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Systematic identification of protein combinations
mediating chromatin looping
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Chromatin looping plays a pivotal role in gene expression and other biological processes

through bringing distal regulatory elements into spatial proximity. The formation of chromatin

loops is mainly mediated by DNA-binding proteins (DBPs) that bind to the interacting sites

and form complexes in three-dimensional (3D) space. Previously, identification of DBP

cooperation has been limited to those binding to neighbouring regions in the proximal linear

genome (1D cooperation). Here we present the first study that integrates protein ChIP-seq

and Hi-C data to systematically identify both the 1D- and 3D-cooperation between DBPs.

We develop a new network model that allows identification of cooperation between

multiple DBPs and reveals cell-type-specific and -independent regulations. Using this

framework, we retrieve many known and previously unknown 3D-cooperations between

DBPs in chromosomal loops that may be a key factor in influencing the 3D organization of

chromatin.
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T
he human genome is tightly packaged into chromatin and
forms complex structures of which the functional outputs,
such as gene expression, depend on local chromatin

states and chromatin three-dimensional (3D) organization1–11.
Chromatin loops are formed to bring distal regulatory elements
such as enhancers and their target promoters to spatial proximity.
The formation of chromatin loops is mainly regulated by proteins
that bind to the 3D interaction sites and form complexes1. Previous
studies have shown that perturbation of the binding of these
proteins could disrupt the loops, which suggests an important role
for DNA-binding proteins (DBPs) in genome organization.
Mediators of chromatin loops including CTCF, cohesin and
several transcription factors (TFs) such as GATA1 and KLF1 have
been identified (refs 12–16). Particularly, a recent study has
uncovered about 10,000 chromatin loops using kilobase-resolution
Hi-C data and discovered that CTCF and cohesin subunits RAD21
and SMC3 are present in the majority of the loops17.

These studies have shown that the cooperation of multiple
DBPs is critical to orchestrate loop formation. However, there still
lacks a systematic method to investigate the role of combinatorial
regulation between DBPs in chromatin loop formation. Previous
studies have focused on identifying DBPs binding to proximal
genomic regions18–21, which is hereinafter referred to as 1D-
cooperation. Despite the great insight provided by these studies in
revealing the combinatorial regulation of DBPs, they could not
detect the cooperation between DBPs binding to distal genomic
loci that are localized spatially and form long-range interactions
(referred to as 3D-cooperation in this study to be distinct from
the 1D-cooperation of DBPs in neighbouring genomic loci). 3D-
cooperation of DBPs is key to mediating chromatin looping,
either enhancing the existing 3D contacts or creating new ones to
bring functional elements, such as enhancers, to their target loci,
such as promoters. Despite its importance, no study has
thoroughly investigated the DBPs’ 3D-cooperation and its
relationship to 1D-cooperation.

The ENCODE project has generated hundreds of ChIP-seq
data sets to map binding sites of DBPs in multiple cell
lines19,22,23. Recently, kilobase-resolution Hi-C data were
available in two of these cell lines, namely GM12878 and K562
(ref. 17). These data sets provide an unprecedented opportunity
to systematically map both 1D- and 3D-cooperation between
DBPs. However, it is a great challenge to analyse this large
amount of data and extract cooperation among multiple rather
than pairs of DBPs.

To tackle this challenge and comprehensively catalogue DBP
cooperation, we present here a new model to construct networks
that represent both 1D- and 3D-association between DBPs.
Analysing these networks in GM12878 and K562 has revealed
complex cooperative relationships among TFs, histone modifica-
tions, chromatin-remodelling enzymes and chromatin architectural
proteins. Through the identification of communities and cliques in
the DBP cooperation network, we have uncovered many DBP
interactions in the chromatin loop regions. Intriguingly, many of
these 3D-cooperative DBPs directly interact with one another,
which suggests their binding may be important for loop formation
or stabilization in 3D space. Furthermore, we performed a
comparative network analysis between GM12878 and K562, and
revealed cell-type-specific cooperation between DBPs that are
critical for regulating cell-type-specific functions.

Results
Gaussian graphical model. To systematically identify DBP
cooperation, we analysed DBP ChIP-seq data using Gaussian
graphical model (GGM)24. GGM is an undirected probabilistic
graphical model with the assumption that the data follows a

multivariate Gaussian distribution with mean m and covariance
matrix S. Let S� 1 be the inverse of covariance matrix. If the ijth
component of S� 1 is zero, then variables i and j are conditionally
independent given all other variables in the network24. This
important property serves as the foundation for GGM to infer
direct interactions from high-dimensional data. Unlike relevance
networks or correlation networks, in which edges are determined
based on marginal correlations, GGM provides a stronger
criterion of dependency, and thus further reduces the false
positive rate. However, a great limitation of classic learning
methods for GGM is the lack of sparsity in the resulting graph. A
dense graph not only complicates downstream analysis but also
raises the issue of overfitting the data. To cope with this,
Friedman et al.25 proposed an efficient algorithm, named
graphical Lasso, to introduce sparsity to the GGM. Recently,
Liu et al.26 developed a data transformation method called
Copula that can be used with the graphical Lasso algorithm to
relax the normality assumption of GGM. Based on these recent
advances, we developed a new framework to systematically
identify cooperation between hundreds of DBPs.

