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Cancer causes significant morbidity and mortality world-
wide, and is the area most targeted in precision medicine.
Recent development of high-throughput methods enables
detailed omics analysis of the molecular mechanisms
underpinning tumor biology. These studies have identi-
fied clinically actionable mutations, gene and protein
expression patterns associated with prognosis, and
provided further insights into the molecular mecha-
nisms indicative of cancer biology and new therapeutics
strategies such as immunotherapy. In this review, we
summarize the techniques used for tumor omics analy-
sis, recapitulate the key findings in cancer omics stud-
ies, and point to areas requiring further research on
precision oncology. Molecular & Cellular Proteomics
15: 10.1074/mcp.O116.059253, 2525–2536, 2016.

In 2012, cancer was estimated to cause more than 8.2
million deaths worldwide, with 14.1 million new cases (1). It is
expected to surpass heart diseases as the leading cause of
death in the next few years in the United States (2). This heavy
disease burden causes significant healthcare cost and dimin-
ished quality of life in both developed countries and developing
economies alike (1). In vitro and in vivo studies identified a
number of hallmarks of cancer, including self-sufficiency in
growth signals, insensitivity to anti-growth signals, evading apo-
ptosis, limitless replicative potential, sustained angiogenesis,
and tissue invasion and metastasis (3). These hallmarks are
continuously being refined with evolving research evidence (4).

Precision medicine is an approach that takes into account
individual differences to guide disease prevention and treat-
ment (5, 6), and oncology, i.e. the study of cancer, is the most
prominent field targeted for precision medicine (7). In partic-
ular, the Precision Medicine Initiative aims to revolutionize
how we improve health and treat disease, with the goal to
“deliver the right treatment at the right time, every time, to the
right person” (7, 8). Medical diagnostics and treatments have
long been focused on the general principles that work for the
majority of patients. However, the inter-individual differences
are not addressed adequately for most diseases. For in-

stance, cancer types are mostly defined by histopathology
analysis, but patients suffering from the same type of cancer
may have very different cancer driver mutations or tumor
proteomic profiles, which lead to diverse response to chem-
otherapy and different prognosis (i.e. clinical course and out-
come of disease). Without proper subtyping, these patients
might be pooled together for clinical treatments without any
consideration of their underlying causes of their particular dis-
eases, resulting in potentially suboptimal choice of treatments.
Precision oncology intended to better identify the inter-individ-
ual differences and to provide a better understanding of disease
phenotypes and guide personalized treatment plans.

With the advent of omics technology and big data analytics,
we can now gather detailed molecular information on the
diseased cells, identify obscure patterns from the data effec-
tively, and gather further insights into the biology of diseases
and health states of individual patients (9). The recent avail-
ability of cancer “omics” data has created unique opportuni-
ties for characterizing the biological processes correlated with
clinical phenotypes. Consortiums like The Cancer Genome
Atlas (TCGA) (10) and International Cancer Genome Consor-
tium (ICGC) (11) have profiled the genomic variation, DNA
methylation landscapes (epigenomics), gene expression
(transcriptomics), and protein expression as well as modifica-
tion status (proteomics) by next-generation sequencing, pro-
tein arrays, mass spectrometry, and other high-throughput
modalities for large numbers of patients (typically a hundred
(proteomics) to several thousand (genomic and transcriptomic
data)). Leveraging machine-learning methods, researchers
are able to associate terabytes of data generated from high-
throughput methods with clinically important phenotypes (12),
such as drug responses or survival outcomes. The develop-
ment of big data analytics methods and data integration
frameworks would enable medical researchers to draw infer-
ences from diverse types of omics information and to make
accurate clinical predictions, which contributes to formulating
personalized treatment plans for each patient (13).

A number of research articles have shown the potential
utility of omics profiling in precision oncology (14). Although
histopathology evaluation still serves as the backbone of most
oncological diagnosis (15), recent research has indicated that
omics information has the potential to complement and en-
hance pathology diagnosis. In particular, molecular profiles
could provide additional information for tumor subtyping and
identify previously unknown molecular aberrations of clinical
importance (16). Thus, omics profiling holds the promise of

From the ‡Department of Genetics, Stanford University School of
Medicine, Stanford, California; §Biomedical Informatics Program,
Stanford University School of Medicine, Stanford, California

Received February 29, 2016, and in revised form, April 15, 2016
Published, MCP Papers in Press, April 20, 2016, DOI 10.1074/

mcp.O116.059253
Author contributions: K.Y. designed research; K.Y. performed re-

search; K.Y. analyzed data; K.Y. and M.S. wrote the paper.

Minireview
© 2016 by The American Society for Biochemistry and Molecular Biology, Inc.
This paper is available on line at http://www.mcponline.org

crossmark

Molecular & Cellular Proteomics 15.8 2525

http://crossmark.crossref.org/dialog/?doi=10.1074/mcp.O116.059253&domain=pdf&date_stamp=2016-4-20


augmenting cancer diagnosis and facilitating the develop-
ment of personalized cancer management.

In this review, we summarize the utility of conventional
clinical and pathology evaluations, illustrate the utility of om-
ics profiling on precision oncology, and identify future re-
search directions to better understand malignancies.

Conventional Oncology Assessments: Clinical and
Pathology Evaluations

Clinical and pathology evaluation of tumor is indispensible
to cancer detection, diagnosis, and formulating treatment
plans. These assessments are part of the state-of-the-art prac-
tice (15): clinicians stage patients through medical imaging and
tumor biopsy, and pathologists prepare microscopic slides from
tissue samples obtained through surgery or biopsy, stain them
with appropriate chemicals, review them under the microscope
in detail, and describe their findings in pathology reports (17).
For malignant cases, detailed microscopic evaluation is gener-
ally needed to assess the extent of tumor (18, 19) and the type
of tumor (e.g. adenocarcinoma versus squamous cell carci-
noma) (20), as well as to ascertain that the tumor is adequately
removed during surgical excision (21).

Several qualitative annotations, such as tumor stage and
grade, have clear clinical implications. Tumor stage is the
evaluation of tumor spread, and the TNM staging system is the
most widely used system for most cancers, such as breast
cancer, prostate cancer, lung cancer, colorectal cancer, bladder
cancer, and pancreatic cancer (22). There are three major com-
ponents in the TNM system: tumor extent (T), lymph node
involvement (N), and distant metastasis (M). An example of TNM
staging criteria for non-small cell lung cancer is shown in Table
I, and the mapping from T, N, and M status to stages is de-
scribed in Table II (23). Note that different types of malignancy
may have different staging systems (24), and there is no well-
established TNM staging for brain cancer or malignancies of the
spinal cord. The lack of staging for central nervous system
(CNS)1 cancer is due to the fact that tumor histology and loca-
tion of CNS tumor is a better prognostic predictor than tumor
size; in addition, the CNS has no lymphatics, and most CNS

1 The abbreviations used are: CNS, central nervous system; ChIP,
chromatin immunoprecipitation; RNA-seq, RNA-sequencing; NMR,
nuclear magnetic resonance; FT-IR, Fourier transform infrared spec-
troscopy; GC-MS, gas chromatography mass spectrometry; LC-MS,
liquid chromatography mass spectrometry.

TABLE I
TNM staging of non-small cell lung cancer

T

T0 No evidence of primary tumor.
Tis Carcinoma in situ.
T1 Tumor that is �3 cm in its greatest dimension, does not invade the visceral pleura, and is without bronchoscopic

evidence of invasion more proximal than a lobar bronchus. The uncommon superficial spreading tumor of any
size with its invasive component limited to the bronchial wall, which may extend proximal to the main
bronchus, is classified as a T1a.

T1a Tumor is �2 cm in its greatest dimension.
T1b Tumor is �2 cm, but �3 cm, in its greatest dimension.

T2 Tumor with any of the following characteristics: �3 cm but �7 cm in its greatest dimension, invades a mainstem
bronchus with its proximal extent at least 2 cm from the carina, invades the visceral pleura, or is associated
with either atelectasis or obstructive pneumonitis that extends to the hilar region without involving the entire
lung.

T2a Tumor is �3 cm, but �5 cm, in its greatest dimension.
T2b Tumor is �5 cm, but �7 cm, in its greatest dimension.

T3 Tumor with any of the following characteristics: �7 cm in its greatest dimension; invades the chest wall
(including superior sulcus tumors), diaphragm, phrenic nerve, mediastinal pleura, parietal pericardium, or a
mainstem bronchus less than 2 cm from the carina without invasion of the carina; is associated with either
atelectasis or obstructive pneumonitis of the entire lung; or separate tumor nodule(s) are located in the same
lung lobe as the primary tumor.

T4 Tumor of any size that invades the mediastinum, heart, great vessels, trachea, recurrent laryngeal nerve,
esophagus, vertebral body, or carina; or separate tumor nodule(s) located in a different lobe of the ipsilateral
lung.

