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The principle of shotgun proteomics is to use peptide
mass spectra in order to identify corresponding se-
quences in a protein database. The quality of peptide and
protein identification and quantification critically depends
on the sensitivity and specificity of this assignment proc-
ess. Many peptides in proteomic samples carry biochem-
ical modifications, and a large fraction of unassigned
spectra arise from modified peptides. Spectra derived
from modified peptides can erroneously be assigned to
wrong amino acid sequences. However, the impact of this
problem on proteomic data has not yet been investigated
systematically. Here we use combinations of different da-
tabase searches to show that modified peptides can be
responsible for 20–50% of false positive identifications in
deep proteomic data sets. These false positive hits are
particularly problematic as they have significantly higher
scores and higher intensities than other false positive
matches. Furthermore, these wrong peptide assignments
lead to hundreds of false protein identifications and sys-
tematic biases in protein quantification. We devise a
“cleaned search” strategy to address this problem and
show that this considerably improves the sensitivity and
specificity of proteomic data. In summary, we show that
modified peptides cause systematic errors in peptide and
protein identification and quantification and should there-
fore be considered to further improve the quality of pro-
teomic data annotation. Molecular & Cellular Proteomics
15: 10.1074/mcp.M115.055103, 2791–2801, 2016.

Mass spectrometry has matured to a level where it is able to
assess the complexity of the human proteome (1). The typical
workflow of a shotgun proteomic experiment involves diges-
tion of proteins into peptides. The resulting peptide mixtures
are then analyzed by tandem mass spectrometry in order to
obtain the mass of the peptide and the fragmentation pattern.
Algorithms such as Mascot (2), Andromeda (3) or Sequest (4)

then identify peptides by matching these data to protein da-
tabases. Although these algorithms are routinely used in hun-
dreds of proteomic studies, minimizing false-positive and
false-negative identifications during the database search re-
mains an important challenge. Recently, deep proteomic
studies identified �10,000 proteins in mammalian cell lines (5,
6), and large scale studies across several tissues identified
more than 80% of the expected human proteome (7, 8). This
is a major achievement and provides a valuable resource for
the community. However, the extent of false protein identifi-
cations in these data sets is under debate (9, 10) and subject
to ongoing research and refinement (11).

Peptide sequence assignments can lead to false-positive
identifications from at least three different sources: (1) low-
quality spectra (12), (2) imperfect data processing algorithms
(e.g. errors in charge state determination (13), monoisotopic
peak identification etc.), or (3) the use of incomplete database
search space (13, 14). In the latter case, the correct match is
not contained in the search space, for example because of
incomplete protein annotation or the occurrence of unex-
pected biochemical modifications. Because spectra cannot
be matched to the correct sequence, they can be erroneously
assigned to a different peptide in the database.

The identification of peptides with modifications is particu-
larly challenging: On the one hand, allowing for multiple pos-
sible modifications in a standard database search leads to a
combinatorial expansion that dramatically increases the
search space (15). On the other hand, when a specific mod-
ification is not considered, peptides carrying this modification
cannot be correctly identified. Modifications can be intro-
duced in vivo (e.g. phosphorylation, ubiquitination), in vitro
during sample preparation (e.g. carbamidomethylation, car-
bamylation) or both (e.g. deamidation, acetylation, methyla-
tion). It is estimated that every unmodified peptide is accom-
panied by �10 modified versions that are typically less
abundant (16). Therefore, deeper and deeper coverage of the
proteome is expected to lead to more and more spectra
derived from modified peptides. This makes modified pep-
tides a particularly vexing problem in deep proteomic studies.
For example, a recent article reported that at least one third of
all unassigned spectra represent modified peptides (17).
Hence, modified peptides are a systematic source of false-
negative identifications (i.e. type II errors). The global impact
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of modified peptides on false-positive identifications (i.e. type
I errors) in deep proteomic data sets has not yet been
assessed.

Here, we used a combination of different database search
strategies to systematically investigate this problem. We find
that about half of false positive hits can be because of mod-
ified peptides. These misidentifications give rise to erroneous
protein identification and quantification. Eliminating these
false positive hits substantially improves the quality of data
annotation. In summary, we identify modified peptides as a
systematic source of biases in protein identification and quan-
tification in deep proteomic data sets and outline a strategy to
minimize type I errors caused by modified peptides.