Before applying the GGM to the DBP ChIP-seq data, we assessed
its performance using synthetic data. First, we generated an Erd+os–
Rényi random graph as our ground truth (see Methods). To
generate samples according to the simulated graph, we constructed
a covariance matrix by assigning each ijth component a non-zero
covariance if node i and j were connected in the simulated graph.
All other components were then set to zero. We next drew samples
from a multivariate Gaussian distribution parameterized by a zero
mean vector and the constructed covariance matrix. These samples
were used as input for network re-construction. As a comparison,
we selected ARACNE27, a popular algorithm for constructing gene
regulatory networks that employs an information theory approach
to infer interactions from gene expression data. We generated 10
networks with 50 nodes and another 10 networks with 100 nodes.
When applying both methods to these data sets, we observed a
superior performance of GGM with an average AUC of 0.923,
which is significantly higher than ARACNE (AUC¼ 0.822)
(Fig. 1a). This simulation showed that, when experimental data
follows a Gaussian distribution, the GGM can precisely reconstruct
the underlying graphical model. However, the real data can be quite
noisy and may not be Gaussian distributed. To cope with this, we
incorporated the Copula algorithm26 and carried out a further
benchmark to evaluate its performance on a more noisy data set.
To produce synthetic gene expression data sets, we used
GeneNetWeaver 3.1 (ref. 28), an in silico simulator that employs
a dynamic model to simulate gene regulatory networks. The ground
truth were subnetworks taken from yeast gene regulatory network
with size 50 and 100, respectively. For each size, we performed 10
different simulations (network files and sample data are provided in
the Supplementary Data 1). Again, GGM outperformed ARACNE
(average AUC of 0.695 versus 0.615; Fig. 1b).

It is worth noting that GGM is much faster than ARACNE
when the sample size is large. The time complexity for ARACNE
is O(N3þN2M2), where N is the number of variables or nodes in
the network, M is the number of samples; as it scales with M2, it is
not suitable for our application where we have more than 10,000
samples (the number of ChIP-seq peaks). In contrast, GGM, with
a time complexity O(N3þN2M), can easily handle a large
number of samples. In practice, we observed that the GGM was
50–100 times faster than ARACNE on the synthetic data sets
(Supplementary Table 1).

Constructing the DBP cooperation network. We applied the
GGM framework to DBP ChIP-seq and Hi-C data, aiming to
systematically detect DBP cooperation (Fig. 1c). We considered
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both 1D (DBPs that bind to loci in the nearby linear genome) and
3D (DBPs that bind to loci that are spatially close but linearly
distal in the genome) cooperation between DBPs. We first
computed 1D and 3D correlation scores for each pair of DBPs
separately using the 84 ChIP-seq data sets, including six histone
modifications (H3K4me1, H3K4me3, H3K9me3, H3K27ac,
H3K27me3 and H3K36me3) as well as chromatin loops called by
the 5-kb resolution Hi-C data in a lymphoblastoid cell line
GM12878 (ref. 17; see details in Methods). We then merged 1D
and 3D correlation matrices by keeping the larger correlation

score at each entry. This matrix was used to construct the GGM,
which represents the DBP cooperation network.

The DBP cooperation network (Fig. 2a) contains 484
associations between 84 DBPs. An edge between two proteins
may indicate either a direct physical interaction or a
co-occurrence of binding sites without direct interaction. To
examine whether our model can recover protein–protein
interactions (PPI), for each edge we searched for supporting
evidence from the public PPI databases (Methods). Remarkably,
11% of edges (empirical P value is 10e-9) in the GGM network
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Figure 1 | The performance of the GGM is consistently better than ARACNE. Each plot shows the average curve from 10 independent simulations.

(a) ROC curve for samples generated from random networks. For each simulation 500 (left) or 1,000 (right) samples were generated from a network of 50

(left) or 100 (right) nodes. (b) ROC curve for samples generated from yeast sub-networks. For each simulation 500 (left) or 1,000 (right) samples were

generated from a network of 50 (left) or 100 (right) nodes. (c) Workflow of the DBPnet pipeline.
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are also present in the PPI network (Fig. 2b). Another 80% of the
associated DBPs are separated by one protein in the PPI network
(the intermediate protein may not be analysed by the ChIP-seq
experiments). This evidence strongly supports that the DBP
cooperation recovered by our method is reliable and likely
represents physical contacts. Furthermore, we found that 11.5%
and 11.5% of 3D-dominant and 1D–3D cooperative edges,
respectively, are coincident with protein–protein interactions,
which is much higher than the 1D-dominant edges (1.8%);

94.6%, 63.5% and 79.4% of 1D-dominant, 3D-dominant and
1D–3D cooperative DBP pairs are separated by one protein
in the protein–protein interaction network, respectively. This
observation suggests that our analysis did identify physical
interactions in the 3D space and many 1D-dominant ones may be
formed through indirect interactions.

