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Comprehensive characterization of signaling in pancreatic
ductal adenocarcinoma (PDAC) promises to enhance our
understanding of the molecular aberrations driving this dev-
astating disease, and may identify novel therapeutic targets
as well as biomarkers that enable stratification of patients
for optimal therapy. Here, we use immunoaffinity-coupled
high-resolution mass spectrometry to characterize global
tyrosine phosphorylation patterns across two large panels
of human PDAC cell lines: the ATCC series (19 cell lines) and
TKCC series (17 cell lines). This resulted in the identification
and quantification of over 1800 class 1 tyrosine phospho-

rylation sites and the consistent segregation of both PDAC
cell line series into three subtypes with distinct tyrosine
phosphorylation profiles. Subtype-selective signaling net-
works were characterized by identification of subtype-en-
riched phosphosites together with pathway and network
analyses. This revealed that the three subtypes character-
istic of the ATCC series were associated with perturbations
in signaling networks associated with cell-cell adhesion
and epithelial-mesenchyme transition, mRNA metabolism,
and receptor tyrosine kinase (RTK) signaling, respectively.
Specifically, the third subtype exhibited enhanced tyrosine
phosphorylation of multiple RTKs including the EGFR,
ERBB3 and MET. Interestingly, a similar RTK-enriched sub-
type was identified in the TKCC series, and ‘classifier’ sites
for each series identified using Random Forest models
were able to predict the subtypes of the alternate series
with high accuracy, highlighting the conservation of the
three subtypes across the two series. Finally, RTK-enriched
cell lines from both series exhibited enhanced sensitivity to
the small molecule EGFR inhibitor erlotinib, indicating that
their phosphosignature may provide a predictive bio-
marker for response to this targeted therapy. These
studies highlight how resolution of subtype-selective
signaling networks can provide a novel taxonomy for
particular cancers, and provide insights into PDAC biol-
ogy that can be exploited for improved patient
management. Molecular & Cellular Proteomics 15:
10.1074/mcp.M116.058313, 2671–2685, 2016.

Pancreatic ductal adenocarcinoma (PDAC)1 remains one of
the most deadly solid cancers, characterized by extremely
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poor survival rates and limited therapeutic options (1). Post-
operative treatment of patients is largely limited to chemo-
therapeutics, such as gemcitabine, nab-paclitaxel or Folfiri-
nox, although the addition of the EGFR-directed kinase
inhibitor erlotinib to gemcitabine results in a modest improve-
ment in patient survival (2). In addition, patient stratification for
therapy remains in its infancy. These factors highlight an
urgent need to better understand the molecular mechanisms
that contribute to PDAC development, progression and
heterogeneity.

Over the last two decades, a deeper understanding of the
genetic and molecular basis of cancer has led to the devel-
opment of targeted therapeutics and personalized treatment
strategies that combine such approaches with companion
biomarkers. This paradigm has yet to be successfully applied
to PDAC, which likely explains its poor overall response to
adjuvant therapy. Although almost all PDACs harbor activat-
ing mutations in KRAS, and inactivating mutations in TP53,
SMAD4 and CDKN2A occur at a frequency of � 30% (3, 4),
mutations in these genes are not associated with clinically
‘actionable’ phenotypes. Evidence for the existence of differ-
ent molecular phenotypes of PDAC has been found through
exploration of the genomic landscape of this disease. Exome
sequencing identified an unsuspected role for axon guidance
pathway genes in �20% of PDAC patients (3), whereas whole
genome sequencing of PDAC specimens provided the basis
for classification into four subtypes based upon patterns of
genomic structural variation (4). In the latter study, a subtype
of patients characterized by unstable genomes and/or a
BRCA mutational signature was demonstrated to have in-
creased sensitivity to platinum-based therapy. In addition,
transcript profiling subclassifies PDAC into subtypes exhibit-
ing contrasting histopathogical characteristics, mutation pat-
terns and patient outcome (5) as well as differential sensitivity
to erlotinib and gemcitabine (6), and a gene expression sig-
nature corresponding to the EGFR pathway correlates with
erlotinib responsiveness in primary PDAC xenografts (7).
These genomic and transcriptomic studies strongly suggest
that a greater understanding of the phenotypic heterogeneity
of PDAC may lead to improved patient stratification for
therapy.

A variety of proteomics approaches have been applied in
the search for diagnostic or prognostic biomarkers for PDAC,
although this work has yet to achieve clinical impact (8). In a
recent study, proteomic and phosphoproteomic interrogation
of PDAC versus normal tissue via a LC-MS/MS workflow
identified several protein kinases exhibiting increased expres-
sion in tumor tissue, including HIPK1 and MLCK (9). This
suggests that a comprehensive survey of deregulated signal-
ing in PDAC might represent a fruitful strategy for identifica-
tion of therapeutic targets and disease subclassification. Fur-
thermore, it is well-established that tyrosine kinase signaling
pathways can be deregulated at several different levels in
PDAC. In addition to the near-universal presence of activating

KRAS mutations (3), these include: overexpression of partic-
ular RTKs, including EGFR, ERBB3 and AXL (10–13); in-
creased activation of nonreceptor tyrosine kinases, such as
Src (14); and enhanced activation of the phosphatidylinositol
3-kinase (PI3K) pathway because of AKT2 amplification (15)
or PTEN loss (16). However, to date, interrogation of tyrosine
kinase signaling in PDAC has been limited to candidate-based
studies, and an unbiased, global survey of tyrosine phosphor-
ylation patterns in this malignancy has yet to be reported. In
the current study, we have addressed this knowledge gap by
undertaking global MS-based phosphotyrosine profiling (17,
18) across two large, independent PDAC cell line cohorts,
revealing novel PDAC subgroups characterized by contrast-
ing tyrosine phosphorylation patterns, signaling networks,
and sensitivity to erlotinib. This new molecular taxonomy for
PDAC provides important insights into disease mechanisms
and highlights potential biomarkers to help guide patient
stratification for therapy.