N
N0 No regional lymph node involvement.
N1 Involvement of ipsilateral intrapulmonary, peribronchial, or hilar lymph nodes.
N2 Involvement of ipsilateral mediastinal or subcarinal lymph nodes.
N3 Involvement of contralateral mediastinal or hilar lymph nodes. Alternatively, involvement of either ipsilateral or

contralateral scalene or supraclavicular lymph nodes.
M
M0 No distant metastasis.
M1 Metastasis.

M1a Malignant pleural effusion, pericardial effusion, pleural nodules, or metastatic nodules in the contralateral lung.
M1b Distant (extrathoracic) metastasis.
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tumor patients do not survive long enough to develop meta-
static diseases (25). Tumor grade evaluates the level of tumor
differentiation. Patients with higher-grade (less signs of differ-
entiation) tumors often have worse survival outcomes (26, 27).

In addition to hematoxylin and eosin (H&E) stained slides,
pathologists also use immunohistochemistry (IHC) to detect
the presence of proteins and to semi-quantify protein expres-
sion levels (28). Previous research showed that it is possible
to prioritize cancer marker candidates through the IHC semi-
quantified protein levels (29).

Overall, histopathology evaluation defined cancer types
and subtypes, and assessments on tumor grade and stage
can stratify patients with different survival outcomes. How-
ever, these evaluations can be subjective (30, 31) and the
results may not capture all of the clinically relevant inter-
individual differences (32).

Omics Studies

The recent “omics revolution” provides great opportunities
to link biological pathways to clinical phenotypes (33, 34).
Advancements in omics profiling techniques enable research-
ers to view the panorama of the biological processes under-
pinning diseases and health status, which not only renders
further insights into disease pathology (35), but also identifies
biomarkers for clinical predictions (36). Discovering robust
links between important clinical variables and their predictive
features is the key to precision medicine (37). Here we discuss
the clinical implications of genomics, epigenomics, transcrip-
tomics, proteomics, and metabolomics information (Fig. 1),
and illustrate how these findings could guide precision
oncology.

Genomics—Genome sequencing provides the panorama of
the DNA sequence changes of tumor tissues at single base
pair resolution. By comparing tumor genome with a patient’s
germline sequence or a reference genome, researchers can
identify genetic aberrations as well as their clinical implica-
tions (34, 38). Many of these variations are associated with
clinically important phenotypes, such as response to targeted
therapeutics (39) or survival outcomes (40).

As an illustration, in the past several years many drugs have
been designed to target the proteins expressed from mutated
genes in non-small cell lung tumors. For example, the thera-
peutic agents that target the effects of EGFR mutation (41),
BRAF mutation (42), and MET amplification (43) have been
designed—many initially for these mutations in other cancers
(Table III) (44–50). As a result, numerous cancer patients are
tested for their tumor genotypes before receiving targeted
therapy (39), and the prognostic markers guide physicians in
formulating treatment plans for individual patients (51). These
advancements altered the clinical managements of malignan-
cies tremendously (52).

In addition, genomics profiling rendered a systematic way
toward understanding the biological processes underpinning
important clinical phenotypes (53). Because tumor cells har-
bor many genetic variations, hundreds of genes can be asso-
ciated with a phenotype by genomic analysis. Recent devel-
opments in pathway analysis provide effective ways to gather
insights into the biology of the identified genes and proteins in
cancer patients (54). As an illustration, pathway analysis of
genes with recurrent somatic mutations revealed the role of
Wnt/�-catenin signaling in carcinogenesis of hepatocellular
carcinoma. For an individual tumor, through mapping a large
number of altered genes or proteins into pathways, the di-
mensionality involved in the analyses can be reduced, which
increases the explanatory power and facilitates biological in-
terpretations. A few methods for conducting pathway analysis
have been described (55). Researchers classify the most
commonly used methods into three major categories: over-
representation analysis, functional class scoring, and pathway
topology. The design of effective pathway analysis algorithms
is still an active area of research (55).

Epigenomics—Epigenomic changes, including DNA meth-
ylation and chromatin modifications, can affect the expression
patterns of genes (56). DNA methylation is the reversible
addition of a methyl group to DNA, which occurs most fre-
quently on a cytosine adjacent to a guanine. DNA methylation
profiles are heritable, and generally suppress gene expression
if it occurred in the promoter regions (57). In addition to DNA
methylation, there are a number of known chromatin modifi-
cations that result in epigenomic effects, including histone

TABLE II
Mapping T, N, and M status to non-small cell lung cancer stages

Tumor Stages TNM

Stage 0 TisN0M0
Stage I

IA T1a-1bN0M0
IB T2aN0M0

Stage II
IIA T1a-2aN1M0 or T2bN0M0
IIB T2bN1M0 or T3N0M0

Stage III
IIIA T3N1M0 or T1a-3N2M0 or T4N0-1M0
IIIB T4N2M0 or T1a-4N3M0

Stage IV Any T Any N M1a-1b

Cancer

Genomics Epigenomics

Transcriptomics Proteomics Metabolomics

FIG. 1. Schematic diagram of omics modalities in precision
oncology. Genomics, epigenomics, transcriptomics, proteomics,
and metabolomics methods provide complementary information on
the biology of tumorigenesis and cancer development.
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acetylation, methylation, phosphorylation, ubiquitination,
SUMOylation, ADP-ribosylation, deimination, and proline
isomerization (58). Depending on the particular histone mod-
ification, these alterations can have different effects on tran-
scription. Cancer cells are known to exhibit many of these
epigenomic changes in DNA methylation and chromatin mod-
ification (56), and profiling tools to investigate the status of
many types of epigenetic modification are available (59).

Bisulfite treatment and sequencing is an effective method
to identify the DNA methylation status at the single base pair
resolution. This method works by using bisulfite to modify
unmethylated cytosines to uracils, while sparing methylated
cytosines (Fig. 2). By sequencing and comparing the se-
quences from bisulfite-treated as well as the untreated sam-
ples, researchers can identify the methylation status of each
cytosine under study (60). A few large-scale studies used
bisulfite-based methylation assay on human cancer samples.
As an illustration, The Cancer Genome Atlas (TCGA) used
Illumina’s Infinium Human DNA Methylation 27 and Infinium
Human DNA Methylation 450 platform to investigate the epig-
enomic landscape of more than 10 tumor types. These plat-
forms can reveal the methylation status of 27,578 and more
than 485,000 sites per sample at single-nucleotide resolution
respectively (61).

High-throughput DNA sequencing technologies coupled
with chromatin immunoprecipitation (ChIP) methods are use-
ful for identifying histone modifications (62). Using modifica-
tion-specific antibodies, ChIP methods can immunoisolate
DNA-histone complexes with desired histone modifications.
The DNA sequences that interact with the modified histones
can be identified through DNA microarrays (ChIP-chip) (63) or
DNA sequencing (ChIP-seq) (64, 65).

DNA methylation patterns have been related to mutations in
cancer driver genes in several cancer types, including colo-
rectal cancer (66); indeed DNA methylation, demethylation
and chromatin modification enzymes are often mutated in
many types of cancer; for example, more than 17% of acute
myeloid leukemia (AML) patients have mutations in DNA
methyltransferase 3A (DNMT3A) gene (67). In addition, inte-
grative studies on DNA methylation and gene expression data
has revealed that CpG island methylation in promotors can
explain the decreased gene expression patterns in a number

of important genes (66). In some cancer types, the methyla-
tion signatures of selected genes were found to be prognostic
and correlate with relapse-free survival of the patients (68, 69).

In addition, ChIP-seq methods revealed histone modifica-
tion profiles in cancer, which can be linked to clinical pheno-
types and inform tumor biology. As an illustration, ChIP-seq
studies demonstrated that estrogen receptor, an important
transcription factor affecting endocrine response and cell
growth in breast cancer, has distinct binding patterns in
breast cancer patients who are more likely to relapse (70).
ChIP-chip analysis on cancer cell lines also shed light on the
biological processes associated with tumor metastasis and
aggressiveness (71, 72).