EXPERIMENTAL PROCEDURES

MaxQuant Output—
The Following Output Files Were Used from MaxQuant (18) Soft-

ware Version 1.5.2.8—evidence.txt - This file contains all information
on the identified peptides, including peptide sequence, protein ID,
modification status, search score, m/z, mass-error, charge, etc. A
unique identifier is given that links each peptide spectrum match
(PSM)1 to other files.

apl-files - These files correspond to the mgf peaklist format (mas-
cot generic format) and list features for each MS/MS scan, including
precursor m/z, precursor charge state, fragment m/z and correspond-
ing intensities. Apl-files contain all information necessary for the An-
dromeda search engine to process the scan. Apl-files are written by
MaxQuant after precursor mass calibration.

msms.txt - This file contains additional information on identified
fragment matches from MS/MS spectra, including e.g. fragment in-
tensities, mass deviations, etc.

allPeptides.txt - This file contains information on features, including
identified and non-identified peptides. Additional peptide identifica-
tions from the dependent peptides search (implementation of Modi-
fiComb (19) for MaxQuant software) are reported in this file.

Sample Collection and Preparation—The proteomic data for HeLa
was published previously (5) and downloaded from proteomicsDB.
The proteomic data for HEK293 was published previously (20) and
generated as described. Briefly, cells were grown in Dulbecco’s Mod-
ified Eagle Medium (Life Technologies, California, USA). Lysis was
performed in 50 mM ammonium bicarbonate buffer (pH 8.0) contain-
ing 2% SDS and 0.1 M DTT. Sulfhydryl groups were alkylated by
adding iodoacetamide to a final concentration of 0.25 M and incuba-
tion for 20 min. Proteins were precipitated according to Wessel and
Fluegge (21), resuspended in 6 M urea/2 M thiourea/10 mM HEPES
and digested into peptides using Lys-C (3 h) and Trypsin (overnight,
diluted 4� with 50 mM ABC). Peptides were then acidified, desalted
and subjected to isoelectric focusing (IEF) for fractionation.

LC-MS/MS and Data Analysis—Peptides from proteomic samples
were desalted using stage tip purification and subsequently analyzed
by online liquid-chromatography tandem mass-spectrometry on a
Q-Exactive (ThermoFisher, Massachusetts, USA) instrument using
nano-electrospray ionization. Resolution was set to 70,000 and
17,500 for full and fragments scans respectively. Data was acquired

with “fast” settings as described (22). The proteomic raw data for
HEK293 has been uploaded to the Pride archive and is accessible
under the project identifier “PXD002389.”

The synthetic peptides IESSIQSLQDLSK (Grid2), IESLSSQLSN-
LQK (Lmnb1), and IESLSSQLSNLEK were ordered from Biosyntan
GmbH (Berlin, Germany), suspended in Buffer containing 5% aceto-
nitrile and 0.1% formic acid and then analyzed by LC-MS/MS as
described above.

Peptides from proteomic samples were identified from MS/MS
spectra by searching against the recent Uniprot human database
(2014–10, 88,840 protein sequences) using MaxQuant version
1.5.2.8. For the standard search carbamidomethyl (Cys) was set as
fixed, oxidation (Met) and acetylation (protein N-term) as variable
modifications for both data sets investigated.

Unknown modifications were identified by the “dependent pep-
tides” setting implemented in MaxQuant version 1.5.2.8 in a standard
search. The implemented algorithm performs spectrum matching to
identify modified peptides in an unbiased manner (19). If an uniden-
tified spectrum matches an identified spectrum the mass shift (cor-
responding to the modification of the peptide) of the theoretical and
observed precursor mass and the matched sequence will be re-
ported. Modified peptides will be only identified if they are derived
from an already identified unmodified peptide (see also Results
section).

Modified peptides were extracted from allPeptides.txt along with
the �M mass shift between base and dependent peptides. Abundant
modifications based on these results from the ModifiComb algorithm
were selected for further consideration (� deamidation, carbamyla-
tion and methylation for the HEK293 data set; � deamidation, loss of
ammonia, dehydration and oxidation for the HeLa data set). To iden-
tify amino acid preferences for these modifications, modified peptide
sequences along with amino acid preferences for the above men-
tioned modifications were extracted from allPeptides.txt. Site speci-
ficities were estimated by counting the modified residues for each
predicted modified amino acid. In cases, when the ModifiComb al-
gorithm identified multiple amino acids as potential modification sites,
the count was divided by the number of different amino acids re-
ported. Finally, modifications on amino acids that are chemically
impossible (as i.e. modifications on inert side-chains) or on chemically
disfavored amino acids were excluded.