EXPERIMENTAL PROCEDURES

Cell Culture—Two cohorts of pancreatic cancer cell lines were
used. Cohort 1 cell lines (termed the ATCC Cohort) were purchased
from and authenticated by the American Type Culture Collection
(ATCC) (AsPC-1, BxPC-3, CFPAC-1, Capan-1, Capan-2, HPAC,
HPAF-II, Hs700T, Hs766T, Panc 02.03, Panc 03.27, Panc 04.03,
Panc05.04, Panc 08.13, Panc 10.05, Panc-1, PL45, MiaPaca-2,
SU.86.86, SW1990) and were used and cultured according to ATCC
protocols. Cohort 2 cell lines (termed the TKCC Cohort) were isolated
from primary patient-derived pancreatic ductal adenocarcinoma xe-
nografts in house (TKCC 2.1, TKCC 04, TKCC 05, TKCC 06, TKCC 07,
TKCC 09, TKCC 10, TKCC 12, TKCC 14, TKCC 15, TKCC 16, TKCC
17, TKCC 18, TKCC 19, TKCC 22, TKCC 26, TKCC 27) (4). Animal
experimentation for cell line generation was approved by the Garvan
Institute/St Vincent’s Hospital Animal Ethics Committee (approval
number: ARA 12/21). Culture conditions used are summarized in
supplemental Table S1.

Phosphoproteomic Profiling—
Generation of Protein Lysates—Cells were plated, allowed to reach

�70% confluence, and placed into base culture medium, without the
addition of serum or additional growth factors, for 6 h prior to lysate
collection. This was undertaken in order to minimize differences in
signaling because of culture conditions and enable comparison of the
inherent signaling network properties of the different cell lines. For
each cell line, two independent biological replicates of �2 � 108 cells
were generated. ATCC cells were homogenized in 8 M Urea lysis
buffer containing 20 mM HEPES (pH 8), 2.5 mM sodium pyrophos-
phate, 1 mM �-glycerol phosphate, 1 mM sodium orthovanadate and
the reducing agent 1 mM tris (2-carboxyethyl) phosphine (TCEP). The
procedure for TKCC cells was similar except the lysis buffer was
based on 6 M Guanidine hydrochloride containing 50 mM Tris-HCL
(pH 8). Samples were sonicated on ice, cleared by centrifugation, then
alkylated for 45 min with 4 mM iodoacetamide (in the dark) at room
temperature (RT). These lysates were subsequently used to conduct
pTyr profiling, as well as Western blotting.

Preparation of Lysates for Mass Spectrometry Analysis—20 mg
(TKCC panel) or 30 mg (ATCC panel) of cell line lysate was diluted to
1 mM guanidine hydrochloride or urea respectively with 50 mM am-
monium bicarbonate, and digested at 1:200 (w/w) with Lysyl Endo-
peptidase (WAKO Chemicals, Cape Charles, VA, USA) for 4 h (RT) and
then at 1:100 (w/w) overnight (RT) with TPCK treated trypsin (Wor-
thington, Lakewood, NJ, USA, ratio of 1:100). Two “spike-in” heavy
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peptides with alanine (al) C13N15 modifications were added prior to
tC-18 clean-up (Waters, Milford, MA, USA). These peptides were
EF1A1 (EHA(al)LLApYTLGVK) (500 fM) and MAPK14 (HTDDEMTG-
pYVA(al)TR) (50 pM) (Mimotopes, Nottinghill, Vic, Aus).

Phosphopeptide Immunoprecipitation—Purified peptides were ly-
ophilized overnight and dissolved in immunoaffinity purification (IAP)
buffer (50 mM MOPS (pH 7.4) with 10 mM sodium phosphate dibasic,
130 mM sodium chloride and either 0.5% (v/v) Nonidet P-40 (ATCC
panel) or 1% (v/v) n-octyl-b-D-glucopyranoside (TKCC panel)). For the
ATCC panel, Sepharose 4B beads pre-conjugated to 100 �g of
PY100 antibody (Cell Signaling Technology, Danvers, MA, USA) were
then added. Peptides were incubated with antibody overnight at 4 °C
on a rotating apparatus. For the TKCC panel, the flowthrough from
the PY100 IP was collected and immunoprecipitated again with 150
�g of Purified Mouse Anti-Phosphotyrosine (pY20) antibody (BD
Transduction Labs, San Jose, CA, USA). Peptides exhibiting nonspe-
cific binding were removed by three washes with IAP buffer and three
washes with dH2O. Bound peptides were eluted with 0.15% (v/v)
trifluoroacetic acid (TFA) in 40% (v/v) acetonitrile.