To characterize the topological properties of the DBP
cooperation network, we plotted its node degree distribution.
In agreement with other types of biological networks, we
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Figure 2 | Constructing the DBP cooperation network in GM12878. (a) DBP cooperation network in GM12878, with network hubs (EP300, EBF1, CREB1)

being highlighted. (b) A significant portion of DBP cooperation is supported by evidence of direct protein–protein interactions. (c) The majority of DBP

cooperation is a mixture of 1D and 3D cooperation. (d) An example of 1D-cooperation. (e) An example of 3D-cooperation. (f) An example of mixed

cooperation. (g) Disease-associated genotype variations are enriched in 1D-dominant (n¼ 67), 3D-dominant (n¼ 71) and 1D–3D cooperative (n¼ 346)

sites.

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12249

4 NATURE COMMUNICATIONS | 7:12249 | DOI: 10.1038/ncomms12249 | www.nature.com/naturecommunications

http://www.nature.com/naturecommunications


observed that the node degree distribution of the DBP
cooperation network follows a power law, reflecting its scale-
free property (Supplementary Fig. 1). A prominent feature of
scale-free networks is the existence of hubs, which are the highly
connected nodes that may be critical for network stability. To
identify hubs, we ranked the nodes in our network by two
popular centrality metrics—node degree centrality and eigenvec-
tor centrality. Node degree centrality for a given node is simply
the number of nodes that link to the given node, while
eigenvector centrality reflects both the node degree and its
connection with other well-connected nodes. We ranked the
nodes by both their node degree and eigenvector centrality. The
results show that EP300, CREB1 and EBF1 are the top three DBPs
that have the best average rank (Fig. 2a and Supplementary
Data 2). EP300 is an important cofactor that cooperates with
many TFs29,30 to perform a variety of biological functions.
CREB1 plays a central role in the immune system through
binding to the c-AMP response element, a ubiquitous DNA
motif, to regulate gene transcription31,32. It was not surprising
that these two general DBPs would be found as hubs. Previous
studies showed that EBF1 is mainly expressed in B-lymphocytes
(GM12878 is a lympoblastoid cell line) and is pivotal for
maintenance of B-cell identity33. In the DBP cooperation
network, EBF1 is linked to many important transcriptional
regulators, including general activators such as EP300 and SP1, as
well as B-lymphocyte-specific TFs such as PAX5, TCF12
and BCL11A (refs 34–37). By analysing the topology of the
DBP cooperation network, we uncovered TFs that are crucial for
cell functions.

Identifying 1D and 3D cooperation between DBPs. DBPs can
cooperate through 1D or 3D interactions, which can be
determined for each DBP pair using the constructed network. In
this study, we define an edge as 1D or 3D cooperation if the 1D or
3D correlation score is larger than a pre-selected cutoff (0.3, see
Methods). In GM12878, we found roughly the same numbers of
1D and 3D edges, 413 and 417 respectively. We noticed a
great overlap between 1D and 3D edges (Fig. 2c). We thus
labelled these DBP cooperations as 1D-dominant, 3D-dominant
or 1D–3D cooperative (Supplementary Data 3).

A 1D-dominant association cooperation between two DBPs
represents a frequent co-occurrence in linear space but not in the
long-range interacting loci that form loops in the 3D space. In
this category, we recovered some previously known interactions
such as the RNA Pol II–TAF1 interaction38 (Fig. 2d).
Interestingly, we found 71 3D-dominant edges in GM12878.
Most of these edges show weak 1D correlations but have
significantly larger 3D correlations. For instance, the 1D and 3D
correlation scores of EP300-MYC are 0.127 and 0.348 (z-score:
� 0.081 and 1.301), respectively. Indeed, a number of
independent studies have shown that EP300 and MYC can
cooperate to regulate gene transcription and the physical
interaction between them has been previously reported39,40. We
also identified novel 3D DBP cooperation. For example, EBF1 is
an important TF in B lymphocytes, and Egr-1 is one of the key
transcriptional regulators induced on B-cell antigen-receptor
activation41. Both EBF1 and Egr-1 have crucial roles in B-cell
development and differentiation. However, the interplay between
these two proteins has not been reported. In our network, we
found a 3D-dominant edge between EBF1 and Egr-1 (Fig. 2e),
which suggests that they may form long-range loops to regulate
cell-type-specific genes (4.4% of loop regions contain peaks of
both EBF1 and Egr-1). Therefore, our framework provides a
systematic way to uncover 3D cooperation between DBPs that are
otherwise impossible to identify using previous approaches.

The 1D–3D cooperation is formed between DBP pairs with
both 1D and 3D associations. Most associations fall into this
category. A well-known example is CTCF-RAD21 (Fig. 2f). While
1D-dominant cooperation can be identified by previous
approaches19, the last two categories of DBP cooperation can
only be identified through the integration of DBP ChIP-seq and
Hi-C data, which highlights the advantage of our method.