According to this, raw-files from the HEK293 data set were ana-
lyzed with one of the following selected variable modifications (site
specificities and approximated global search space increase relative
to the standard search): deamidation (Asn, Gln anywhere - 7.2),
methylation (Lys, Glu, Asp anywhere - 44.7), and carbamylation (any
N terminus - 2.0). The combined search for the HEK293 data set
included all variable modifications mentioned above (236.2). For the
control search an arbitrary, but according to the ModifiComb estima-
tion non-existent, mass-shift of �11.01 was allowed to occur on Asn
and Gln residues. Raw files from Nagaraj et al. were searched sepa-
rately with one of the following variable modifications: deamidation
(Gln, Asn - 7.2), dehydration (Glu, Asp anywhere; any n-terminus -
36.2), ammonia loss (Gln anywhere; any N terminus - 6.5) and oxida-
tion (Trp, Tyr anywhere - 2.4). The search space increase was esti-
mated empirically on an in silico tryptic digest by considering a
maximum of two missed cleavages and up to five modified sites per
peptide (the constraint used by MaxQuant). Computational time was
read out from MQ-file runningTimes.txt. All MQ runs were performed
on an Intel Xeon CPU X5560 with 2.8 Ghz and 64 GB memory using
24 threads. The following settings were used for all searches: A
maximum of two missed cleavages was allowed. Enzyme specificity
was set to Trypsin/P, meaning that cleavage is allowed to occur
between lysine or arginine and proline. PSM and protein FDR was set
to 1. Minimal peptide length was set to 7 amino acids and the main

1 The abbreviations used are: PSM(s), peptide spectrum match(es);
A, ammonia loss; C, carbamylation; D, deamidation; FDR, false dis-
covery rate; H, dehydration; HEK293, human embryonic kidney 293
cells; iBAQ, intensity based absolute quantification; M, methylation;
O, oxidation; PEP, posterior error probability; RGB, red, green and
blue color model.
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search peptide tolerance was set to 4.5 ppm. Second peptide option
was set to off. Modified peptide identifications with an Andromeda
search score greater than 40 and a delta score (that gives the score
difference between the best and second best matching candidate for
a MS/MS scan, as is MQ standard settings) greater than 6 were
allowed. All searches for a given data set were based on one set of
Andromeda peak list files (apl-files).

Data Processing and Statistical Rational—
Identification of Conflicting PSMs—In general, the significance of

PSM and protein identifications was estimated by a target-decoy-
search strategy (23). The target decoy search strategy is designed to
control false positives (type I errors). Spectra were searched against
a concatenated database, which contains all candidate proteins plus
control proteins with pseudo-reverted sequences as previously de-
scribed (18). Spectra are matched to candidate peptide sequences
and are assigned a score by the Andromeda search engine (18).

Text file outputs from MaxQuant were processed using Python and
R scripts. PSMs were extracted from the evidence.txt.

As has been shown by Savitski et al. (2015), Andromeda scores
have higher significance levels with increasing peptide length. To
normalize for this we used the previously published protocol for
length-normalization of Andromeda scores (11) (LScore). Briefly, and
as described by Savitski et al. (11), all PSMs of the same length were
binned in score intervals of one and smoothed by a moving average
with a window size of five. The local FDR in each score bin was
calculated by dividing the number of decoy PSMs by the number of
target PSMs and the resulting distribution was smoothed using a
moving average with a window size of five. The minimum score over
all bins with a local FDR less than 0.05 was used as local peptide
length-dependent cut-off. The Andromeda score was then divided by
the local peptide length-dependent cut-off to yield the LScore. PSMs
were then sorted according to their LScore in decreasing order. If
indicated, PSMs were additionally filtered to a given FDR cut-off of
0.01 (1%) based on the target decoy approach. This procedure trun-
cates the sorted list of PSMs at the point where the fraction of decoy
hits to total hits exceeds the cut-off (global PSM FDR cut-off).

Each PSM reporting a deamidated, methylated or carbamylated
(for HeLa data set: deamidated, dehydrated, oxidized (Trp, Tyr) or
reported with loss of ammonia), peptide was compared with the
corresponding PSM of the same MS/MS scan in the standard search.
PSMs with different reported sequences in the standard search and
one of the searches with the selected modification (e.g. deamidation,
methylation, carbamylation, etc.) were labeled as “conflicting.”

The cumulative empirical false positive rates were simulated based
on the data transformations proposed by Elias and Gygi, 2007 for a
concatenated search (23). Briefly, and as described by Elias and Gygi,
estimated correct identifications were calculated by subtracting twice
the number of decoy PSMs from total PSMs at a given Andromeda
Score. Incorrect identifications were estimated by doubling the num-
ber of decoy PSMs returned at given Andromeda Score. The cumu-
lative false positive rate was estimated by dividing estimated incorrect
by estimated incorrect identifications larger than a given Andromeda
Score threshold.

MSMS Extraction—The assigned “conflicting” spectrum reported
as IESSIQSLQDLSK from a standard search was plotted and the
following annotations as given in msms.txt were added: fragment-
matches, score, mass, modifications and sequence for the two dif-
ferent search variants. Unassigned fragment peaks were extracted
from apl-files. The spectrum identified as IESLSSQLSNLQK from the
search with deamidation was plotted opposing the identification from
the standard search. The MSMS spectra from synthesized spectra
were extracted from Thermo XCalibur Qual Browser.