LC-MS/MS, Identification and Quantification—For MS analyses,
dissolved peptides were separated by nano-LC using an Ultimate
3000 HPLC and autosampler system (Thermo Scientific, Waltham,
MA, USA), and mass spectra were acquired on Q Exactive Plus for the
TKCC Cohort samples or Orbitrap Velos for the ATCC Cohort sam-
ples. Samples were desalted by loading onto a C18 pre-column (100
�m, 2 cm column; particle size 5 �m; pore size 100 Å; Acclaim
PepMap RSLC, Thermo Scientific), and separated on a 12 cm 75 �M

ID analytical column pulled to an internal diameter of 5 �M by a
P-2000 laser puller (Sutter Instruments Co, Novato, CA, USA) packed
with C18 Magic reverse phase material, using a Dionex Ultimate 3000
LC system. For the Q Exactive, peptides were eluted at 250 nL/min
using a gradient of acetonitrile in 0.1% (v/v) aqueous formic acid as
follows: 2–10% in 1 min, 10–26% in 27 min, 26–34% in 2 min, and
34–80% in 5 min. The eluent was directed into a nano-electrospray
ion source (Nanospray Flex, Thermo Scientific) with a spray voltage of
1.7 kV. Survey scans in the mass range of 375–1600 m/z were
acquired with a resolution of 70,000 at m/z 200 and an AGC target of
3e6 ions (max IIT 120 ms). The top 12 most intense ions (ion selection
threshold � 1000 ions, charge state 2–5, preferred peptide match,
exclude isotopes) were sequentially isolated (isolation window 1.8
m/z) at a target of 1e5 ions (max IIT 100 ms), and fragmented in the
HCD cell (normalized collision energy 27). MS/MS spectra were ac-
quired in the Orbitrap mass analyzer at a resolution of 17,500 at m/z
200 and ions were excluded from selection for a further 15 s. For the
Orbitrap Velos, peptides were electrosprayed directly into the MS
using a spray voltage of 1.8 kV, survey scans in the mass range of
350–1750 m/z were acquired with a resolution of 60,000 at m/z 400
and an AGC target of 1e6 ions. The top 10 most intense ions (ion
selection threshold � 500 ions, charge state �2) were sequentially
isolated (isolation window 2.5 m/z) at a target of 1e5 ions and frag-
mented in the linear ion trap (normalized collision energy 30), and ions
were excluded from selection for a further 30 s.

MS Data Analysis—The mass spectrometry proteomics data
have been deposited in the ProteomeXchange Consortium (19) via
the PRIDE partner repository with the data set identifier PXD003198
�http://www.ebi.ac.uk/pride/archive/login Username: reviewer
72200@ebi.ac.uk, Password: Mta7c1N4�. Raw MS data were ana-
lyzed using MaxQuant software version 1.1.1.25 (20). Database
searching was performed using the Andromeda search engine inte-
grated into the MaxQuant environment against the human UniProt
database release 2010_10 (35,073 entries), concatenated with known
contaminants as well as the reversed sequences of all entries (21).
Protein, peptide, and site FDRs were controlled at a maximum of 1%,
individualized precursor mass tolerances were applied as described

(20), fragment mass tolerance was 20 ppm (default). The MaxQuant
search included the fixed modification of cysteine carbamidomethyl
and methionine oxidation, acetyl (Protein N-term) and phosphoryla-
tion (STY), and was limited to a maximum of 2 missed cleavages. For
completeness, label-free data underwent a post MaxQuant process-
ing step to extract all MS quantitated peaks from MaxQuant results
files independent of MS/MS identification. All data were analyzed as
log2 values.

Normalization and Imputation of Label-free Data with “Spike-in”
Standard Heavy Peptides—The label-free intensity values for the
EEF1A1 and MK14 heavy peptides in each cell line were averaged
and a subsequent normalization factor generated. Label-free MS
intensity values for each pTyr site quantified in the data set were
divided by the appropriate normalization factor. Imputation of missing
values, which is necessary prior to more advanced bioinformatic
analyses, was performed using K-Nearest Neighbor (22) on normally
distributed data.

Bioinformatics and Statistical Analysis—Data analyses were per-
formed using Microsoft Office Excel, R statistical programming lan-
guage (Bioconductor packages) and the bioinformatics platform Per-
seus (Max Planck Institute of Biochemistry) version 1.2.0.19.

Stepwise Hierarchical Clustering and Classifier List Prediction—A
stepwise approach was developed to identify stable clustering topol-
ogy. Firstly, hierarchical clustering was performed multiple times with
an incremental inclusion of phosphorylation sites (ordered by variance
across cell lines) each time. It started from using the top 10 most
variable and continued until the top 412 variable phosphorylation
sites were included for ATCC data set and the top 433 sites for TKCC.
The sites were included on the basis of each phosphorylation site
having greater variance than the average variance of all sites. By
comparison of individual stepwise clustering results, the most fre-
quent clustering topology was then identified. The random forest
classifier (19) for subtypes of each cell line cohort was built respec-
tively with a two-step approach by the R package randomForest
4.6–10. In the first step, a classifier was built based on the pTyr sites
that were used in the stepwise clustering analysis. In the second step,
only the most predictive pTyr sites with a mean decrease accuracy
greater than 1.5 in the first classifier were selected, and used to build
a refined classifier.

Subtype-Specific Site Identification, Pathway Enrichment and Pro-
tein-Protein Interaction Network Analyses—To identify subtype-spe-
cific sites, a multiple-sample ANOVA test was performed with multiple
test correction. This identifies pTyr sites that have statistically signif-
icant (p � 0.05) specificity to one of the subtypes. This was followed
by pairwise t-tests (p � 0.05) to identify subtype-specific high and
subtype-specific low pY sites, representing those sites showing high
and low relative tyrosine phosphorylation in a subtype-specific man-
ner. KOBAS was used to perform pathway enrichment analysis (23).
The hypergeometric test was selected to test statistical enrichment of
KEGG and Reactome pathways, and the p values were corrected for
multiple comparisons. The protein-protein interactions among pro-
teins of interest were retrieved from the Protein Interaction Network
Analysis (PINA) platform (24), and kinase-substrate relationships were
downloaded from the PhosphoSitePlus database. The networks were
generated and visualized using PINA4MS, a Cytoscape plugin for
PINA.