Transcriptomics—Contrasting with genomic and epig-
enomic studies, transcriptomic analyses focus on gene ex-
pression levels. Transcriptomics is the study of the complete
set of mRNA transcripts in a cell and the quantity of each
transcript (73). By assessing the amount of transcripts, re-
searchers can estimate the gene expression levels in cells,
which is a proxy of gene activity. Because of the good repro-

TABLE III
Examples of genetic variations and associated targeted therapy agents for non-small cell lung cancer

Genes Type of Variations
Estimated Prevalence in Lung

Adenocarcinoma
Estimated Prevalence in Lung

Squamous Cell Carcinoma
Targeted Therapy Agents

EGFR Point mutations 5–15% �5% Gefitinib, erlotinib, afatinib
ALK Rearrangements 5–15% �5% Crizotinib
MET Amplification 5% 5% Crizotinib
RET Rearrangements 1.8% �1% Cabozantinib
ROS1 Rearrangements 1.8% 0% Crizotinib
HER2 Point mutations �5% 0% Trastuzumab, afatinib
BRAF Point mutations �5% 0% Vemurafenib, dabrafenib

5’------ATCGCTACT------3’

5’------ATCGUTAUT------3’

m

m

Bisulfite treatment

Amplify by polymerase chain reaction (PCR)

DNA sequencing

5’------ATCGTTATT------3’
3’------TAGCAATAA------5’

FIG. 2. Bisulfite sequencing identifies cytosines with and with-
out methylation at a single nucleotide resolution. Unmethylated
cytosines (represented by “C” in the sequence) are converted to uracil
(represented by “U”) by bisulfite treatment, which will be sequenced
as thymine (represented by “T”). In contrast, methylated cytosines
(5-methylcytosine; represented by “C” with a small “m” on the top)
are resistant to bisulfite conversion, and will be sequenced as they
are. By comparing the bisulfite treated and untreated samples, re-
searchers can identify the methylation status and methylation rate of
each cytosine at a single nucleotide resolution.
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ducibility of experiment modalities for transcriptomics analy-
sis, it is a popular method to estimate gene activities in tumor
cells (74).

RNA-sequencing (RNA-seq) is the current method of choice
for profiling gene expression levels. It has several advantages
over microarray studies: RNA-seq has low background noise,
can identify a larger dynamic ranges of expression level, can
distinguish among different isoforms and allelic expression,
and is able to provide single base resolution and measure-
ment of each transcript (73). The experimental procedure of a
typical RNA-sequencing protocol involves the use of poly(T)
magnetic beads to separate coding RNAs with poly(A) tails
from noncoding RNAs, reverse transcription of RNAs to com-
plementary DNAs (cDNAs), and sequencing of the resulting
cDNAs (Fig. 3) (73). Developing different experimental proto-
cols to profile RNAs with low-quantity or directly sequence
RNAs without reverse transcription is still an active area of
research (75).

Before the advent of RNA-sequencing, microarrays were
widely used to profile the transcriptomic landscape of can-
cerous tissues. One seminal study shows that the gene ex-
pression levels profiled by microarrays can distinguish differ-
ent types of hematologic cancer (76). Because of the large
quantities of DNA microarray data in the public domain, large
repositories of microarray data still serve as important data-
bases for research on drug repurposing (77) as well as dis-
ease re-classification (78, 79), although these repositories are
becoming rapidly populated with RNA-Sequencing data sets.

Many reports demonstrate the utility of gene expression
profiles for prognosis. Machine learning methods are the cor-
nerstone of identifying nonobvious gene expression patterns
associated with clinical phenotypes (Fig. 4). As an illustration,
Beer et al. used gene expression patterns profiled by microar-
ray to identify lung adenocarcinoma patients with different
prognoses. They came up with a statistical model that pre-
dicts patient survival with gene expression features, which
provides additional information for clinical managements (80).
In addition, US patent 7,914,988 describes a 21-gene panel

expression test for prostate cancer relapse prediction (81).
Moreover, RNA-seq studies also reveal alternative splicing
and fusion transcripts likely contributing to carcinogenesis in
a number of cancers, including melanoma (82), breast cancer
(83), and prostate adenocarcinoma (84).

Proteomics—Proteins are important building blocks of cells
and they carry out essential functions in organisms. As ma-
lignant cells have distinct replication and metabolic pro-
cesses, their protein quantities and activities are affected.
Quantifying proteins and their modifications can determine
different health and disease states. A number of high-
throughput experimental methods are used to analyze the
proteomic profiles of cancer, including mass spectrometry,
protein arrays and antibody based-detection methods (85).

Mass spectrometry (MS) is a sensitive and robust method
that quantifies peptide by their mass-to-charge (m/z) ratio
(86). Companies have developed different types of mass
spectrometers with different resolving power, sensitivity, dy-
namic range, throughput, and the ability to detect post-trans-
lational modifications for proteomics studies (87). The MS
approach has many applications in cancer studies. As an
illustration, MS studies reveal activated oncogenic kinases in
non-small cell lung cancer samples and identify novel fusion
proteins, such as ALK (88). Leveraging these crucial findings,
researchers further demonstrate the effectiveness of Crizo-
tinib, a tyrosine kinase inhibitor targeting ALK, MET, and
ROS1 tyrosine kinases, in treating non-small cell lung cancer
patients with ALK rearrangements (89). Protein profiling of
TCGA cancer samples has stratified different colorectal sub-
types that are overlapping but distinct from those identified by
RNA-sequencing studies (90). Thus, new information can be
obtained from global analyses of proteins.

Protein microarrays are another widely used analytical
method for proteomics. There are two types of abundance-
based protein arrays: capture arrays and reverse phase pro-
tein arrays (Fig. 5) (91). Capture arrays can be further classi-
fied into direct labeling and sandwich immunoassay. Direct
labeling method labels proteins of interest with detectable

mRNA
AAAAAAAA

cDNA
AAAAAAAA
TTTTTTTT

Fragment the cDNA and 
sequence the DNA fragments

Map onto the
reference genome

exons

introns

FIG. 3. A general workflow of RNA sequencing with reverse transcription to complementary DNA (cDNA). Coding mRNA molecules
with poly-A tails are first isolated from the sample, and then reverse transcribed to cDNA. The cDNA is fragmented and sequenced, and the
resulting sequence is mapped back onto the reference genome. The quantity of mapped sequences in each genic region is associated with
the expression level of the gene. (Blue regions of the reference genome indicate introns, whereas red regions indicate exons.)
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markers, such as fluorescent probes, and captures the la-
beled proteins with antibodies fixed on a solid surface. This
method can assay multiple samples at the same time, but
requires chemically modifying the proteins (92). In addition,
cross-reactive antibodies can cause false positives, which
lower the specificity of the analysis. Sandwich immunoas-
say used two types of antibodies, one captures the proteins
and the other carries the fluorescent molecule and binds
to another epitope of the protein. This approach avoids
labeling the proteins directly and has higher specificity;
however, it requires two distinct of antibodies to profile
each protein (91).

Reverse-phased protein array prints protein lysate to a solid
surface, and introduces primary and secondary antibodies to

quantify the proteins of interest (93, 94). This method allows
researchers to screen many samples efficiently, but has a
narrower dynamic range of detectable protein abundance
(91). These array-based methods are also proved useful for
cancer biomarker discovery. As an illustration, antibody ar-
rays analysis reveals that IL-8 and growth-related oncogene
(GRO) cytokines levels are potential biomarkers for monitoring
response to HER2-targeted therapy in breast cancer (95).
Data gathered from reverse-phase protein array also suggests
that subsets of ovarian cancer patients can benefit from a
combination of KIT and cyclin E2 inhibitors or a combination
of PI3K and MAPK inhibitors (96).

Metabolomics—Metabolomics is defined as the study of
the collection of metabolites in a system (e.g. cell, tissue, or

input

output

Prediction Model

Gather training data

Feature selection and
build the prediction model 
using the training data

input

output

Prediction Model

Validate the prediction model
using test data

Estimate the performance 
of the prediction model 
through test data

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
1 − Specificity
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FIG. 4. A schematic diagram of using machine learning methods to predict clinical phenotypes. First, a training data set is collected,
subsets of features associated with the phenotype of interest are selected, and a statistical model is built by the training data. A previously
untouched test set using the same omics profiling methods is collected and treated as new input to the established machine learning model.
The model provides predictions on the test input. By comparing the model output and the actual clinical phenotypes of the patients in the test
set, researchers can estimate the performance of the prediction model.
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organism) under a given set of conditions (97). Cancer cells
have different metabolism from normal cells and use different
metabolic pathways than normal cells: it is well established
that most cancer cells generate energy by glycolysis regard-
less of the availability of oxygen, instead of using mitochon-
drial oxidative phosphorylation that noncancer cells use (the
Warburg Effect) (98). With the advancement in high-through-
put profiling tools for metabolites, metabolomics studies are
expected to bring in further insights into cancer biology and
biomarker discovery (99).

For metabolomics studies researchers typically use two
major technologies, MS and nuclear magnetic resonance
(NMR) (100, 101). MS can perform both targeted and untar-
geted analyses. Targeted analyses follow known molecules
(typically one to several hundred) and can provide very sen-

sitive quantification of key known compounds. However, it will
miss the many metabolites not targeted. Untargeted metabo-
lomics profile many thousands of features (molecules of par-
ticular column retention times and molecular mass) globally
and can discover novel biomarkers found in specific condi-
tions and thus identify new targets (100, 102). One-dimen-
sional (1D) NMR can also profile the metabolites from blood
plasma, urine, saliva, and tissue extracts (103, 104). NMR in
two-dimensional (2D) mode can elucidate the molecular
structure and facilitate molecule identification with increased
signal dispersion (103). Recent advancement in the NMR
technology has improved its detection sensitivity (105) and
the availability of extensive NMR spectral databases has fa-
cilitated the identification of molecules (106). This fast and
automated approach can be useful for clinical diagnosis and
toxicological studies (103).