Comparison of Decoy Database Hits—Decoy database hits were
extracted from the evidence.txt of the standard search. Decoy hits in

the standard search identified as conflicting PSMs were compared
with the remaining decoy database hits (other decoy hits). The LScore
and the Intensities of the decoy hits were compared at no PSM FDR
threshold and 0.01, respectively. The significance of the difference
between both populations was evaluated by applying a two-sample
Kolmogorov-Smirnov test as implemented in R (ks.test).

Protein Filtering—For the analysis at the protein identification level
we first filtered the list of identified spectra as described above to a
PSM FDR � 0.01 for the standard search and to no PSM FDR
threshold for the searches with modification using LScores. Proteins
identified by conflicting PSMs (PSMs with different reported se-
quences in standard search and in searches with additional variable
modifications) and normal PSMs (with one reported sequence only)
were assigned as “conflicting and other PSMs.” Proteins identified
only by conflicting PSMs were assigned as “conflicting PSM(s) only.”

Where indicated, we additionally applied FDR filtering at the protein
level. To this end, we extracted the best scoring protein for each PSM
from the evidence Table in the evidence.txt file (column: “Leading
razor protein”). We assigned to each of these best scoring proteins a
protein PEP by multiplying the PEPs of the contained peptide se-
quences. Only the best (lowest) PEP of all spectra that were assigned
to an individual peptide was considered (18). The list of identified
proteins was then sorted according to the protein PEP (in increasing
order) and a cut-off at the desired FDR was applied using the target
decoy approach explained above. Note that the protein PEP was only
used to rank the list of identified proteins and had no other statistical
use beyond that.

Identifications assigned as “conflicting and other PSM(s)” and
“conflicting PSMs only” were compared with the identifications in the
protein FDR filtered list. To estimate protein abundance, we calcu-
lated protein iBAQ values from all evidences (standard search result)
in the evidence.txt table and a cleaned version (conflicting PSMs
removed). iBAQ values are calculated by dividing summed peak
intensities by the total number of theoretically observable peptides, as
previously described (24). Proteins assigned to a conflicting spectrum
in the search with the selected variable modification were denoted
“source” and proteins in the standard search “target” protein.

Protein and Peptide Abundances for GRID2 and LMNB1—Protein
abundances of GRID2, LMNB1 and of GRID2-derived peptides were
downloaded from the website www.humanproteomemap.org as RGB
color codes (additive color model, using red, green and blue chan-
nels) on 01/22/2015 and reassembled into a heatmap using R.

Peptide Identifications as a Function of FDR Threshold—PSMs
were extracted from evidence.txt and LScores were calculated as
described above. Identifications were sorted according to their
LScores for the standard search, the cleaned standard search (i.e.
conflicting PSMs that were identified as described above removed)
and the combined search. The number of identified spectra or non-
redundant peptide sequences as a function of the PSM FDR (decoy
hits/total hits) threshold was calculated from the resulting lists.

Where indicated, the confidence of the identified modified peptides
was additionally assessed as a function of the PTM FDR. Therefore,
modified PSMs were sorted according to their LScore and FDR filters
were applied on this subgroup. The resulting PTM FDR filtered lists
were compared with the identifications from the standard search
(filtered at a PSM FDR � 0.01). The number of conflicting PSMs that
was explained by PTM FDR filtered modified PSMs was plotted as a
function of the applied PTM FDR.

RESULTS

Estimation of Peptide Modification Frequency—First, to ob-
tain an overview of peptide modifications, we analyzed a deep
proteomic data set from HEK293 cells (20). To systematically
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identify peptide modifications in this sample we used the
ModifiComb algorithm (19) implemented in MaxQuant (18).
Similar to other algorithms ModifiComb can detect modifica-
tions in an unbiased manner (15). First, a standard database
search is performed to identify unmodified “base” peptides.
Second, ModifiComb matches spectra that could not be
matched in the first round to these base peptides. If they show
consistent mass shifts at the MS and MS/MS level, they are
identified as modified variants (“dependent peptides”). Apply-
ing this algorithm to our data set we found that deamidation
(D) was most frequent, followed by methylation (M) and car-
bamylation (C) (see Fig. 1A). In total, this analysis identified
�12% of unassigned MS2 spectra as derived from modified
peptides. Thus, our analysis corroborates the previous finding
that modified peptides are a significant source of false-neg-
ative identifications (17).