Cell Viability Assay—Cell viability was assayed in biological tripli-
cate (n � 3) directly using a CellTiter-Glo Luminescent Cell Viability
Assay (Promega, Madison, WI, USA). Cells were plated in full medium
into a 96-well plate at 1.5 � 103 cells/well. Erlotinib (Symansis,
Timaru, NZ), or vehicle (DMSO) were added the next day (Day 0) and
the assay was undertaken at Day 5. All drugs were dissolved in DMSO
and control cells received vehicle only. Significance was assessed by
one-way ANOVA across treatments (p � 0.05 considered as signifi-
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cant). Dose-response relationships were analyzed with GraphPad
Prism.

Antibodies and Western Blot Analysis—Immunoblotting and den-
sitometry analyses were performed in biological duplicate (n � 2) as
previously described (17). Protein extracts were separated using
4–12% Bis-Tris precast gels (Invitrogen, Carlsbad, CA, USA) and
were processed according to the manufacturer’s protocol. Primary
antibodies used in this study were pY1189 ErbB3, ErbB3, pY1148-
EGFR, pY1173-EGFR, pY1192-EGFR, Met (Cell Signaling Technol-
ogy); EGFR, pY1234-MET, hnRNPs C1/C2, U and K and RMBX
(Santa Cruz Biotechnology, Dallas, TX, USA); FAK (BD Transduction
Laboratories); beta-Actin (Sigma-Aldrich, St Louis, MO, USA) and
hnRNP A2B1, H, and R (Abcam, Cambridge, UK).

DNA Extraction and Somatic Mutation Mapping—DNA was ex-
tracted using the Qiagen Allprep Kit in accordance with the manufac-
turer’s instructions. Mutation screening of OncoCarta Panels v1.0,
v2.0 and v3.0 (Sequenom, San Diego, CA, USA) was conducted by
the manufacturer to detect and quantify mutation frequencies in the
cell line panel.

RESULTS

Determination of the PDAC Tyrosine Phosphoproteome—
Tyrosine phosphorylation profiling was undertaken across 19
PDAC cell lines sourced from the American Type Culture
Collection (ATCC) (supplemental Table S1), as well as normal
pancreatic duct epithelial (HPDE) cells and HPDE cells ex-
pressing oncogenic KRAS (25). Tryptic peptides underwent
immunoaffinity enrichment coupled with a high-resolution
mass spectrometry (HR MS using LC-MS/MS) (Fig. 1A). A
comprehensive list of 1622 pTyr sites in peptide sequences
derived from 797 nonredundant proteins were quantified (Fig.
1B) (supplemental Table S2). Based on the MaxQuant derived
phosphorylation site localization probability score, 89% of
sites (1,435) were identified as having a high confidence lo-
calization probability of � 0.75 (class 1) (Fig. 1C). MS exper-
iments were performed in duplicate with high biological rep-
licate technical reproducibility (Fig. 1D). The phosphopeptide
intensities showed a normal distribution over �6 orders of
magnitude (Fig. 1E). Approximately 50% of the phosphopro-
teins identified exhibited a gene ontology cellular compart-
ment classification localizing them at the plasma membrane
(supplemental Fig. S1A). In terms of molecular function, prom-
inent categories were protein kinase, phosphatase and recep-
tor activity, consistent with signaling functions (Supplemental
Fig. S1B). However, a novel observation was that �15% of
the proteins identified exhibited RNA binding activity (supple-
mental Fig. S1B).

Subclassification of PDAC Cell Lines Based on Tyrosine
Phosphorylation Patterns—The tyrosine phosphorylation pro-
files of the ATCC PDAC cell lines were compared using a
normalization (using standard heavy peptides) and bioinfor-
matics pipeline, the latter consisting of four major focal points
(supplemental Fig. S1C and S1D). We chose to utilize only the
most accurate 958 class I pTyr sites quantified by total ion
current (TIC) in at least 75% of cell lines (Fig. 1B), with impu-
tation of missing values based on k-nearest neighbor per-
formed on the normally distributed and normalized data prior

to further bioinformatics analysis. First, to identify whether the
tyrosine phosphoproteome can group the cell lines into re-
producible subtypes, we conducted a stepwise resampling of
the phosphorylation sites to isolate the 10 most frequent
hierarchical clustering topologies. The most frequently occur-
ring topology (Fig. 2A) was identified to occur 58% of the time.
This topology includes two broad clusters, with the second
broad cluster splitting into two subclusters containing greater
than two lines. For the purpose of downstream bioinformatic
analysis, the three main cell line clusters were defined as three
subtypes. The ATCC subtype 1 (green bar) contains lines
MiaPaca-2, Panc-1, Hs700T, Hs766T, Panc 02.03 and
SW1990. ATCC subtype 2 (pink bar) contains lines Capan-1,
Capan-2, Panc 03.27, Panc 04.03 and Panc 08.13 and ATTC
subtype 3 (blue bar) contains lines PL45, Panc 05.04, HPAC,
AsPC-1, HPAF-II, BxPC-3, CFPac-1 and SU86.86.

To determine whether somatic mutations in PDAC were
relevant to the identified subtypes, all cell lines were assessed
using the high-throughput Oncocarta mutation profiling
panels (Sequenom). Thirty-nine cancer genes with known mu-
tation profiles in cancer, totalling 495 individual somatic mu-
tations, were screened (supplemental Table S3). The predom-
inant mutations identified were located in KRAS (Gly12Cys,
Gly12Asp, Gly12Val, Gly61His) and TP53 (Arg248Trp,
Arg248Gln, Gly245Ser, Arg273His) (supplemental Fig. S2A,
supplemental Table S3). Additional mutations in CTNNB1
(Ser37Phe) (in Hs700T cells) and FBXW7 (Arg465Cys) (in
AsPc-1 cells) were also detected. These analyses also con-
firmed that BxPC-3 and Hs700T do not contain a KRAS
mutation. Because the Oncocarta panel did not screen for all
known TP53 mutations, we complemented this analysis by a
survey of the literature and appropriate databases (http://
p53.free.fr/Database/Cancer_cell_lines/Pancreatic_cancer.
html, http://p53.iarc.fr/CellLines.aspx) (supplemental Table
S3). This revealed that the majority of the ATCC cell lines
exhibit mutant TP53. Overall, there does not appear to be a
correlation between the somatic mutation profiles of the cell
lines and their allocated subtypes.