Metabolomics analyses can reveal cancer biology and de-
tect cancer in a noninvasive fashion. For instance, metabolo-
mics assays have identified the role of serine consumption in
nucleotide synthesis, one-carbon metabolism, and cell prolif-
eration in cancer cell lines (107). Another study shows that the
serum concentration of a number of free fatty acids is different
between breast invasive ductal carcinoma patients and
healthy controls. These results not only provide potential bio-
markers for cancer diagnosis, but also point to metabolic
alterations associated with cancer development (108).

Integrative Omics Studies for Precision Oncology—The dif-
ferent omics described above characterize biomolecules at
different levels. With an aim to incorporate information from
different omics studies, integrative omics analyses account
for various omics information to provide a more holistic view
of cancer biology, as well as to generate better predictions for
clinical phenotypes. A number of omics integration algorithms
and tools are available for data exploration, analysis, and
integration (109, 110).

For instance, one study investigated the somatic mutations
from whole-exome sequencing, copy number alterations,
DNA methylation, and mRNA levels quantified by RNA-se-
quencing of 3 299 tumor samples from 12 cancer types (111).
In this analysis, 479 genetic and epigenetic alterations with
concordant changes in gene expression are identified. Hier-
archical classification shows that the majority of these tumors
are either driven by somatic mutations or copy number vari-
ations. In addition, a number of genes in cell cycle signaling
pathways, including TP53 and PIK3CA, have both mutations
and copy number aberrations. These results characterize the
potential driving events in cancer, and portray the global
molecular aberrations in malignancy across tumor types (112).

In addition, the multi-omics integration can better identify
molecular patterns associated with important clinical pheno-
types (14). As an illustration, through incorporating the
genomic and transcriptomic profiles of breast cancer pa-
tients, researchers define a novel 10-subtype classification
system for the tumor. Each subtype is associated with distinct

(A) Direct labeling protain array

(B) Sandwich immunoassay

(C) Reverse phase protein array

Protein Antibodies Fluorescent molecule

FIG. 5. Protein array methods for proteomic profiling. A, Direct
labeling method adds detectable markers to the proteins, and uses
antibodies fixed on a solid surface to capture the proteins of interest.
B, Sandwich method utilizes two types of antibodies to capture the
proteins and to tag on the fluorescent molecules respectively. C.
Reverse phase protein array method first prints protein lysate on a
solid surface, and then uses antibodies to quantify the proteins of
interest.
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clinical characteristics and survival outcomes (113). With om-
ics integration, we can better understand the key molecules in
cancer development, and provide better clinical predictions.
Proteomics, which is only getting incorporated into these
analyses now, has the potential to greatly expand these
studies.

Omics in Cancer Immunotherapy—Cancer immunotherapy
is a treatment that uses patients’ immune system to control or
eliminate malignant cells and involves multiple technologies
(114). This type of treatment exploits the fact that genetic
aberrations in cancer cells can result in new peptides that are
not normally expressed in benign cells (115). Some of the new
peptides are transported to the cell surface, and the immune
system is able to recognize these cancer cell-specific anti-
gens (Fig. 6). Because cancer immunotherapy acts specifi-
cally on malignant cells, the side effects of immunotherapy are

less severe. With the recent successful clinical trial on late-
stage metastatic melanoma patients with no other treatment
options, immunotherapy has gained much attention in recent
years (116).

There are a few places where omics studies can facilitate
the development of immunotherapy. First, genomic analysis is
used to determine the genetic mutations leading to potentially
actionable neoantigens. Second, proteomic methods can
characterize neopeptides on the surface of the tumor cells.
Identifying the expressed neoantigens using RNA-seq or pro-
teomics methods is also useful for selecting immunotherapy
regimens. Third, researchers can design personalized vac-
cines based on the identified neoantigens presented in the
tumor. The introduced antigens in vaccines can trigger im-
mune responses in the patients, prompting B cells to generate
antibodies against the cancer cells (115).

In addition to providing insights into the design of immuno-
therapy, omics signatures can predict immunotherapy re-
sponse as well. For instance, biomarkers in the peripheral
blood can quantify the strength of immune response, identify
the extent of epitope spreading, and detect autoimmunity. A
number of biomarkers successfully predict the response to
immunotherapy in clinical trials of many tumor types (117).

Challenges and Future Directions

Despite a considerable amount of research on cancer om-
ics, our current knowledge of the molecular mechanisms of
cancer biology is limited and the implementation of precision
oncology is still far from perfect. As a first example, although
mutations can be identified by genome sequencing, the driver
mutations in a number of cancer patients are still unknown
(118). As a second example, tumor tumors are heterogeneous
(119) and constantly evolving (120), and the complete muta-
tional spectrum of truncal and branch mutations in heteroge-
neous cancers are difficult to ascertain (121). Evolution of
tumor cells can lead to acquired drug resistance and temporal
variation of tumor omics (122). Heterogeneity may also ac-
count for different biomarker expression: for examples, some
genes in the Oncotype DX® assay, a prognostic test for node-
negative, estrogen receptor-positive breast cancer, showed
variable expression levels in different tumor sections from the
same patient (123). As a third example, some forms of chem-
otherapy and immunotherapy only work in a fraction of pa-
tients, and the biological mechanism underpinning treatment
responses for many types of cancer remains largely unex-
plored (117, 124). It is possible to identify nonobvious omics
patterns predictive of treatment efficacy, but it requires large
cohorts to build and test the newly established omics signa-
tures (125). Presently, the correlations between different om-
ics modalities or between histopathology phenotypes and
omics features are not systematically characterized, and it is
possible that the integration of pathology and multi-omics can
provide further information for precision oncology (126). Fur-
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FIG. 6. Omics applications in cancer immunotherapy. Cancer
immunotherapy exploits the fact that genetic aberrations in the can-
cer genome can result in new antigens (neoantigens) not normally
expressed in benign tissue. Researchers can sequence the tumor
genome to identify potential neoantigens, use proteomic methods to
characterize the expressed neoantigens, and design personalized
cancer vaccines based on the identified neoantigens, which will elicit
specific immune response against the tumor cells.
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ther research is needed to identify the additional driver mu-
tations in cancers, to provide robust biomarkers for predicting
treatment responses of different treatment modalities, and to
show how different omics relate to one another. These inte-
grative studies require scalable bioinformatics approaches to
identify unrecognized genomic architectures and international
collaborations to gather large patient cohorts that account for
individual variations and population differences. With these
studies, we can better translate biomedical discoveries from
bench to bedside.

CONCLUSION

High throughput omics methods have greatly facilitated the
development of precision oncology and are beginning to
guide personalized cancer management. Here we summarize
the key omics modalities useful for identifying clinical pheno-
types, such as tumor types and subtypes, drug responses,
and survival outcomes. Omics technology can complement
current clinical and pathology evaluations by discovering
previously unknown subtypes with clinical implications, iden-
tifying patients’ prognoses, or predicting responses to treat-
ments. Future studies on cancer mutations, functional aber-
rations, and omics integration have the potential to further
improve the precision in precision medicine.

* This work was supported by National Institutes of Health Grant
5U24CA160036-05. K.-H. Y. is a Howard Hughes Medical Institute
International Student Research Fellow and Winston Chen Stanford
Graduate Fellow. We thank the anonymous reviewers for their con-
structive comments. The content is solely the responsibility of the
authors and does not necessarily represent the official views of the
National Institutes of Health.

¶ To whom correspondence should be addressed: Department of
Genetics, Stanford University, School of Medicine, 300 Pasteur Drive,
M-344A, Stanford, CA 94305-5120. Tel.: 650-723 4668; Fax: 650-
725.1534; E-mail: mpsnyder@stanford.edu.

