previously un-

appreciated splicing-based mechanism for lineage-specific

blood cell production, providing important insights into

human hematopoiesis. Genes regulated by the long GFI1B

isoform could provide additional understanding of down-

stream transcriptional events and molecular pathways

required for megakaryocyte specification and platelet pro-

duction. These findings hold promise for the development

of therapeutics for altering platelet count without adverse

effects on other blood lineages. Further characterization of

the role ofGFI1B isoforms couldhave clinical or therapeutic

implications for disorders of platelet and other blood cell
, 2016



production or function, as well as for the prospect of

improving the manufacture of ex vivo cell therapies.31–33
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13. Köttgen, A., Pattaro, C., Böger, C.A., Fuchsberger, C., Olden,

M., Glazer, N.L., Parsa, A., Gao, X., Yang, Q., Smith, A.V.,

et al. (2010). New loci associated with kidney function and

chronic kidney disease. Nat. Genet. 42, 376–384.
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