Identification of Segregation-driving Phosphosites—To
identify subtype-specific pTyr sites, an ANOVA-based ap-
proach was implemented and applied. It identified 144 pTyr
sites that had statistically significant specificity (p � 0.05) to
one of the three subtypes (Fig. 2A, supplemental Fig. S1C). All
subtype-specific phosphoproteins then underwent combined
bioinformatic analyses to identify whether particular signaling
pathways or protein-protein interaction networks were char-
acteristic of the different ATCC subtypes.

ATCC subtype 1 was characterized by hypophosphoryla-
tion of 65 pTyr sites exhibiting higher phosphorylation across
ATCC subtype 2 and 3 cell lines (Fig. 2B). When the function
of proteins harboring these sites was considered, there was a
significant enrichment for proteins involved in formation and
regulation of cell-cell adheren junctions (AJs) and tight junc-
tions (TJs) (p � 0.002 and 0.06 respectively) (Fig. 2C). Isola-
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FIG. 1. Phosphoproteomics workflow and overall results. A, The shot-gun phosphoproteomics workflow. B, Tyrosine phosphorylation
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tion of proteins characterized by the Gene Ontology Biological
Processes (GOBP) term ‘cell adhesion’ (GO:0007155) identi-
fied 12 subtype 2 and 3 specific proteins involved in this
biological process. Further interrogation and analysis at the
phosphoproteome and protein expression level indicated that
subtype 1 cells exhibited decreased E-cadherin tyrosine phos-
phorylation (Fig. 2D) and expression (supplemental Fig. S2B),
as well as reduced KRAS expression and increased levels of
vimentin (supplemental Fig. S2B). Because AJs and TJs are
structures important for maintaining epithelial cell architecture
and polarity, KRAS expression is characteristic of PDAC cells
with an epithelial phenotype (26), and E-cadherin and vimentin
expression are associated with epithelial and mesenchymal
cells respectively, these data indicate that ATCC subtype 1
PDAC cells exhibit characteristics of epithelial to mesen-
chyme transition (EMT) .

ATCC subtype 2 was found to contain 54 up-regulated
subtype-specific pTyr sites, (Fig. 3A), a far greater number
than seen in subtype 1 and 3 (1 and 7 up-regulated pTyr sites
respectively). The sites enriched in ATCC subtype 2 exhibited
a striking enrichment for proteins involved in the mRNA proc-
essing and spliceosome pathways, with corrected p values of
0.000003 and 0.000030 respectively. Mapping protein-protein
interactions among these phosphoproteins identified the
presence of interaction ‘hubs’ that centered on specific mem-
bers of these pathways (Fig. 3B). Differences in the abun-
dance of a particular phosphopeptide might reflect altered
relative phosphorylation of the corresponding protein, and/or
changes in total protein levels. Western blotting revealed that

expression of hnRNPs C, R, H, and K, as well as RBMX, was
similar across the entire panel (supplemental Fig. S2C), indi-
cating that the increased tyrosine phosphorylation of these
proteins in Subtype 2 represents enhanced relative phosphor-
ylation rather than an alteration in protein abundance. How-
ever, in the case of hnRNPA2B1, increased expression in
subtype 2 may contribute to increased yield of hnRNPA2B1-
derived phosphopeptides.

Splicing factor 3B subunit 1 (SF3B1), a splicing component
of the U2 snRNP complex, is mutated in 4–5% of PDAC
patients (3). By quantification of 2 pTyr sites on SF3B1, we
identified an ATCC subtype 2-specific pattern of elevated
SF3B1 tyrosine phosphorylation (Fig. 3C). Although the role of
these phosphorylation events are unclear at present, their
increased abundance in ATCC subtype 2 provides further
evidence that dysregulated mRNA stability or processing
characterizes this PDAC phenotypic subgroup.

RTK Expression and Activation in the ATCC Subgroups—
Given the importance of oncogenic RTK signaling in carci-
nogenesis, we determined the association between all RTKs
quantified in the ATCC data set and the identified subtypes.
We first normalized the HPDE KRAS and ATCC cell line
panel data to matched site intensities from HPDEs, which
we utilized as a ‘normal’ cell line control. We then isolated
the relative TIC for all RTK pTyr sites. This revealed that
expression of active KRAS in HPDEs results in markedly
enhanced site-selective tyrosine phosphorylation of several
RTKs, including RON, EPHA2, MET and ERBB2 (Fig. 4A). In
addition, this identified that ATCC subtype 3 shows in-
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creased pTyr abundance of key oncogenic RTKs (Fig. 4A).
Using a two-sample t test, 15 RTK pTyr sites exhibited
significantly enhanced phosphorylation in subtype 3 versus
the other subgroups. These included sites from the RTKs
EGFR, MET, RON, EPHA4, EPHB2/3/4, and DDR2. Western
blotting using phosphospecific and total antibodies against
EGFR, MET and ErbB3 confirmed these data and demon-
strated that both increased RTK expression and relative
phosphorylation contribute to the observed pattern of RTK
tyrosine phosphorylation across the panel (Fig. 4B).