REFERENCES

1. Torre, L. A., Bray, F., Siegel, R. L., Ferlay, J., Lortet-Tieulent, J., and Jemal,
A. (2015) Global cancer statistics, 2012. CA 65, 87–108

2. Siegel, R. L., Miller, K. D., and Jemal, A. (2015) Cancer statistics, 2015. CA
65, 5–29

3. Hanahan, D., and Weinberg, R. A. (2011) Hallmarks of cancer: the next
generation. Cell 144, 646–674

4. Hanahan, D., and Weinberg, R. A. (2000) The hallmarks of cancer. Cell
100, 57–70

5. National Research Council Committee on A Framework for Developing a
New Taxonomy of Disease (2011) Toward precision medicine: Building
a knowledge network for biomedical research and a new taxonomy of
disease, National Academies Press (US)

6. Snyder, M. (2016) Genomics and Personalized Medicine: What Everyone
Needs to Know, Oxford University Press

7. Collins, F. S., and Varmus, H. (2015) A new initiative on precision medi-
cine. The New England journal of medicine 372, 793–795

8. Ashley, E. A. (2015) The precision medicine initiative: a new national effort.
JAMA 313, 2119–2120

9. Holzinger, A., Dehmer, M., and Jurisica, I. (2014) Knowledge Discovery
and interactive Data Mining in Bioinformatics–State-of-the-Art, future
challenges and research directions. BMC bioinformatics 15, I1

10. Cancer Genome Atlas Research Network, Weinstein, J. N., Collisson,
E. A., Mills, G. B., Shaw, K. R., Ozenberger, B. A., Ellrott, K., Shmulev-
ich, I., Sander, C., and Stuart, J. M. (2013) The Cancer Genome Atlas

Pan-Cancer analysis project. Nat. Genetics 45, 1113–1120
11. Zhang, J., Baran, J., Cros, A., Guberman, J. M., Haider, S., Hsu, J., Liang,

Y., Rivkin, E., Wang, J., Whitty, B., Wong-Erasmus, M., Yao, L., and
Kasprzyk, A. (2011) International Cancer Genome Consortium Data
Portal–a one-stop shop for cancer genomics data. Database 2011,
bar026

12. Larranaga, P., Calvo, B., Santana, R., Bielza, C., Galdiano, J., Inza, I.,
Lozano, J. A., Armananzas, R., Santafe, G., Perez, A., and Robles, V.
(2006) Machine learning in bioinformatics. Briefings Bioinformatics 7,
86–112

13. Bellazzi, R., and Zupan, B. (2008) Predictive data mining in clinical med-
icine: current issues and guidelines. Int. J. Medical Informatics 77,
81–97

14. Vucic, E. A., Thu, K. L., Robison, K., Rybaczyk, L. A., Chari, R., Alvarez,
C. E., and Lam, W. L. (2012) Translating cancer ‘omics’ to improved
outcomes. Genome Res. 22, 188–195

15. Lakhani, S. R., and Ashworth, A. (2001) Microarray and histopathological
analysis of tumours: the future and the past? Nat. Rev. Cancer 1,
151–157

16. Clinical Lung Cancer Genome, P., and Network Genomic, M. (2013) A
genomics-based classification of human lung tumors. Sci. Translational
Med. 5, 209ra153

17. Abeloff, M., Armitage, J., Niederhuber, J., Kastan, M., and Mckenna, W.
(2004) Clinical Oncology. Philadelphia, PA: Churchill Livingstone.
Elsevier

18. Roberts, T. E., Hasleton, P. S., Musgrove, C., Swindell, R., and Lawson,
R. A. (1992) Vascular invasion in non-small cell lung carcinoma. J. Clin.
Pathol. 45, 591–593

19. Ogawa, J., Tsurumi, T., Yamada, S., Koide, S., and Shohtsu, A. (1994)
Blood vessel invasion and expression of sialyl Lewisx and proliferating
cell nuclear antigen in stage I non-small cell lung cancer. Relation to
postoperative recurrence. Cancer 73, 1177–1183

20. Kumar, V., Abbas, A. K., Fausto, N., and Aster, J. C. (2014) Robbins and
cotran pathologic basis of disease, Professional Edition: Expert Consult-
Online, Elsevier Health Sciences

21. Baish, J. W., and Jain, R. K. (2000) Fractals and cancer. Cancer Res. 60,
3683–3688

22. Sobin, L. H., Gospodarowicz, M. K., Wittekind, C., and International Union
against Cancer. (2010) TNM classification of malignant tumours, 7th Ed.,
Wiley-Blackwell, Chichester, West Sussex, UK ; Hoboken, NJ

23. Goldstraw, P., Crowley, J., Chansky, K., Giroux, D. J., Groome, P. A.,
Rami-Porta, R., Postmus, P. E., Rusch, V., Sobin, L., International
Association for the Study of Lung Cancer International Staging, C., and
Participating, I. (2007) The IASLC Lung Cancer Staging Project: propos-
als for the revision of the TNM stage groupings in the forthcoming
(seventh) edition of the TNM Classification of malignant tumours.
J. Thoracic Oncol. 2, 706–714

24. Greene, F. L. (2002) AJCC cancer staging manual, Springer Science &
Business Media

25. Edge, S. B., and American Joint Committee on Cancer. (2010) AJCC
cancer staging manual, 7th Ed., Springer, New York

26. Gronchi, A., Miceli, R., Shurell, E., Eilber, F. C., Eilber, F. R., Anaya, D. A.,
Kattan, M. W., Honore, C., Lev, D. C., Colombo, C., Bonvalot, S.,
Mariani, L., and Pollock, R. E. (2013) Outcome prediction in primary
resected retroperitoneal soft tissue sarcoma: histology-specific overall
survival and disease-free survival nomograms built on major sarcoma
center data sets. J. Clin. Oncol. 31, 1649–1655

27. Delahunt, B., McKenney, J. K., Lohse, C. M., Leibovich, B. C., Thompson,
R. H., Boorjian, S. A., and Cheville, J. C. (2013) A novel grading system
for clear cell renal cell carcinoma incorporating tumor necrosis. Am. J.
Surg. Pathol. 37, 311–322

28. Ramos-Vara, J. A., and Miller, M. A. (2014) When tissue antigens
and antibodies get along: revisiting the technical aspects of
immunohistochemistry–the red, brown, and blue technique. Veterinary
Pathol. 51, 42–87

29. Chiang, S. C., Han, C. L., Yu, K. H., Chen, Y. J., and Wu, K. P. (2013)
Prioritization of cancer marker candidates based on the immunohisto-
chemistry staining images deposited in the human protein atlas. PloS
One 8, e81079

30. Stang, A., Pohlabeln, H., Muller, K. M., Jahn, I., Giersiepen, K., and Jockel,
K. H. (2006) Diagnostic agreement in the histopathological evaluation of

Omics Profiling in Precision Oncology

Molecular & Cellular Proteomics 15.8 2533

mailto:mpsnyder@stanford.edu


lung cancer tissue in a population-based case-control study. Lung
Cancer 52, 29–36

31. Grilley-Olson, J. E., Hayes, D. N., Moore, D. T., Leslie, K. O., Wilkerson,
M. D., Qaqish, B. F., Hayward, M. C., Cabanski, C. R., Yin, X., Socinski,
M. A., Stinchcombe, T. E., Thorne, L. B., Allen, T. C., Banks, P. M.,
Beasley, M. B., Borczuk, A. C., Cagle, P. T., Christensen, R., Colby,
T. V., Deblois, G. G., Elmberger, G., Graziano, P., Hart, C. F., Jones,
K. D., Maia, D. M., Miller, C. R., Nance, K. V., Travis, W. D., and
Funkhouser, W. K. (2013) Validation of interobserver agreement in lung
cancer assessment: hematoxylin-eosin diagnostic reproducibility for
non-small cell lung cancer: the 2004 World Health Organization classi-
fication and therapeutically relevant subsets. Arch. Pathol. Lab. Med.
137, 32–40

32. Wall, D. P., and Tonellato, P. J. (2012) The future of genomics in pathol-
ogy. F1000 Med. Reports 4, 14

33. Hayes, D. F. (2013) OMICS-based personalized oncology: if it is worth
doing, it is worth doing well! BMC Med. 11, 221

34. Vogelstein, B., Papadopoulos, N., Velculescu, V. E., Zhou, S., Diaz, L. A.,
Jr., and Kinzler, K. W. (2013) Cancer genome landscapes. Science 339,
1546–1558

35. Gehlenborg, N., O’Donoghue, S. I., Baliga, N. S., Goesmann, A., Hibbs,
M. A., Kitano, H., Kohlbacher, O., Neuweger, H., Schneider, R., Tenen-
baum, D., and Gavin, A. C. (2010) Visualization of omics data for
systems biology. Nat. Methods 7, S56–68

36. McShane, L. M., Cavenagh, M. M., Lively, T. G., Eberhard, D. A., Bigbee,
W. L., Williams, P. M., Mesirov, J. P., Polley, M. Y., Kim, K. Y., Tricoli,
J. V., Taylor, J. M., Shuman, D. J., Simon, R. M., Doroshow, J. H., and
Conley, B. A. (2013) Criteria for the use of omics-based predictors in
clinical trials. Nature 502, 317–320

37. Gonzalez de Castro, D., Clarke, P. A., Al-Lazikani, B., and Workman, P.
(2013) Personalized cancer medicine: molecular diagnostics, predictive
biomarkers, and drug resistance. Clin. Pharmacol. Therapeutics 93,
252–259