To further confirm the importance of DBP cooperation, we
analyzed the enrichment of genotype variations in regions bound
by cooperative DBPs. The disease-associated genotype variations
were downloaded from the NHGRI-EBI GWAS database42.
Given two DBPs A and B, if they are 1D-cooperative, we
considered sites bound by both A and B as foreground regions. If
A and B are 3D-cooperative, we first identified chromatin loops
where one of the two anchors is bound by A and the other is
bound by B. Within these loops, we identified binding sites of A
or B as the foreground. If A and B are 1D- and 3D-cooperative,
we considered only those loops for which each of the two anchors
contain the binding sites of both A and B, and these sites are used
as the foreground. In all cases, background are the binding sites of
A or B that are not in the foreground. We then calculated the
percentage of regions containing genotype variations for
foreground and background, and took the ratio as the genotype
variation enrichment. In Fig. 2g, we showed that the vast majority
of DBP cooperation are more enriched with disease-associated
genotype variations. We performed the Mann–Whitney U-test to
compare the significance level of enrichments of 1D-dominant,
3D-dominant and 1D–3D cooperative DBPs with that of
uncooperative DBP pairs, the P values are 1.6e-3, 5.2e-28 and
2.0e-45, respectively. These results suggest that DBP cooperation
has important functional implications in a variety of diseases.
Therefore, we anticipate that the binding sites of cooperative
DBPs can be used to prioritize genotype variations to identify
causal associations.

Identifying DBP communities. Modularity is an important
property of biological networks. Characterization of the
modularity in DBP cooperation networks can illuminate how
multiple DBPs cooperate to carry out complex regulation. Mod-
ularity can be studied at different levels. For instance, cliques
highlight local modules in the network while community
structure is a more global view of the modularity. Communities
are groups of nodes in a network that are more densely connected
internally than with the rest of the network43. In other words,
community structure is a partition or clustering of the nodes in a
network. We applied the community detection algorithm43 to the
DBP network in GM12878, and the nodes are separated into four
communities (Fig. 3a and Supplementary Table 2). From the
community structure, an immediate observation is the existence
of a very small community (yellow) that is formed by only five
proteins, namely CTCF, RAD21, ZNF143, SMC3 and YY1.
Intriguingly, all these five proteins are important in mediating
chromatin looping17,44,45, suggesting that a major function of this
community may relate to chromatin structure organization. This
observation suggests that DBPs in the same community are
functionally cooperative, and the communities in the DBP
network may have different biological functions.

To reveal the functions of a particular community, for each
protein in the community we analysed its ChIP-seq peaks. We
then ranked genomic loci by the number of proteins that bind to
them and selected the top 5,000 loci as input to GREAT analysis
to search for enriched GO terms. We found that the green
community is linked to mRNA metabolic processes and
translation-related functions (Supplementary Fig. 2a). The same
analysis showed that the cyan community is also enriched with
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similar GO terms. Interestingly, these two communities share
3,248 out of the 5,000 loci used in GREAT analysis despite being
segregated in the network (Supplementary Fig. 2b). A closer

examination of these two communities revealed distinct protein
composition. For instance, all the six histone modifications as
well as RNA polymerase II belong to the green community,
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Figure 3 | Network analysis reveals functions of DBP modules in GM12878 and K562. (a) Communities in the DBP cooperation network and their

functions. (b) Top DBP cliques. (c) An example of DBP cliques. (d) An example of K562-specific DBP cliques and the enriched GO terms of their binding sites.

(e) An example of GM12878-specific DBP cliques and enriched GO terms of their binding sites. (f) Top conserved DBP modules in K562 and GM12878.
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suggesting its pivotal role in gene transcription. In contrast, the
cyan community contains numerous proteins, including ESRRA,
BRCA1, NRF1, ETS1 and STAT3, that are involved in the
oestrogen-signalling pathway.

Furthermore, GREAT analysis of binding sites of DBPs in
the red community revealed that ‘immune response’, ‘leukocyte
activation’ and ‘lymphocyte activation’ are the most enriched
GO terms. These terms are highly specific to the B cell
(Supplementary Fig. 2c), suggesting that this community is
crucial in determining cell-type specificity. Indeed, many proteins
in this community are known to be important for immune system
development, such as STAT5A (ref. 46), BATF (ref. 47), BCL3
(ref. 48) and RELA (ref. 49).