Subtype Validation Using a Second Cell Line Cohort—
PDAC is a highly heterogeneous cancer (3). Therefore, it was
important to determine whether the three subtypes identified
in the ATCC cell line panel could be detected in an independ-
ent PDAC cell line panel generated by our group from patient-
derived xenograft models. Application of the phosphotyrosine
profiling methodology to this panel of 17 PDAC cell lines,
termed “The Kinghorn Cancer Centre” (TKCC) series, in bio-
logical duplicate achieved a depth of 1220 quantified pTyr
sites, 90% of which were Class 1 sites with strong biological
replicate technical reproducibility (Fig. 5A, supplemental Fig.

S3A and supplemental Table S2). In total, 1833 class 1 phos-
phosites were identified in the ATCC and TKCC data sets. A
nonredundant list of the 25 most abundant tyrosine phospho-
peptides in each PDAC cell line cohort was generated, iden-
tifying phosphosites of possible significance to PDAC patho-
genicity (supplemental Fig. S3B). Our study also identified
over 400 novel phosphorylation sites (supplemental Fig. S3C,
supplemental Table S3).

Using our bioinformatics pipeline (supplemental Fig. S1C),
stepwise unsupervised hierarchical clustering of class 1
TKCC pTyr sites was conducted. A more relaxed data fil-
tering approach was applied to this data set, to allow for the
hypothesis of 3 subtypes being present. Thus we required
greater than 1/3rd (6 of the 17) of the cell lines to be
quantified for a given site. Interestingly, as with the ATCC
cohort, unsupervised hierarchical clustering of the TKCC
cohort also revealed 3 subgroups including 2 broad clus-
ters, one of which contained 2 subclusters (Fig. 5B). We
therefore defined the TKCC cell line cohort subtypes as
follows; TKCC subtype 1 (purple bar) with cell lines TKCC
14, 26, 19, 16, 09, 10, and 15. TKCC subtype 2 (orange bar)
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FIG. 5. Subclassification of an independent PDAC cell line cohort based on tyrosine phosphorylation patterns. A, Tyrosine phosphorylation
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shows the identified topology using the subtype specific sites identified in a supervised manner using ANOVA. C, A protein-protein interaction
network formed by TKCC subtype 3 cell lines (blue bar), with phosphoproteins (purple nodes) connected via protein-protein (blue lines) or by
kinase-substrate (green lines) relationships. Phosphoproteins enriched in this subtype for axon guidance pathways and ErbB signaling are
highlighted with blue and green shading respectively. D, LC-MS/MS quantified RTK tyrosine phosphorylation across the TKCC cell lines according
to the identified subtypes (See colored bars, subtype 1 is purple, 2 is orange and 3 is blue). Activation sites identified are highlighted by red text.

Phosphoproteomic Profiling of Pancreatic Cancer

Molecular & Cellular Proteomics 15.8 2679



contains TKCC lines 05, 27, and 22 and TKCC subtype 3
(blue bar) contains lines 06, 12, 07, 04, 18, 2.1, and 17. As
for the ATCC cohort, there was no obvious relationship
between these subtypes and the mutation status of KRAS or
TP53 (supplemental Table S3).

Next we identified subtype-specific pTyr sites present in the
TKCC cohort, identifying 383 pTyr sites using the ANOVA-
based approaches. TKCC subtypes 1 and 2 were identified to
only have down-regulated subtype-specific pTyr sites (101
and 73 sites respectively), whereas TKCC subtype 3 was
identified to only have up-regulated subtype-specific pTyr
sites (209 sites). We then utilized pathway analysis to char-
acterize these subtype-specific sites, and identified enrich-
ment for Ephrin (p � 0.04) and EGFR (p � 0.05) signaling in
TKCC subtype 3. However, unlike the ATCC cohort, no en-
richment for mRNA regulatory function was found within the 3
TKCC subtypes. Within the up-regulated subtype 3 sites we
identified a dense network of protein-protein interactions, with
strong representation from the axon guidance and EGFR sig-
naling pathways (Fig. 5C). Isolation and mapping of the rela-
tive TIC of all RTK pTyr sites within the TKCC data set iden-
tified enhanced phosphorylation of many RTKs in TKCC
subtype-3 (Fig. 5D). Tyrosine residues exhibiting enhanced
phosphorylation included activation sites on EGFR, EPHA2,

DDR1, FGFR1, INSR, MERTK, MET, and RON, indicating that
increased activity of these RTKs characterizes this subtype.

Prediction of Subtypes Using a Random Forest-derived
Signature—Next, we set out to identify, in a supervised man-
ner, phosphosites that distinguish the three subtypes present
in both the ATCC and TKCC series. We first isolated “classifier
sites” for each cohort. These are sites identified using Ran-
dom Forest (RF) models, based on having a high power to
predict the defined topological subgroups (Mean Decrease
Accuracy score of � 1.5). Testing of these sites (ATCC, 69
sites and TKCC, 78 sites) using the left-out samples during
the construction process of each RF model (out-of-bag ap-
proach) estimated that they predict the subtype topology of
the corresponding cohort without error. We then tested the
predictive power of the “classifier sites” in the alternate data
set to where they were identified. The 33 ATCC classifier sites
found in the TKCC cell lines data set could predict the TKCC
topology with an accuracy of 94%. The 59 TKCC classifier
sites quantified in the ATCC data set could predict the ATCC
topology with an accuracy of 84%. Therefore, the 33 ATCC
“classifier sites” represent the most robust signature to pre-
dict PDAC subgroups. The “classifier sites” from each cohort
were then compared to identify the “common classifier sites”
(Fig. 6A and 6B). These 8 sites predict the TKCC topology
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with an accuracy of 94%, and the ATCC topology with an
accuracy of 89%. Therefore, we have identified a signature of
8 sites with a high predictive power across two PDAC cell line
cohorts. Interestingly, this classifier does not include RTK
phosphorylation sites characteristic of the “RTK-enriched”
subgroup in the two cell line cohorts, indicating that the 3
subgroups identified in the independent cell line panels share
additional conserved features. Specifically, subtypes 1, 2 and
3 in each panel clearly exhibit low, medium and high phos-
phorylation, respectively, of BAIAP2 Y337, PKP3 Y84, PKP2
Y166, CTNND1 Y174, and CTNND1 Y904. We note that al-
though specific sites in RIPK2, TJP2 and PLEC are present in
the classifier, their subtype-selective relative tyrosine phos-
phorylation differs between the two panels. A summary of
phosphorylation sites that exhibit subtype-selective patterns
of phosphorylation that are conserved across the two differ-
ent cohorts is provided in Fig. 6C.