38. Jones, S., Anagnostou, V., Lytle, K., Parpart-Li, S., Nesselbush, M., Riley,
D. R., Shukla, M., Chesnick, B., Kadan, M., Papp, E., Galens, K. G.,
Murphy, D., Zhang, T., Kann, L., Sausen, M., Angiuoli, S. V., Diaz, L. A.,
Jr., and Velculescu, V. E. (2015) Personalized genomic analyses for
cancer mutation discovery and interpretation. Sci. Translational Med. 7,
283ra253

39. Sawyers, C. (2004) Targeted cancer therapy. Nature 432, 294–297
40. Liu, B., Yang, L., Huang, B., Cheng, M., Wang, H., Li, Y., Huang, D.,

Zheng, J., Li, Q., Zhang, X., Ji, W., Zhou, Y., and Lu, J. (2012) A
functional copy-number variation in MAPKAPK2 predicts risk and prog-
nosis of lung cancer. Am. J. Human Gen. 91, 384–390

41. Paez, J. G., Janne, P. A., Lee, J. C., Tracy, S., Greulich, H., Gabriel, S.,
Herman, P., Kaye, F. J., Lindeman, N., Boggon, T. J., Naoki, K., Sasaki,
H., Fujii, Y., Eck, M. J., Sellers, W. R., Johnson, B. E., and Meyerson, M.
(2004) EGFR mutations in lung cancer: correlation with clinical response
to gefitinib therapy. Science 304, 1497–1500

42. Bollag, G., Tsai, J., Zhang, J., Zhang, C., Ibrahim, P., Nolop, K., and Hirth,
P. (2012) Vemurafenib: the first drug approved for BRAF-mutant cancer.
Nat. Rev. Drug Discovery 11, 873–886

43. Tanizaki, J., Okamoto, I., Okamoto, K., Takezawa, K., Kuwata, K., Yama-
guchi, H., and Nakagawa, K. (2011) MET tyrosine kinase inhibitor crizo-
tinib (PF-02341066) shows differential antitumor effects in non-small
cell lung cancer according to MET alterations. J. Thoracic Oncol. 6,
1624–1631

44. Pao, W., and Girard, N. (2011) New driver mutations in non-small-cell lung
cancer. Lancet. Oncol. 12, 175–180

45. Kawakami, H., Okamoto, I., Okamoto, W., Tanizaki, J., Nakagawa, K., and
Nishio, K. (2014) Targeting MET amplification as a new oncogenic
driver. Cancers 6, 1540–1552

46. Heist, R. S., Sequist, L. V., and Engelman, J. A. (2012) Genetic changes in
squamous cell lung cancer: a review. J. Thoracic Oncol. 7, 924–933

47. Kohno, T., Tsuta, K., Tsuchihara, K., Nakaoku, T., Yoh, K., and Goto, K.
(2013) RET fusion gene: translation to personalized lung cancer therapy.
Cancer Sci. 104, 1396–1400

48. Scheffler, M., Schultheis, A., Teixido, C., Michels, S., Morales-Espinosa,
D., Viteri, S., Hartmann, W., Merkelbach-Bruse, S., Fischer, R., Schild-
haus, H. U., Fassunke, J., Sebastian, M., Serke, M., Kaminsky, B.,
Randerath, W., Gerigk, U., Ko, Y. D., Kruger, S., Schnell, R., Rothe, A.,

Kropf-Sanchen, C., Heukamp, L., Rosell, R., Buttner, R., and Wolf, J.
(2015) ROS1 rearrangements in lung adenocarcinoma: prognostic
impact, therapeutic options and genetic variability. Oncotarget 6,
10577–10585

49. Zhao, W., Choi, Y.-L., Song, J.-Y., Zhu, Y., Xu, Q., Zhang, F., Jiang, L.,
Cheng, J., Zheng, G., and Mao, M. (2016) ALK, ROS1 and RET Rear-
rangements in Lung Squamous Cell Carcinoma Are Very Rare. Lung
Cancer 94, 22–27

50. National Comprehensive Cancer Network (2016) NCCN Clinical Practice
Guidelines in Oncology (NCCN Guidelines) Non-Small Cell Lung Can-
cer. NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines)
National Comprehensive Cancer Network

51. Singhal, S., Vachani, A., Antin-Ozerkis, D., Kaiser, L. R., and Albelda, S. M.
(2005) Prognostic implications of cell cycle, apoptosis, and angiogen-
esis biomarkers in non-small cell lung cancer: a review. Clin. Cancer
Res. 11, 3974–3986

52. Chin, L., and Gray, J. W. (2008) Translating insights from the cancer
genome into clinical practice. Nature 452, 553–563

53. Chen, R., Mias, G. I., Li-Pook-Than, J., Jiang, L., Lam, H. Y., Chen, R.,
Miriami, E., Karczewski, K. J., Hariharan, M., Dewey, F. E., Cheng, Y.,
Clark, M. J., Im, H., Habegger, L., Balasubramanian, S., O’Huallachain,
M., Dudley, J. T., Hillenmeyer, S., Haraksingh, R., Sharon, D., Eu-
skirchen, G., Lacroute, P., Bettinger, K., Boyle, A. P., Kasowski, M.,
Grubert, F., Seki, S., Garcia, M., Whirl-Carrillo, M., Gallardo, M., Blasco,
M. A., Greenberg, P. L., Snyder, P., Klein, T. E., Altman, R. B., Butte,
A. J., Ashley, E. A., Gerstein, M., Nadeau, K. C., Tang, H., and Snyder,
M. (2012) Personal omics profiling reveals dynamic molecular and med-
ical phenotypes. Cell 148, 1293–1307

54. Papin, J. A., Stelling, J., Price, N. D., Klamt, S., Schuster, S., and Palsson,
B. O. (2004) Comparison of network-based pathway analysis methods.
Trends Biotechnol. 22, 400–405

55. Khatri, P., Sirota, M., and Butte, A. J. (2012) Ten years of pathway
analysis: current approaches and outstanding challenges. PLoS Com-
putational Biol. 8, e1002375

56. Iacobuzio-Donahue, C. A. (2009) Epigenetic changes in cancer. Ann. Rev.
Pathol. 4, 229–249

57. Jones, P. A., and Takai, D. (2001) The role of DNA methylation in mam-
malian epigenetics. Science 293, 1068–1070

58. Kouzarides, T. (2007) Chromatin modifications and their function. Cell 128,
693–705

59. Hyun, B. R., McElwee, J. L., and Soloway, P. D. (2015) Single molecule
and single cell epigenomics. Methods 72, 41–50

60. Frommer, M., McDonald, L. E., Millar, D. S., Collis, C. M., Watt, F., Grigg,
G. W., Molloy, P. L., and Paul, C. L. (1992) A genomic sequencing
protocol that yields a positive display of 5-methylcytosine residues in
individual DNA strands. Proc. Natl. Acad. Sci. U.S.A. 89, 1827–1831

61. National Cancer Institute TCGA Wiki. (2015) DNA methylation. Retrieved
April 15, 2016, from https://wiki.nci.nih.gov/display/TCGA/DNA�
methylation

62. Collas, P. (2010) The current state of chromatin immunoprecipitation. Mol.
Biotechnol. 45, 87–100

63. Buck, M. J., and Lieb, J. D. (2004) ChIP-chip: considerations for the
design, analysis, and application of genome-wide chromatin immuno-
precipitation experiments. Genomics 83, 349–360

64. Park, P. J. (2009) ChIP-seq: advantages and challenges of a maturing
technology. Nature reviews. Genetics 10, 669–680

65. Euskirchen, G. M., Rozowsky, J. S., Wei, C. L., Lee, W. H., Zhang, Z. D.,
Hartman, S., Emanuelsson, O., Stolc, V., Weissman, S., Gerstein, M. B.,
Ruan, Y., and Snyder, M. (2007) Mapping of transcription factor binding
regions in mammalian cells by ChIP: comparison of array- and sequenc-
ing-based technologies. Genome Res. 17, 898–909

66. Hinoue, T., Weisenberger, D. J., Lange, C. P., Shen, H., Byun, H. M., Van
Den Berg, D., Malik, S., Pan, F., Noushmehr, H., van Dijk, C. M.,
Tollenaar, R. A., and Laird, P. W. (2012) Genome-scale analysis of
aberrant DNA methylation in colorectal cancer. Genome Res. 22,
271–282

67. Thol, F., Damm, F., Ludeking, A., Winschel, C., Wagner, K., Morgan, M.,
Yun, H., Gohring, G., Schlegelberger, B., Hoelzer, D., Lubbert, M., Kanz,
L., Fiedler, W., Kirchner, H., Heil, G., Krauter, J., Ganser, A., and Heuser,
M. (2011) Incidence and prognostic influence of DNMT3A mutations in
acute myeloid leukemia. J. Clin. Oncol. 29, 2889–2896