Identifying potential DBP complexes. On a finer scale, the
modularity of a network is revealed by cliques. A clique is a
complete sub-graph in which every pair of nodes is connected.
Intuitively, DBPs that form a clique in the network are more
likely to function as a complex. Undoubtedly, the identification of
such complexes is crucial for understanding the mechanisms of
transcriptional regulation. Therefore, we searched for maximal
cliques in the network and identified 220 cliques in GM12878
(Supplementary Data 4). We ranked DBP cliques by their average
correlation scores for each DBP pair. We observed that edges in
most of the top cliques are associated with high 1D and 3D
correlation scores, which suggests that they are likely to form
complexes mediating chromatin loop formation. Figure 3b shows
the top three highest ranked cliques. Next, we checked the per-
centage of shared peaks in the union of all DBP peaks and
identified the loops that overlap with these shared peaks. As a
comparison, for each k-component DBP clique, we randomly
selected k DBPs and did the same analysis. We took 50,000
samples and used them as a null model for enrichment and
empirical P value calculation. As a result, all the DBPs in the
cliques share a significant amount of peaks that occur in loops
(Table 1), which confirmed the co-occurring bindings of the
DBPs in a clique.

The top-ranked clique is CTCF-RAD21-SMC3-ZNF143.
RAD21 and SMC3 are components of the cohesin complex.
Cohesin is a multi-subunit protein complex and plays an essential
role in sister chromatid cohesion and chromosome segregation
during cell division50. Cohesin is also crucial for regulating gene
expression and mediating chromatin long-range interactions51.
Cohesin-dependent chromatin interactions are usually mediated
by the cooperation of cohesin and CTCF45. The involvement of
ZNF143 in this complex has also been reported44. ZNF143 is
believed to provide sequence specificity for chromatin
interactions52. Overall, our analysis successfully recovered this
important and well-characterized loop-forming complex.

The other two cliques, PML-FOXM1-MTA3-STAT5A-CEBPB-
RUNX3 and MAX-MAZ-MXI1-CHD2-BHLHE40 (Fig. 3c) have
not been reported. STAT5A and RUNX3 are two of the major

transcription factors that play essential roles in lymphocyte
development. The physical
interaction between STAT5 and RUNX3 has been reported53.
Moreover, CEBPB binds to RUNX2 that has been shown to
be associated with RUNX3 (refs 54,55). To investigate the
function of this module, we extracted all loci bound by these
six DBPs and performed GREAT analysis. The most significant
GO terms are ‘immune response’, ‘leukocyte activation’ and
‘lymphocyte activation’. These results suggest that this module may
play important roles in the development of lymphocytes.

The functions of the MAX-MAZ-MXI1-CHD2-BHLHE40
clique are more general. The enriched GO terms for their
binding sites are ‘ribonucleoprotein complex biogenesis’,
‘nuclear-transcribed mRNA catabolic process ribosome
biogenesis’ and ‘translation’. The interaction between MAX and
MXI1 is well studied56 but interactions between other proteins
have not been reported. However, the functions of these proteins
are highly related. For example, BHLHE40 is a repressor that can
interact with and recruit HDACs, which suggests a role for
BHLHE40 in chromatin remodelling. CHD2 is also a chromatin
remodeler. These observations suggest that DBPs in this clique
may act together to alter chromatin states and regulate gene
translation.

Comparative analysis of DBP cooperation networks. DBPs have
different cooperative modes in different cells. To perform a
comparative analysis of the networks in different cell types, we
focused on 68 proteins for which ChIP-seq data sets are available
in both K562 and GM12878, and constructed TF cooperation
networks in these two cell types.

To find cell-type-specific DBP cliques, we first identified
cell-type-specific edges in the 68-node networks. We then
searched for cliques in both GM12878- and K562-specific
networks that consist of edges present in one but not the other
cell line. We found 74 and 7 cell-type-specific cliques for
GM12878 and K562, respectively (Supplementary Data 5).
Cell-type-specific cliques shed light on how cells achieve
transcriptional specificity through the combinatorial regulation
of DBPs. For example, STAT5A is a member of STAT protein
family. It is activated by a number of cytokines and plays a central
role in the development of many different organs. However, how
STAT5A cooperates with other DBPs to carry out cell-type-
specific regulation is largely unknown. Our analysis showed that
STAT5A, together with MYC and RCOR1, forms a clique in
K562, which is absent in GM12878. MYC is an oncogene and has
been shown to play a critical role in leukaemia formation57,58.
STAT5A-MYC cooperation may be important to maintain the
state of leukaemic cells. To further characterize the functions of
the STAT5A-MYC-RCOR1 clique, we performed GREAT
analysis on loci bound by all the three proteins in K562 and
identified functions specific to leukocyte, such as ‘leukocyte
degranulation’, ‘regulation of interleukin-2 secretion’ and ‘mast

Table 1 | The top 3 most frequently occuring DBP cliques.

DBP clique No. of sites/percentage/enrichment
(P value)

No. of overlapped loops/percentage/enrichment
(P value)

CTCF–RAD21–SMC3–ZNF143 13,829/21.9%/8.8 (4.0e-5) 5,668/47.2%/30.5 (o2.0e-5)
PML–FOXM1–MTA3–STAT5A–
CEBPB–RUNX3

2,195/3.1%/16.8 (1.8e-3) 388/3.2%/16.3 (5.2e-4)

MAX–MAZ–MXI1–CHD2–BHLHE40 2,900/8.8%/24 (8.0e-5) 501/4.2%/12.5 (1.1e-3)

The central column gives the number of regions bound by all DBP members in a clique, the percentage of regions bound by all DBP members, their fold enrichment over background and the empirical P
values. The right column gives the number of loops that are overlapped with the DBP-binding sites, the percentage, the fold enrichment over background and empirical P values.
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cell activation’ (Fig. 3d). These functions are drastically different
from those enriched in GM12878 where STAT5A is associated
with BCLAF1, SRF, CREB1 and SP1; GREAT analysis on the
shared peaks suggests this clique is involved in lymphocyte
specific functions (Fig. 3e).