Modifications Cause False-positive Peptide Identifica-
tion—It has been shown for individual spectra that modified
peptides can be misassigned to wrong amino acid sequences
when the modification is not considered during the search (13,
14). However, the global impact of modified peptides on false
positive identifications has not yet been investigated. We
hypothesized that a standard search that does not take fre-
quent modifications into account will misidentify some mod-
ified peptides as unmodified versions of other peptides. To

assess this possibility we focused on the three most frequent
modifications (D, M, C). We carried out four separate data-
base searches: one standard search and three additional
searches, each including D, M or C as an individual variable
modification (see Fig. 1B), with the site specificities suggested
by ModifiComb. We first wanted to select all spectra that
could potentially be misidentified. To this end, we compared
the entire set of peptide identifications between searches.
Because score thresholds (at a given FDR threshold) can vary
depending on whether or not modifications are considered,
we first performed all searches without FDR filtering. All spec-
tra that were (1) assigned to an unmodified peptide in the
standard search and (2) reported to be modified in one of the
other searches were then selected as conflicting peptide
spectrum matches (PSMs). We next assessed the character-
istics of these matches. We first had a look at the distribution
of search scores. Conflicting PSMs had consistently higher
scores in the search with the modification than in the standard
search (see Fig. 1C–1E). This is expected because the search
space for the search with the modification contains both
unmodified and modified peptides. The only way for a spec-
trum to be assigned to a modified sequence is if that peptide
scores better than any of the unmodified peptides.

We then asked which of the searches explained conflicting
identifications better. Therefore, we had a look at the fraction
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FIG. 1. Modified peptides as a source of false spectra identification. A, Distribution of most frequent mass shifts of dependent peptides
in the region from �20 to 100 Da. A view on the wider mass region is shown in the insert B, Raw data files were analyzed without (standard
search) or with additional selected variable modifications: deamidation (Gln, Asn), methylation (Lys, Glu, Asp) or carbamylation (peptide
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of decoy database matches among conflicting PSMs is given for either search variant in the pie charts.
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of decoy database hits among conflicting identifications in
either search variant. We used this as a proxy to estimate the
total number false positives in these subsets. In the case of
50% decoy hits in a specific subset, all target and decoy
matches are considered to be random (that is, false positive).
Among conflicting identifications, we found almost 50% of
decoy matches in the standard search, which indicates that
conflicting identifications are almost entirely false positive hits
in the standard search. In the searches with the respective
modification the fraction of decoy database hits was on av-
erage six times lower, suggesting that most of these hits are
correct. These data indicate that most of the conflicting iden-
tifications represent modified peptides that were misidentified
in the standard search. As an additional control we also used
an arbitrary non-existent mass-shift for the same kind of
analysis (see supplemental Fig. S1). As expected, the fraction
of decoy hits for conflicting PSMs was roughly 50% for both,
the modified search with an arbitrary mass-shift and the un-
modified search. We conclude that modified peptides are a
specific source of false discoveries in deep proteomic data
sets. Analysis of an independent deep proteomic data set
looked overall similar (see supplemental Fig. S2A–S2E).

In a typical data analysis procedure for shotgun proteomics
one only cares about spectra that survive a defined FDR
cut-off. This is typically done with the target-decoy database
search strategy (23, 25): The general idea is that searches are
performed against a concatenated database which contains
all candidate proteins (“target” part) plus control proteins with
reversed, shuffled or randomized sequences (“decoy” part).
Score cut-offs are then selected in order to adjust the fraction
of false positive peptide spectrum matches (PSMs) to a user-
defined value. We therefore investigated how many misiden-
tifications by modified peptides survive a 0.01 FDR cut-off.
Applying this cut-off to the results of the standard search
markedly reduced the number of conflicting matches (from

166,073 to 8,552; see also supplemental Fig. S3). This result
shows that FDR filtering via the target-decoy approach is an
efficient means to reduce misidentifications by modified
peptides.

We next asked how many of the remaining false positive
hits after FDR filtering could be attributed to modified pep-
tides. To answer this question, we had a closer look at all
decoy hits that survived the 0.01 FDR filtering at the PSM
level. These decoy hits are a proxy for false positive hits in the
target database (23). We observed that 54% of decoy
matches that survived the 0.01 FDR cut-off in a standard
search were conflicting identifications (see Fig. 2A). Thus,
about 50% of remaining false positives at FDR � 0.01 appear
to be because of modified peptides. In an independent data
set this fraction was smaller but still substantial (�20%, see
supplemental Fig. S2F).

It is recommended to estimate the confidence of modified
peptide identifications with a so-called subgroup FDR (that is,
FDR filtering applied only on the subgroup of modified PSMs)
rather than a global FDR (that is, FDR filtering applied on
modified and unmodified PSMs combined) (26, 27). In order to
further assess the confidence of conflicting PSMs as modified
peptides, we additionally filtered the list of conflicting PSMs
by such subgroup FDRs (see supplemental Fig. S4A). The
stringent subgroup FDR filtering (to 0.01) reduced the per-
centage of conflicting PSMs among false positives in the
standard search from 54% to 44% (see supplemental Fig.
S4B). Thus, the vast majority (81%) of the conflicting PSMs
are confidently identified modified peptides. Because our
analysis only considers the three most frequent modifications,
the true number of false positive hits because of modified
peptides is expected to be even higher.