Sensitivity of the identified PDAC subgroups to the targeted
therapeutic, erlotinib—Given the increased expression and/or
activation of EGFR and ErbB3 in ATCC and TKCC Subtype 3
(referred to as the RTK-enriched subtypes) and the clinical
relevance of the small molecule EGFR inhibitor erlotinib in
PDAC (27), we tested selected cell lines from each cohort for
sensitivity to this EGFR kinase inhibitor. Indeed, both the
ATCC and TKCC RTK-enriched subgroups exhibited en-
hanced sensitivity to erlotinib (Fig. 7A–7C) and therefore an
increased dependence on EGFR kinase activity for cell pro-
liferation. Importantly, this was not mirrored in the sensitivity
profile of the TKCC cohort for the PDAC therapeutic gemcit-
abine (Fig. 7D), indicating a drug-selective effect. These data
indicate that a phosphosignature characteristic of the RTK-
enriched subtype could be used as a predictive biomarker for

erlotinib sensitivity, and highlight a potential clinical applica-
tion for this novel PDAC subclassification.

DISCUSSION

In this paper we interrogate, for the first time, the hetero-
geneity of PDAC at the level of protein tyrosine phosphoryla-
tion. Our study identifies �1800 tyrosine phosphorylation
sites across two large, independent PDAC cell line cohorts,
provides new insights into dysregulated pathways and pro-
cesses in PDAC, greatly extends our knowledge regarding the
suite of RTKs activated in this disease, and also enables a
novel subclassification based on tyrosine phosphorylation
profiles. In addition, it identifies a PDAC subgroup character-
ized by high-level phosphorylation of multiple RTKs that
exhibits increased sensitivity to erlotinib, providing ‘proof-
of-principle’ that this approach could be exploited for devel-
opment of predictive biomarkers.

A previous study based on gene expression profiling sub-
classified PDAC into three subtypes: classical, quasimesen-
chymal (QM), and exocrine-like, exhibiting differences in pa-
tient outcomes and therapeutic responses (6). Only the former
two subtypes could be detected among human PDAC cell
lines. In contrast, in silico microdissection of gene expression
profiles resolved only two tumor subtypes, “classical” (equiv-
alent to the namesake subtype identified by Collisson et al.)
and “basal” (28). These workers suggested that the exocrine-
like phenotype identified by Collisson et al. may reflect con-
tamination from normal tissue, and that the “mesenchymal”
component of the QM subtype might be derived from tumor
stroma (28). However, a recent subclassification based on
transcriptomics has identified four subtypes: squamous (cor-
responding to QM), aberrantly differentiated endocrine exo-
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crine (ADEX) (corresponding to exocrine), pancreatic progen-
itor (classical) and immunogenic (5). Comparing our study to
that of Collisson et al., there is not a simple relationship
between any of the three subtypes we identified and the gene
expression-defined classical or QM subtypes. For example,
although some of our ATCC subtype 1 lines group in the QM
subtype, this association is not perfect, because Panc 03–27,
a Subtype 2 line, is also categorized as QM. In addition, the
classical subtype contains examples of both subtype 2 and 3
cell lines from our study. Moreover, because all the PDAC cell
lines characterized in the Moffitt et al. study (the majority of
which are included in our ATCC panel) were assigned to a
single subtype, basal, our approach is clearly resolving sub-
types not detected by these workers. Also of note, for the
ATCC panel, the tyrosine phosphorylation-defined subtypes
do not exhibit an obvious relationship to patterns of mutation
of known cancer-associated genes, including KRAS and
TP53. Similarly, the different TKCC subtypes were not related
to KRAS and TP53 status. Consequently, tyrosine phosphor-
ylation profiling is providing a novel subclassification that is
not mirrored in those obtained via transcriptomics or consid-
eration of mutation patterns.

The identification of phosphosite classifiers enabled us to
determine that the three subgroups resolved in each cell line
cohort share distinctive characteristics in terms of tyrosine
phosphorylation patterns. For example, subtypes 1, 2, and 3
in each panel clearly exhibit low, medium and high phosphor-
ylation, respectively, of BAIAP2 Y337, PKP3 Y84, PKP2 Y166,
CTNND1 Y174, and CTNND1 Y904. Interestingly, BAIAP2
regulates cytoskeletal organization, whereas PKP3, PKP2,
and CTNND1 localize to or regulate cell-cell adhesions. The
functional role of the latter three proteins is of particular
interest given that a Sleeping Beauty mutagenesis screen for
genes associated with PDAC development demonstrated an
important role for the adherens and tight junction signaling
pathways, and implicated CTNND1 as a tumor suppressor
gene in this malignancy (29). Indeed, low expression of CT-
NND1 in a PDAC patient cohort was associated with poor
survival (29). An interesting possibility is that the differential
phosphorylation of proteins associated with cell-cell adhe-
sions reflects, at least in part, modulation of the axon guid-
ance pathway, a key regulator of cell-cell junction integrity
and signaling that is strongly implicated in PDAC (3). Support-
ing this hypothesis, the phosphorylation of MET and several
Eph receptors, which represent upstream regulators of this
pathway, is markedly elevated in subtype 3.