Next, we sought to identify common DBP cliques in GM12878
and K562. First, we extracted a common network using edges
shared by the two networks. We then searched for cliques in this
network. We identified CTCF–RAD21–SMC3, MAX–MYC–
MAZ–CHD2, EP300–H3K4me1–H3K4me2 and STAT5A–
CEBPB–PML as top-ranked cliques (Fig. 3f). CTCF–RAD21–
SMC3 interaction is known to be conserved across different cell
types and it is not surprising that this clique is shared between the
two cells. In the MAX–MYC–MAZ–CHD2 clique, MAX–MYC–
MAZ is also a well-known complex that is found in multiple cell
lines but their interaction with CHD2 has not been reported. The
involvement of the chromatin-remodelling gene CHD2 in the
MAX–MYC–MAZ complex suggests MAX–MYC–MAZ may
utilize CHD2 to modify chromatin structure and alter gene
expression. EP300–H3K4m1–H3K4me2 represents an enhancer’s
signature, and has been found in many cell types. In the clique of
STAT5A–CEBPB–PML, there is evidence for the STAT5A–
CEBPB interaction: STAT5A was demonstrated to cooperate with
CEBPB to regulate gene transcription59; STAT5A can induce
deacetylation of CEBPB60. Their interaction with PML is less
well-studied but STAT5 is shown to be activated by the PML/
RARa fusion protein in acute myeloid leukaemia61. These
common cliques in both GM12878 and K562 indicate their
cell-type-independent cooperation.

We next investigated whether these common cliques bind to
the same loci in the two cells. For each clique, we identified the
sites bound by all the member DBPs and counted how many of
them are shared between the two cell types. We observed that the
CTCF–RAD21–SMC3 clique shared 13,960 (51.3%) common
binding sites in K562 and GM12878 (Fig. 3f), which is in
agreement with the general roles of CTCF and the cohesin
complex in stabilizing loops17. The MAX–MYC–MAZ–CHD2
clique shows moderate conservation with 729 (15%) common
binding sites across the two cell types. In contrast, the binding
sites of P300–H3K4me1–H3K4me2 and STAT5A–CEBPB–PML
are highly cell-type-specific. Since P300–H3K4me1–H3K4me2
mark active enhancers and enhancers are highly cell-type-
specific, it is understandable that there are only 62 (1.2%)
P300–H3K4me1–H3K4me2 peaks shared across cell types.
The fact that only a small percentage (2.4%, 117 sites) of
STAT5A–CEBPB–PML sites are shared between GM12878 and
K562 is surprising. To investigate the reason why STAT5A–
CEBPB–PML has distinct binding profiles in the two cell types,
we first analysed the enriched GO terms for the sites bound by all
three DBPs in K562 and GM12878, respectively. Enriched GO
terms in each cell type are highly specific: the top terms in
GM12878 are ‘immune response’ and ‘lymphocyte activation’;
sites in K562 are enriched with GO terms such as ‘platelet
activation’ and ‘erythrocyte differentiation’, which are highly
specific to K562.

The above analyses show that the same DBPs can bind to
different loci to regulate cell-type-specific functions. There are
several possible reasons for such cell-type-specific binding, such
as differential accessibility of chromatin, DBPs recognizing cell-
type-specific motifs62, and DBPs partnering with different
cofactors. To understand the differential binding of the
STAT5A–CEBPB–PML clique, we identified their cell-specific
partners by examining the binding peaks of all the available
ChIP-seq data in the regions bound by STAT5A–CEBPB–PML in
GM12878 and K562 (Fig. 4a,b). It is obvious that the
co-occurring DBPs are very different in the two cell types:

RUNX3, BCL11A, BATF in GM12878 compared with TEAD4,
TAL1, GATA2 in K562. To assess the contribution of cofactors to
such cell-type-specific binding, for each potential cofactor we
used its ChIP-seq peaks to discriminate binding regions of
STAT5A–CEBPB–PML in GM12878 and K562. The top 12 TFs
that have best discriminative accuracy are RUNX3, TEAD4,
TAL1, BCL11A, BATF, IRF4, PAX5, POU2F2, BCL3, GATA2,
MYC and EBF1 (Supplementary Data 6). Strikingly, either
RUNX3 or TEAD4 alone can achieve an over 99% accuracy,
which is consistent with their distinct binding patterns in Fig. 4.
When the binding sites of these 12 TFs were used together to
train a logistic regression model, we achieved a 100% accuracy
rate for discriminating the STAT5A–CEBPB–PML binding
regions in the two cell lines. Therefore, the cell-type-specific
binding of this DBP clique can be explained by its partnership
with different cofactors. Furthermore, we observed that all 12 TFs
except MYC are differentially expressed in the two cell types
(Supplementary Data 6), suggesting that the cell-type-specific
binding of this DBP clique is largely due to cell-type-specific
expression of cofactors. Because of the limited number of
ChIP-seq experiments, possible partners might not be profiled.
Therefore, we performed de novo motif analysis using
MEME–ChIP63 in STAT5A–CEBPB–PML sites and then
matched the found motifs to the known ones. Clearly, the de
novo motifs found in K562 and GM12878 were very different.
Encouragingly, the motifs of several co-factors identified from
ChIP-seq experiments were also retrieved from the de novo motif
analysis. These results suggest that the STAT5A–CEBPB–PML
complex indeed has different regulatory mechanisms in different
cell types. To further interrogate the regulatory mechanisms of
their cooperation, we used Spamo64 to find spacing constraints
between de novo motifs. As a result, in GM12878 we found two de
novo motifs, corresponding to STAT5A and MEF2, showing a
statistically significant spacing constraint with the MEF2 motif
occurring 13 bp downstream of the STAT5 motif (Fig. 4c). This
finding is new as there is no previous report about the partnership
of STAT5A and MEF2. We also found, in K562 the
TAL1::GATA1 motif frequently appears upstream of RUNX1
sites at a distance of 38 bp. GATA and RUNX usually cooperate
with each other and form a cis-regulatory module65,66. Therefore,
our analysis has identified both new and known spacing
constraints between TFs.

Discussion
We present here a first systematic search of DBP complexes
mediating chromatin loop formation using a novel framework. Our
method can identify both 1D and 3D cooperation between DBPs.
Many of the identified cooperations are likely a result of physical
interactions as most of the edges in the DBP cooperation network
are supported by the PPI data. Our results showed that 3D-
cooperation between TFs is ubiquitous, indicated by 86% of
identified associations having strong 3D correlation scores, which
can only be discovered by integrating DBP binding and chromatin
structure data. The 3D-cooperation most often accompanies 1D-
cooperation as the majority (71%) of DBP cooperation is a mixture
of 3D and 1D events. Furthermore, we observed enrichment of
disease-associated genotype variations in DBP cooperative binding
sites, which suggests the functional importance of DBP cooperation.

Identification of cooperation between multiple DBPs has been a
challenging problem. Combinatorial approaches are limited to
consider cooperation between a small number of DBPs because of
the exponential increase of the possible combinations. In contrast,
our model can easily search combinatorial cooperation in
thousands of DBPs. By identifying modules and cliques in the
network, we have uncovered closely collaborated DBPs,
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particularly those associated through 3D interactions in chromatin
loops that may be crucial for loop formation or stabilization.

Our comparative analyses between GM12878 and K562 reveals
different mechanisms of achieving cell-type specificity: using
different combinations of DBPs or using the same protein

complex but collaborating with different partners. Interestingly,
we also found spacing constraints between the binding sites of
certain partners, which implies higher-order regulatory rules for
not only 1D but also 3D DBP cooperation. One major limitation
of this work is that it relies on high resolution Hi-C data that is
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Figure 4 | CEBPB–PML–STAT5A cooperates with different DBPs in GM12878 and K562. (a) DBP-binding profile (left) and enriched de novo motifs

(right) in 2468 CEBPB–PML–STAT5A-binding sites in GM12878. (b) DBP-binding profile (left) and enriched de novo motifs (right) in 2620

CEBPB–PML–STAT5A-binding sites in K562. (c) Enriched spacing between de novo motifs found in CEBPB–PML–STAT5A sites in K562 and GM12878.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms12249 ARTICLE

NATURE COMMUNICATIONS | 7:12249 | DOI: 10.1038/ncomms12249 | www.nature.com/naturecommunications 9

http://www.nature.com/naturecommunications


only available in a limited number of cell types. Furthermore, the
chromatin loops used in this project are taken directly from the
study of Rao et al.17 that were defined using very conservative
criteria. Additional loops might be identified using less
conservative criteria or other technologies. However, as the
sequencing technology rapidly evolves, these limitations will be
overcome by the availability of more and more ChIP-seq and Hi-
C data at even higher resolution. In conclusion, our model
provides a powerful tool for integrative analysis of DBP binding
and chromatin structure data in different cell types, which will
facilitate the uncovering of the molecular mechanisms for
transcriptional regulation and 3D chromosome organization.

Methods
Data sets. BAM files of ChIP-seq experiments in K562 and GM12878 were
downloaded from the ENCODE project website67. Chromatin loops were downloaded
from the study by Rao et al.17. Because only these two cell lines had both DBP ChIP-
seq and 5-kb resolution Hi-C data, we focused on these data sets in this study.