False positive identifications can result from different
sources. Therefore, we next asked if false positives caused by
conflicting PSMs are systematically different from other false
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all decoy database hits from a standard search at PSM FDR 0.01. Decoy database hits that were explained by conflicting peptides in more than
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positive hits. We found that decoy hits caused by conflicting
PSMs had significantly higher search scores than other decoy
hits (see Fig. 2B). Moreover, peptides with conflicting PSMs
had significantly higher intensities (see Fig. 2C). Therefore,
these misassignments are expected to have a stronger impact
on protein quantification than random hits (see also below).
We conclude that conflicting PSMs are a particularly prob-
lematic source of false positive identifications.

Erroneous Protein Identification and Quantification by Mod-
ified Peptides—In shotgun proteomics, peptide level data is
used to identify and quantify proteins. Therefore, we next
asked how much misidentified peptides2 affect the protein
level. Protein inference is not a trivial task and there is some
controversy about how peptide level data should be trans-
lated to the protein level (25). With respect to identification, it
is not clear if and how the target-decoy strategy should also
be employed at the protein level. Most recent studies apply
FDR filters at both the peptide and the protein level. However,
this general practice has been challenged for deep proteomic
studies (11, 28). Several recent papers therefore did not use
protein level filtering (7, 8).

Without protein level filtering, 686 proteins were exclusively
identified by misassigned modified peptides (see Fig. 3A).
This corresponds to about 6% of all proteins. Thus, modified
peptides are a considerable source of false protein identifica-
tions. Modified peptides were also misassigned to 1547 ad-
ditional proteins, which were also represented by other pep-

tides. Although in these cases the wrong peptides will not lead
to false protein identifications, they can still affect protein
quantification. As expected, applying a 0.01 protein FDR cut-
off reduced the number of false positive protein identifications
below 1% (see Fig. 3A). Hence, FDR filtering at the protein
level is an efficient means to control false positive protein
identifications caused by modified peptides.

Next, we wanted to assess the impact of misassigned
modified peptides on protein quantification. To this end, we
investigated the abundance of proteins with conflicting PSMs
(see Fig. 3B). We found that source proteins (that is, proteins
which give rise to modified peptides) were on average more
than 10 times more abundant than target proteins (that is,
proteins with misassigned modified peptides). Thus, most
modified peptides are derived from abundant proteins and are
misassigned to proteins of lower abundance. Consequently,
without filtering at protein level, the abundance of �380 target
proteins (5%) was systematically overestimated in the stand-
ard search (see Fig. 3C). Again, FDR filtering at the protein
level reduced the number of proteins overestimated in abun-
dance to �220 (3%). We conclude that modified peptides
give rise to systematic false protein identification and overes-
timation of protein abundance.

To illustrate the problem, we present the example of a
deamidated peptide derived from the nuclear laminar protein
LMNB1 (see Fig. 4A). The standard search misidentifies this
spectrum as an isobaric peptide derived from the glutamate-
receptor GRID2. GRID2 is selectively expressed in Purkin-
je cells (29). In contrast, the Human Proteome Map (8)
(www.humanproteomemap.org) reports a more widespread
expression pattern because of the same misidentified peptide

2 We use the term “misidentified” because most conflicting PSMs
appear to be false positive hits in the standard search. Note that this
is a simplifying assumption because not all peptides with conflicting
PSMs are necessarily misidentified in the standard search.
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(see Fig. 4B). Because of this misidentification the expression
profile of GRID2 resembles that of LMNB1 - the source pro-
tein of the deamidated peptide. We validated these findings
using synthetic peptides (see supplemental Fig. S5). This
example shows that misidentified spectra derived from mod-
ified peptides already entered public data repositories and
caused misleading information about protein expression
profiles.

Targeted Removal of Conflicting Peptide Spectral Match-
es—The data presented so far identifies modified peptides as
a significant source of false-positive hits with considerable
impact on protein identification and quantification. Therefore,
we thought about possible strategies to solve this problem.
The simplest idea would be to allow for different variable
modifications in the standard database search. However, be-
cause of the combinatorial expansion of the search space,
this procedure increases the score thresholds for significant
peptide identifications and may thus decrease the total num-
ber of identifications at a given FDR (15). Based on our results
we propose an alternative strategy, which involves four steps
(see Fig. 5A). First, an unbiased algorithm such as Modifi-
Comb is employed to identify the most prevalent modifica-
tions in a specific sample. Second, a standard database
search (with relaxed FDR cut-offs) and several parallel
searches with individual variable modifications are performed.

Each of these additional searches only considers an individual
variable modification to limit search space expansion. Third,
spectra with conflicting identifications and higher scores in
the modified form are not replaced by the results from the
secondary searches but instead removed from the standard
search. Finally, this cleaned data set is used to adjust the
protein and/or peptide FDR to the desired level based on the
number of decoy hits.