Omics Profiling in Precision Oncology

2534 Molecular & Cellular Proteomics 15.8

https://wiki.nci.nih.gov/display/TCGA/DNA+methylation
https://wiki.nci.nih.gov/display/TCGA/DNA+methylation


68. Sandoval, J., Mendez-Gonzalez, J., Nadal, E., Chen, G., Carmona, F. J.,
Sayols, S., Moran, S., Heyn, H., Vizoso, M., Gomez, A., Sanchez-
Cespedes, M., Assenov, Y., Muller, F., Bock, C., Taron, M., Mora, J.,
Muscarella, L. A., Liloglou, T., Davies, M., Pollan, M., Pajares, M. J.,
Torre, W., Montuenga, L. M., Brambilla, E., Field, J. K., Roz, L., Lo
Iacono, M., Scagliotti, G. V., Rosell, R., Beer, D. G., and Esteller, M.
(2013) A prognostic DNA methylation signature for stage I non-small-
cell lung cancer. J. Clin. Oncol. 31, 4140–4147

69. Maruyama, R., Toyooka, S., Toyooka, K. O., Virmani, A. K., Zochbauer-
Muller, S., Farinas, A. J., Minna, J. D., McConnell, J., Frenkel, E. P., and
Gazdar, A. F. (2002) Aberrant promoter methylation profile of prostate
cancers and its relationship to clinicopathological features. Clin. Cancer
Res. 8, 514–519

70. Ross-Innes, C. S., Stark, R., Teschendorff, A. E., Holmes, K. A., Ali, H. R.,
Dunning, M. J., Brown, G. D., Gojis, O., Ellis, I. O., Green, A. R., Ali, S.,
Chin, S. F., Palmieri, C., Caldas, C., and Carroll, J. S. (2012) Differential
oestrogen receptor binding is associated with clinical outcome in breast
cancer. Nature 481, 389–393

71. Seligson, D. B., Horvath, S., McBrian, M. A., Mah, V., Yu, H., Tze, S.,
Wang, Q., Chia, D., Goodglick, L., and Kurdistani, S. K. (2009) Global
levels of histone modifications predict prognosis in different cancers.
Am. J. Pathol. 174, 1619–1628

72. Gupta, R. A., Shah, N., Wang, K. C., Kim, J., Horlings, H. M., Wong, D. J.,
Tsai, M. C., Hung, T., Argani, P., Rinn, J. L., Wang, Y., Brzoska, P.,
Kong, B., Li, R., West, R. B., van de Vijver, M. J., Sukumar, S., and
Chang, H. Y. (2010) Long non-coding RNA HOTAIR reprograms chro-
matin state to promote cancer metastasis. Nature 464, 1071–1076

73. Wang, Z., Gerstein, M., and Snyder, M. (2009) RNA-Seq: a revolutionary
tool for transcriptomics. Nature Rev. Genetics 10, 57–63

74. Marioni, J. C., Mason, C. E., Mane, S. M., Stephens, M., and Gilad, Y.
(2008) RNA-seq: an assessment of technical reproducibility and com-
parison with gene expression arrays. Genome Res. 18, 1509–1517

75. Ozsolak, F., and Milos, P. M. (2011) RNA sequencing: advances, chal-
lenges and opportunities. Nature Rev. Genetics 12, 87–98

76. Golub, T. R., Slonim, D. K., Tamayo, P., Huard, C., Gaasenbeek, M.,
Mesirov, J. P., Coller, H., Loh, M. L., Downing, J. R., Caligiuri, M. A.,
Bloomfield, C. D., and Lander, E. S. (1999) Molecular classification of
cancer: class discovery and class prediction by gene expression mon-
itoring. Science 286, 531–537

77. Iorio, F., Rittman, T., Ge, H., Menden, M., and Saez-Rodriguez, J. (2013)
Transcriptional data: a new gateway to drug repositioning? Drug Dis-
covery Today 18, 350–357

78. Quackenbush, J. (2006) Microarray analysis and tumor classification. New
Engl. J. Med. 354, 2463–2472

79. Huang, H., Liu, C. C., and Zhou, X. J. (2010) Bayesian approach to
transforming public gene expression repositories into disease diagnosis
databases. Proc. Natl. Acad. Sci. U.S.A. 107, 6823–6828

80. Beer, D. G., Kardia, S. L., Huang, C. C., Giordano, T. J., Levin, A. M.,
Misek, D. E., Lin, L., Chen, G., Gharib, T. G., Thomas, D. G., Lizyness,
M. L., Kuick, R., Hayasaka, S., Taylor, J. M., Iannettoni, M. D., Orringer,
M. B., and Hanash, S. (2002) Gene-expression profiles predict survival
of patients with lung adenocarcinoma. Nature Med. 8, 816–824

81. Chudin, E., Lozach, J., Fan, J.-B., and Bibikova, M. (2011) Gene expres-
sion profiles to predict relapse of prostate cancer. In: U.S. Patent and
Trademark Office, ed., US

82. Berger, M. F., Levin, J. Z., Vijayendran, K., Sivachenko, A., Adiconis, X.,
Maguire, J., Johnson, L. A., Robinson, J., Verhaak, R. G., Sougnez, C.,
Onofrio, R. C., Ziaugra, L., Cibulskis, K., Laine, E., Barretina, J., Winck-
ler, W., Fisher, D. E., Getz, G., Meyerson, M., Jaffe, D. B., Gabriel, S. B.,
Lander, E. S., Dummer, R., Gnirke, A., Nusbaum, C., and Garraway,
L. A. (2010) Integrative analysis of the melanoma transcriptome. Ge-
nome Res. 20, 413–427

83. Edgren, H., Murumagi, A., Kangaspeska, S., Nicorici, D., Hongisto, V.,
Kleivi, K., Rye, I. H., Nyberg, S., Wolf, M., Borresen-Dale, A. L., and
Kallioniemi, O. (2011) Identification of fusion genes in breast cancer by
paired-end RNA-sequencing. Genome Biol. 12, R6

84. Nacu, S., Yuan, W., Kan, Z., Bhatt, D., Rivers, C. S., Stinson, J., Peters,
B. A., Modrusan, Z., Jung, K., Seshagiri, S., and Wu, T. D. (2011) Deep
RNA sequencing analysis of readthrough gene fusions in human
prostate adenocarcinoma and reference samples. BMC Med.
Genomics 4, 11

85. Tyers, M., and Mann, M. (2003) From genomics to proteomics. Nature
422, 193–197

86. Aebersold, R., and Mann, M. (2003) Mass spectrometry-based proteom-
ics. Nature 422, 198–207

87. Domon, B., and Aebersold, R. (2006) Mass spectrometry and protein
analysis. Science 312, 212–217

88. Rikova, K., Guo, A., Zeng, Q., Possemato, A., Yu, J., Haack, H., Nardone,
J., Lee, K., Reeves, C., Li, Y., Hu, Y., Tan, Z., Stokes, M., Sullivan, L.,
Mitchell, J., Wetzel, R., Macneill, J., Ren, J. M., Yuan, J., Bakalarski,
C. E., Villen, J., Kornhauser, J. M., Smith, B., Li, D., Zhou, X., Gygi, S. P.,
Gu, T. L., Polakiewicz, R. D., Rush, J., and Comb, M. J. (2007) Global
survey of phosphotyrosine signaling identifies oncogenic kinases in lung
cancer. Cell 131, 1190–1203

89. Shaw, A. T., Kim, D. W., Nakagawa, K., Seto, T., Crino, L., Ahn, M. J., De
Pas, T., Besse, B., Solomon, B. J., Blackhall, F., Wu, Y. L., Thomas, M.,
O’Byrne, K. J., Moro-Sibilot, D., Camidge, D. R., Mok, T., Hirsh, V.,
Riely, G. J., Iyer, S., Tassell, V., Polli, A., Wilner, K. D., and Janne, P. A.
(2013) Crizotinib versus chemotherapy in advanced ALK-positive lung
cancer. New Engl. J. Med. 368, 2385–2394

90. Zhang, B., Wang, J., Wang, X., Zhu, J., Liu, Q., Shi, Z., Chambers, M. C.,
Zimmerman, L. J., Shaddox, K. F., Kim, S., Davies, S. R., Wang, S.,
Wang, P., Kinsinger, C. R., Rivers, R. C., Rodriguez, H., Townsend,
R. R., Ellis, M. J., Carr, S. A., Tabb, D. L., Coffey, R. J., Slebos, R. J.,
Liebler, D. C., and Nci, C. (2014) Proteogenomic characterization of
human colon and rectal cancer. Nature 513, 382–387