One pathway commonly altered in PDAC is mRNA splicing,
with mutations in splicing factors SF3B1 or RBM10 occurring
in 4–5% of patients (3, 30). Interestingly, our analysis identi-
fied an alternative mechanism for dysregulation of RNA me-
tabolism in PDAC, with markedly increased tyrosine phosphor-
ylation of SF3B1, as well as many other proteins involved in
regulation of RNA metabolism, including hnRNPC, H and K,
and RBMX, being detected in ATCC subtype 2. Because

aberrant expression of particular hnRNPs is associated with a
switch in mRNA splicing of particular oncogenes or tumor
suppressors toward pro-tumorigenic isoforms (31, 32), an
attractive hypothesis is that the enhanced tyrosine phosphor-
ylation of these regulators of RNA metabolism also positively
impacts on oncogenic signaling pathways. In support of this,
tyrosine phosphorylation of hnRNPs K and A2B1 is known to
affect either their binding to, or the translation of, target
mRNAs (33–35). The cell lines that characterize ATCC sub-
type 2 therefore present powerful models to test this hypoth-
esis, as well as potential therapeutic opportunities. With re-
gard to the latter, the splicing factors themselves could be
targeted with small molecule inhibitors such as spliceostatin A
(36). Alternative strategies include inhibition of upstream ty-
rosine kinases or downstream oncogenic pathways. How-
ever, subtype-selective phosphorylation of proteins associ-
ated with RNA metabolism was not detected in the TKCC
cohort, and the reason for this is not clear at present. A
potential explanation is the heterogeneity of PDAC, such that
cell lines with this signature are under-represented in the
TKCC cohort. Another possibility, which is not mutually ex-
clusive, is that in the corresponding TKCC subgroup, alterna-
tive mechanisms act to dysregulate mRNA processing and/or
the pathways that lie downstream.

An additional conserved feature of the molecular taxonomy
provided by our phosphotyrosine profiling was the increased
tyrosine phosphorylation of numerous RTKs, including EGFR,
ERBB2, ERBB3, MET, FGFR1, and AXL, as well as several
EphA and EphB receptors, in subtype 3 of both cell line
panels. Additional lines of evidence support important roles
for many of these receptors in PDAC pathogenesis. For ex-
ample, signaling by the EGFR is required early in PDAC de-
velopment (37), focal amplifications of MET, FGFR1, and
ERBB2 occur in PDAC genomes (4) and contrasting levels of
AXL activation can occur at different metastatic sites from the
same PDAC patient (38). In addition, high expression of
EphA7 or EphB2 is associated with poor prognosis in PDAC
(39, 40). However, our study provides the first demonstration
that a PDAC subtype exists that exhibits co-activation of
many of these RTKs. This finding has important implications
for the rational design of targeted therapies. In other cancers,
co-activation of multiple RTKs is associated with resistance to
treatment with individual TKIs, necessitating use of combina-
tion approaches using several TKIs or multikinase inhibitors
(17, 41). Consequently, although subtype 3 cell lines exhibit a
greater inhibition of proliferation upon treatment with the
EGFR TKI erlotinib than those from other subtypes, and the
subtype 3 cell lines HPAC and PL45 are sensitive to knock-
down of MET and AXL, respectively (42), it remains possible
that combined targeting of subtype 3-enriched RTKs will
achieve a greater efficacy. This possibility is supported by a
recent study demonstrating that the efficacy of MEK1 inhibi-
tion in PDAC is limited by compensatory signaling by multiple
RTKs to the PI3K pathway, and that drug resistance can be
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overcome by combined targeting of EGFR, ERBB2, PDGFRA,
and AXL (12). Importantly, the detailed information provided
by our study will assist the design of therapeutic approaches
directed at effective RTK blockade, and also fuel further stud-
ies that characterize crosstalk between particular RTKs in
PDAC.

In the clinical trial that demonstrated the efficacy of erlotinib
and gemcitabine co-treatment in PDAC, improved response
to erlotinib was not associated with EGFR expression levels
(27). This is consistent with our data indicating that EGFR
levels are not consistently higher in subtype 3 cell lines, versus
those from the other subgroups. Instead, it appears to be the
tyrosine phosphorylation pattern associated with subtype 3,
rather than EGFR expression, that is associated with in-
creased sensitivity to this drug. Of note, although loss of p53
function is associated with a decreased dependence on the
EGFR in PDAC (43), the increased sensitivity of ATCC and
TKCC subtype 3 (the RTK subtypes) to erlotinib cannot be
explained by TP53 mutational status. In addition, it is unre-
lated to K-Ras ‘addiction’ (26), because two out of three
K-Ras-addicted cell lines in the ATCC cohort (Panc-08–13
and Capan-1) fall outside of the erlotinib-sensitive subtype.
One component of the erlotinib sensitivity “signature” could
be ERBB3 phosphorylation, because expression of this re-
ceptor is positively correlated with the erlotinib response of
PDAC cell lines (44, 45). Although our study was directed
toward identification of novel PDAC phenotypic subgroups
and phosphorylation-based classifiers for these, rather than
drug response signatures, our findings suggest that phospho-
signatures of response to targeted therapies in PDAC could
be formally derived and applied to patient stratification for
therapy. This could be implemented via use of RPPAs or
targeted MS approaches. Ultimately this could lead to im-
proved management of patients suffering from this devastat-
ing disease.
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