To assess the performance of this “cleaned search” ap-
proach, we counted the number of identified spectra and
unique peptide sequences that could be assigned at a given
FDR and compared it to the results of the standard search
(that is, without cleaning). We then compared the number of
non-redundant peptide sequences (Fig. 5B) and PSM counts
(Fig. 5C) that could be assigned as a function of the FDR
threshold. Removing conflicting matches improved the per-
formance relative to the standard search at all depicted FDR
thresholds (compare yellow and black curves in Fig. 5B and
5C). At an FDR of 0.01, 44,358 additional spectra and 5447
additional unique peptide sequences could be identified in the
cleaned data set. This corresponds to a �6% increase in the
total number of assigned peptide sequences. The increase in
coverage is remarkable, especially because we only removed
conflicting PSMs from the standard search and did not add
new identifications. The improved performance is thus solely
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because of the targeted removal of dubious hits. Conversely,
if we keep the number of assigned spectra constant (673,237
at 0.01 FDR in the standard search), we reduce the effective
FDR to 0.54%. In either case, the targeted removal of mis-
matches derived from modified peptides substantially im-
proves the quality of data annotation. Again, analysis of an
independent data set yielded overall similar findings (see sup-
plemental Fig. S2G). To further assess the validity of our
“cleaned search” approach, we estimated false positive rates
(FPR) based on the data transformations proposed by Elias
and Gygi, 2007 (23) (see supplemental Fig. S6A, S6B). We
calculated the FPR for the cleaned standard search and the
standard search. We found that both FPRs were overall in
accordance with each other (see supplemental Fig. S6C).
Thus, the targeted removal of conflicting spectra does not
influence our FPR estimates.

For comparison, we also used a “combined search” that
allows for all additional variable modifications (D � M � C) in
a single search. At the level of identified spectra, this strategy
outperformed the other approaches at most FDR cut-offs
(green curve, Fig. 5C). This is expected because a lot of
spectra derived from modified peptides that are false nega-
tives in the other searches can now be assigned. However,
the increase in identified PSMs does not directly translate to
an increase in coverage at the level of non-redundant peptide
sequences (green curve, Fig. 5B): At high stringency cut-offs
the combined search identified less peptides than the other
methods. At more and more relaxed FDR cut-offs the com-
bined search first outperformed the standard search and later
also the cleaned search approach. Thus, the relative perform-
ance of the combined search depends on the FDR threshold.
There is also a practical limitation of the combined search

method: Searching for many variable modifications in parallel
greatly increases database search time. In our case, the the-
oretical search space increase was 236-fold, and we empiri-
cally observed a 30-fold increase in search time using
MaxQuant.

DISCUSSION

Shotgun proteomics is stepping up to explain the diversity
and complexity of the entire human proteome (1); a develop-
ment that comes with more and more extensive data sets. As
for all high-throughput technologies, the shotgun approach is
associated with specific sources of errors and systematic
biases. Here, we identified modified peptides as a systematic
source of false positive peptide and protein identification.
First, we show that thousands of peptides and hundreds of
proteins are misidentified because of modifications that are
not considered in a standard database search. We show that
false positives caused by modified peptides are more abun-
dant and have higher scores than other false-positives, which
make them particularly problematic. Moreover, we demon-
strate that these false positives affect protein quantification
and lead to wrong protein expression profiles. Finally, we
outline a database search strategy that alleviates this problem
and considerably improves the quality of data annotation.

Identifying and minimizing systematic errors is essential for
comprehensive and high quality proteomics. Known sources
of false positive identifications include poor quality spectra
(12), errors in primary data processing (13) and incomplete
database search space (13, 14). How much these factors
contribute to false positive identifications is unclear. In our
data set, about half of false positives were because of deami-
dated, carbamylated, and methylated peptides. It is known
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that the prevalence of modifications in a proteomic sample is
affected by the sample preparation protocol (16). Consis-
tently, in another data set, different modifications predominated
and the fraction of false-positives because of the top four mod-
ifications was lower (�18%, see supplemental Fig. S2F). Be-
cause we only considered the most abundant modifications,
the impact of all modifications on false positive identifications
is likely higher in both cases. Thus, modifications can account
for a large fraction of false positive identifications. This alone
strongly emphasizes the need for a solution to this problem.
Moreover, we observed that misidentified modified peptides
are significantly more abundant and have higher search
scores than other false positives. Thus, they have a bigger
impact on the data than random matches. For example, they
cause systematic overestimation of protein abundance and
lead to wrong protein expression profiles.