91. LaBaer, J., and Ramachandran, N. (2005) Protein microarrays as tools for
functional proteomics. Current Opinion Chem. Biol. 9, 14–19

92. Haab, B. B. (2003) Methods and applications of antibody microarrays in
cancer research. Proteomics 3, 2116–2122

93. Brennan, D. J., O’Connor, D. P., Rexhepaj, E., Ponten, F., and Gallagher,
W. M. (2010) Antibody-based proteomics: fast-tracking molecular diag-
nostics in oncology. Nat. Rev. Cancer 10, 605–617

94. Spurrier, B., Ramalingam, S., and Nishizuka, S. (2008) Reverse-phase
protein lysate microarrays for cell signaling analysis. Nat. Protocols 3,
1796–1808

95. Vazquez-Martin, A., Colomer, R., and Menendez, J. A. (2007) Protein array
technology to detect HER2 (erbB-2)-induced ‘cytokine signature’ in
breast cancer. Eur. J. Cancer 43, 1117–1124

96. Bast, R. C., Jr., Hennessy, B., and Mills, G. B. (2009) The biology of
ovarian cancer: new opportunities for translation. Nat. Rev. Cancer 9,
415–428

97. Rochfort, S. (2005) Metabolomics reviewed: a new “omics” platform tech-
nology for systems biology and implications for natural products re-
search. J. Natural Products 68, 1813–1820

98. Vander Heiden, M. G., Cantley, L. C., and Thompson, C. B. (2009) Under-
standing the Warburg effect: the metabolic requirements of cell prolif-
eration. Science 324, 1029–1033

99. Claudino, W. M., Quattrone, A., Biganzoli, L., Pestrin, M., Bertini, I., and Di
Leo, A. (2007) Metabolomics: available results, current research proj-
ects in breast cancer, and future applications. J. Clin. Oncol. 25,
2840–2846

100. Shulaev, V. (2006) Metabolomics technology and bioinformatics. Briefings
in Bioinformatics 7, 128–139

101. Chan, E. C., Koh, P. K., Mal, M., Cheah, P. Y., Eu, K. W., Backshall, A.,
Cavill, R., Nicholson, J. K., and Keun, H. C. (2009) Metabolic profiling of
human colorectal cancer using high-resolution magic angle spinning
nuclear magnetic resonance (HR-MAS NMR) spectroscopy and gas
chromatography mass spectrometry (GC/MS). J. Proteome Res. 8,
352–361

102. Blekherman, G., Laubenbacher, R., Cortes, D. F., Mendes, P., Torti, F. M.,
Akman, S., Torti, S. V., and Shulaev, V. (2011) Bioinformatics tools for
cancer metabolomics. Metabolomics : Official J. Metabolomic Soc. 7,
329–343

103. Beckonert, O., Keun, H. C., Ebbels, T. M., Bundy, J., Holmes, E., Lindon,
J. C., and Nicholson, J. K. (2007) Metabolic profiling, metabolomic and
metabonomic procedures for NMR spectroscopy of urine, plasma, se-
rum and tissue extracts. Nat. Protocols 2, 2692–2703

104. Bertram, H. C., Eggers, N., and Eller, N. (2009) Potential of human saliva
for nuclear magnetic resonance-based metabolomics and for health-
related biomarker identification. Anal. Chem. 81, 9188–9193

105. Smolinska, A., Blanchet, L., Buydens, L. M., and Wijmenga, S. S. (2012)

Omics Profiling in Precision Oncology

Molecular & Cellular Proteomics 15.8 2535



NMR and pattern recognition methods in metabolomics: from data
acquisition to biomarker discovery: a review. Anal. Chim. Acta 750,
82–97

106. Wishart, D. S., Jewison, T., Guo, A. C., Wilson, M., Knox, C., Liu, Y.,
Djoumbou, Y., Mandal, R., Aziat, F., Dong, E., Bouatra, S., Sinelnikov,
I., Arndt, D., Xia, J., Liu, P., Yallou, F., Bjorndahl, T., Perez-Pineiro, R.,
Eisner, R., Allen, F., Neveu, V., Greiner, R., and Scalbert, A. (2013)
HMDB 3.0–The Human Metabolome Database in 2013. Nucleic Acids
Res. 41, D801–807

107. Labuschagne, C. F., van den Broek, N. J., Mackay, G. M., Vousden, K. H.,
and Maddocks, O. D. (2014) Serine, but not glycine, supports one-
carbon metabolism and proliferation of cancer cells. Cell Reports 7,
1248–1258

108. Lv, W., and Yang, T. (2012) Identification of possible biomarkers for breast
cancer from free fatty acid profiles determined by GC-MS and multi-
variate statistical analysis. Clin. Biochem. 45, 127–133

109. Gao, J., Aksoy, B. A., Dogrusoz, U., Dresdner, G., Gross, B., Sumer, S. O.,
Sun, Y., Jacobsen, A., Sinha, R., Larsson, E., Cerami, E., Sander, C.,
and Schultz, N. (2013) Integrative analysis of complex cancer genomics
and clinical profiles using the cBioPortal. Science signaling 6, pl1

110. Nibbe, R. K., Koyuturk, M., and Chance, M. R. (2010) An integrative -omics
approach to identify functional sub-networks in human colorectal can-
cer. PLoS Computational Biol. 6, e1000639

111. Ciriello, G., Miller, M. L., Aksoy, B. A., Senbabaoglu, Y., Schultz, N., and
Sander, C. (2013) Emerging landscape of oncogenic signatures across
human cancers. Nat. Genetics 45, 1127–1133

112. Kristensen, V. N., Lingjaerde, O. C., Russnes, H. G., Vollan, H. K., Frigessi,
A., and Borresen-Dale, A. L. (2014) Principles and methods of integra-
tive genomic analyses in cancer. Nature Revi. Cancer 14, 299–313

113. Dawson, S. J., Rueda, O. M., Aparicio, S., and Caldas, C. (2013) A new
genome-driven integrated classification of breast cancer and its impli-
cations. EMBO J. 32, 617–628

114. Palucka, K., and Banchereau, J. (2012) Cancer immunotherapy via den-
dritic cells. Nature Rev. Cancer 12, 265–277

115. Schumacher, T. N., and Schreiber, R. D. (2015) Neoantigens in cancer
immunotherapy. Science 348, 69–74

116. Mellman, I., Coukos, G., and Dranoff, G. (2011) Cancer immunotherapy
comes of age. Nature 480, 480–489

117. Disis, M. L. (2011) Immunologic biomarkers as correlates of clinical re-
sponse to cancer immunotherapy. Cancer Immunol., Immunotherapy
60, 433–442

118. Pao, W., and Hutchinson, K. E. (2012) Chipping away at the lung cancer
genome. Nature Med. 18, 349–351

119. Bedard, P. L., Hansen, A. R., Ratain, M. J., and Siu, L. L. (2013) Tumour
heterogeneity in the clinic. Nature 501, 355–364

120. Merlo, L. M., Pepper, J. W., Reid, B. J., and Maley, C. C. (2006) Cancer as
an evolutionary and ecological process. Nature Rev. Cancer 6, 924–935

121. Gerlinger, M., Horswell, S., Larkin, J., Rowan, A. J., Salm, M. P., Varela, I.,
Fisher, R., McGranahan, N., Matthews, N., Santos, C. R., Martinez, P.,
Phillimore, B., Begum, S., Rabinowitz, A., Spencer-Dene, B., Gulati, S.,
Bates, P. A., Stamp, G., Pickering, L., Gore, M., Nicol, D. L., Hazell, S.,
Futreal, P. A., Stewart, A., and Swanton, C. (2014) Genomic architecture
and evolution of clear cell renal cell carcinomas defined by multiregion
sequencing. Nature Genetics 46, 225–233

122. Marusyk, A., and Polyak, K. (2010) Tumor heterogeneity: causes and
consequences. Biochim. Biophys. Acta 1805, 105–117

123. Kim, C., and Paik, S. (2010) Gene-expression-based prognostic assays for
breast cancer. Nature reviews. Clinical Oncol. 7, 340–347

124. La Thangue, N. B., and Kerr, D. J. (2011) Predictive biomarkers: a para-
digm shift towards personalized cancer medicine. Nature reviews. Clin.
Oncol. 8, 587–596

125. Chao, T. C., Hansmeier, N., and Halden, R. U. (2010) Towards proteome
standards: the use of absolute quantitation in high-throughput bio-
marker discovery. J. Proteomics 73, 1641–1646

126. Moch, H., Blank, P. R., Dietel, M., Elmberger, G., Kerr, K. M., Palacios, J.,
Penault-Llorca, F., Rossi, G., and Szucs, T. D. (2012) Personalized
cancer medicine and the future of pathology. Virchows Archiv 460, 3–8

Omics Profiling in Precision Oncology

2536 Molecular & Cellular Proteomics 15.8