Data preprocessing. We divided each chromosome into consecutive 1-kb regions.
For each protein, we computed the Reads Per Kilobase per Million (RPKM) mapped
reads on these regions. The fold enrichment was calculated using MACS’s algo-
rithm68 with customized parameters. In particular, we set llocal¼max{lBG, l14k, l24k}
where lBG is the average RPKM of the whole genome; l14k and l24k are average
RPKM of 14 and 24 kb windows. We used a larger window size than MACS’s default
size and a loose P value (0.01) to call peaks to increase the sensitivity for detecting
broad peaks. For each 1 kb region, if it was called as a peak, we used the fold
enrichment as its ChIP-seq enrichment score; otherwise, a zero score is assigned to
that region. After computing the enrichment scores for every protein, we removed
regions with low variation of scores by requiring the s.d. of scores to be at least 1. This
excludes some unwanted artefacts from our analysis. For instance, regions with low
mappability or an abnormally high signal67. Next, for each DBP pair we calculated
the Spearman’s correlation of ChIP-seq enrichment scores in the remaining bins as
the 1D-correlation score. To compute 3D correlation scores, we first downloaded the
3D interaction loops identified in a 5-kb resolution Hi-C study17. Next, for each DBP
we computed its enrichment scores on loop regions as follows: suppose we have n
loops, denoted by L1, L2,y, Ln and each loop Li consists of two interacting loci Li

a
and Li

b. To compute the enrichment score of a given DBP on loop Li, we first binned
Li

a into 1-kb regions, and then took the maximum of ChIP-seq enrichment scores of
these bins as the enrichment score for Li

a. Likewise, we can compute the enrichment
score for Li

b. Then, given a pair of DBPs denoted by A and B, for every loop, we first
compared the enrichment scores of A on the two interacting loci. We considered the
interacting locus with larger enrichment score of protein A as A’s primary binding
locus, and the other interacting locus as the primary binding locus of protein B. The
enrichment scores of primary binding loci for each protein were then used to
compute the correlation coefficient.

Network construction. We adapted the GGM to construct the DBP cooperation
networks. GGM assumes that the observations have a multivariate Gaussian dis-
tribution with mean m and covariance matrix S. Let S� 1 be the inverse of covariance
matrix. If the ijth component of S� 1 is zero, then variables i and j are conditionally
independent given other variables. Therefore, each non-zero component represents an
edge in the network. To efficiently and accurately estimate the inverse of the covar-
iance matrix using DBP ChIP-seq data, we employed the Graphical lasso algorithm25

and the Copula method26. We used a lasso penalty equal to 0.3 in this study. We
chose this value because o15% of DBP pairs have a correlation score 40.3. To
estimate the false discovery rate, we generated a null model by random shuffling of
DBP binding sites to represent uncooperative DBPs. When we applied our algorithm
to this data set, the cutoff we chose identifies zero cooperation, suggesting our method
has a very low false discovery rate. Because we aimed at identifying DBP interactions,
edges with negative correlations were removed in the network analysis.

Network analysis. We used Eppstein’s algorithm69 for maximal clique searching,
which gives an exact solution in near optimal time. For community detection, we
used Newman’s algorithm43.

Comparing the DBP cooperation network with PPI network. Protein-protein
interaction data was obtained from the BioGrid database70 version 3.2.99. For each
edge formed by node A and B in a DBP cooperation network, if also present in the
PPI network, it was considered as a direct interaction. Otherwise, we checked
whether there exists a third node in the PPI network that connects to both A and B;
if so, this edge was considered as an indirect interaction. To determine the
statistical significance of these overlaps, we first replaced the nodes in the DBP
cooperation network with randomly selected genes from the PPI network. Next, we
counted the direct and indirect interactions in the simulated network. This process

was repeated for 109 times to generate the background distribution, which was then
used to calculate the P values.

Simulated networks. To generate an Erd+os–Rényi random graph, we used the
G(n, p) model. This model specifies an n-node network, in which each edge is
included with a probability P independent from every other edge. We used P¼ 0.2
in this paper, which gives rise to a sparse network. We follow the procedures given
in ref. 26 to generate a Gaussian distributed data set that was used for constructing
the simulated network.

We used Genetweaver 3.1 to extract random subnetworks with different sizes
(50 and 100 nodes) from the yeast gene regulatory network provided by the
software. For other parameters, we used the software’s default setting.

To draw the receiver operating characteristic (ROC) curve, we counted the
number of true positives, false positives, true negatives and false negatives. If a
predicted edge is present in the true network, it is a true positive, otherwise it is a
false positive. Edges that are present in the true network but not identified by the
algorithm are defined as false negatives. True negatives are edges that are not
present in either predicted or true networks.

Code availability. The code used in this study is available at http://wangla-
b.ucsd.edu/star/DBPnet/index.html.

Data availability. Chromosome loops in GM12878 and K562 were available in
Gene Expression Omnibus (GEO) repository with the accession code GSE63525.
ChIP-seq data sets analysed in this study were available from https://www.enco-
deproject.org with accession codes listed in Supplementary Data 7.
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