False positive protein identification by modified peptides
was almost completely eliminated by stringent protein FDR
filtering (see Fig. 3A). As there is no current consensus on if
and how protein FDR filtering should be applied to deep
proteomic data sets (11, 28, 30), some researchers chose not
to filter at the protein level (7, 8) whereas others filtered their
data sets (5, 6, 17). Our results suggest that protein level
filtering is important to limit false-positive identifications.

Although stringent FDR filtering at the peptide and protein
level can limit the number of false positive identifications, it is
not the best strategy to deal with the problem of modified
peptides. Ultimately, data quality depends on the quality of
the PSMs generated by the search engine: A high fraction of
misassigned spectra leaves less space for correct identifica-
tions after the filtering step. It is therefore desirable to remove
false identifications by modified peptides in the first place,
before any FDR filtering. This strategy is in line with MS/MS
data reduction methods as i.e. removal of unidentifiable spec-
tra (31), removal of background spectra (32), removal of PSMs
with high mass error (33), removal of spectra with ambiguous
charge state (34) or removal of spectra in the context of
iterative searches (35). We demonstrated that the statistical
power of the analysis is substantially improved when system-
atic sources of false positives are considered (see Fig. 5B, 5C,
supplemental Fig. S2G).

It is generally recommended to limit the number of variable
modifications in a database search as much as possible (15).
The reason for this is that allowing for multiple modifications
dramatically increases the search space and therefore the
chance for random hits. In fact, using a small custom data-
base specific for the sample of interest increases the statis-
tical power and gives superior results (36, 37). It has even
been argued recently that mass spectrometrists should only
search for peptides they care about and neglect other pep-
tides, even though they are present in the sample (38). In
contrast to this suggestion, we show that it is important to
make sure that the search space is comprehensive. Specifi-
cally, it is essential that most experimentally observed peptide

fragmentation spectra have corresponding matches in the
search space and can thus be correctly assigned. Therefore,
even though a researcher may not be interested in a specific
modification, it is important to consider it during the search if
it is abundant in the sample. Otherwise, some of the corre-
sponding spectra will be misassigned and introduce signifi-
cant biases.

We outline a simple strategy how modifications can be
taken into account without increasing the search space (Fig.
5A). The general idea is to perform parallel searches on the
same raw data: one standard search and several individual
searches with specific variable modifications. The spectra of
identified modified peptides are then removed from the stand-
ard search. This “cleaned search” approach does not in-
crease the search space in the standard search. Importantly,
we find that this workflow considerably improves the quality of
data annotation. We would also like to point out that this
approach cannot only be used to reduce problems caused by
modified peptides. For example, the same strategy could be
used to eliminate false positive hits caused by abnormally
cleaved peptides (13), peptides which undergo in-source
fragmentation (17) or peptides derived from “contaminating”
proteins that are not of interest in a specific experimental
setting.

An obvious disadvantage of our approach is that it discards
modified peptides and therefore neglects potentially useful
information. The information loss can be considerable be-
cause at least one third of unassigned spectra are estimated
to be because of modified peptides (17). It could be an option
to replace the dubious identifications in the standard search
with modified peptides identified in the modified search. How-
ever, with respect to FDR control this would yield a compli-
cated situation: The search space of the modified search is
larger. Hits in the modified search therefore have different
significance levels than hits in the standard search at identical
scores. Furthermore, identifying modified peptides and bas-
ing quantification on them is not always useful for two rea-
sons. First, most modified peptides are present in sub-stoi-
chiometric amounts relative to their unmodified variants (16).
This means that identifying them does not lead to an increase
in independent sequence information, because they often
represent variants of already identified unmodified peptides.
Second, modified peptides are not well suited for protein
quantification because their abundance can be affected by
biological and/or chemical factors. Especially in methods
like iTRAQ/TMT, where peptides are labeled after digestion
(39), it can readily happen that modifications are introduced
differently during sample handling. The advantage of our
cleaned search approach is that it increases the coverage of
unmodified peptides which are more reliable for protein
quantification.

The fact that some spectra derived from modified peptides
can be mistakenly assigned to unmodified sequences could
also be integrated into some recently published search strat-
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egies (such as the cascaded (40) or ISPTM (35) search ap-
proach): Instead of accepting significant unmodified spectra
after the first search round one could keep a selected set or all
of them in the pool for the following searches. Ambiguous
identifications could then be compared between the different
searches to decide whether the identification(s) should be
discarded or accepted. Another alternative strategy would be
to modify the ModifiComb (19) approach: Instead of compar-
ing significantly identified peptides to those below the thresh-
old, one could compare the significant peptides to all pep-
tides and devise a scoring scheme to decide when a
significantly identified peptide is more likely to be a modified
version of another peptide. Yet another option could be not to
allow different modifications on the same peptide during the
database search. This would prevent the combinatorial ex-
pansion of the search space and could be implemented in
search engines. In any case, our results indicate that it is
important to systematically consider modified peptides in fu-
ture proteomic studies.
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