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Two-dimensional chiral topological
superconductivity in Shiba lattices
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The chiral p-wave superconductor is the archetypal example of a state of matter that
supports non-Abelian anyons, a highly desired type of exotic quasiparticle. With this, it is
foundational for the distant goal of building a topological quantum computer. While some
candidate materials for bulk chiral superconductors exist, they are subject of an ongoing
debate about their actual paring state. Here we propose an alternative route to chiral
superconductivity, consisting of the surface of an ordinary superconductor decorated with a
two-dimensional lattice of magnetic impurities. We furthermore identify a promising
experimental platform to realize this proposal.
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and the closely related fractional quantum Hall Pfaffian

state at filling fraction v =>5/2 are the archetypal examples
of topologically ordered states of matter that support non-Abelian
anyonic excitations! ™. The theoretical exploration of these states
has shaped our understanding of topological order and is
foundational for the distant goal of building a topological
quantum computer*®. In contrast to the v=5/2 fractional
quantum Hall state, however, to date chiral p-wave
superconductivity has not been confirmed in any experimental
system. The most prominent candidate system, superconducting
Sr,RuOy (ref. 7), has been the subject of an ongoing debate about
its actual paring state-!%.

Chiral superconductors break time-reversal symmetry. This
hinders the formation of Cooper pairs, since orbital (and possibly
paramagnetic) pair-breaking effects can come into play.
Depairing is also the main hurdle for realizing a line of proposals
in which layered heterostructures involving ferromagnets and
s-wave superconductors are used to build an artificial 2D p-wave
superconductor!?~1>. The guiding principle for these proposals is
to design a band structure with a single normal-state Fermi
surface with no spin-degeneracy. If Rashba spin-orbit coupling is
present so that the states on this Fermi surface are not fully
spin-polarized, and if s-wave superconductivity is proximity-
induced in such a system, the effective pairing near the single
Fermi surface is equivalent to that of a chiral p-wave
superconductor.

In one dimension (1D), based on the principle of combining
spin-orbit coupling and externally applied magnetic fields,
various groups have proposed engineering artificial realizations
of p-wave superconductors'®22. An experimental realization of
these proposals emgloying semiconductor nanowires with strong
spin-orbit coupling?® has reported Majorana fermion signatures.
In this setup, the externally applied magnetic field has to be rather
small (to avoid suppressing superconductivity). As the phase-
space for the existence of a toi)ological superconductor is
controlled by the Zeeman gap?*, these systems require a
delicate balance of the parameters involved (spin-orbit
coupling, magnetic field and chemical potential) in order to
create the topological superconductor.

Recently, a 1D topological superconductor was realized in a
system that is quite distinct but employs similar microscopic
ingredients—spin-orbit coupling, ferromagnetism and s-wave
superconductivity?®. A chain of magnetic Fe atoms is deposited
on the surface of an s-wave superconductor with strong
spin-orbit interactions. The Fe chain is ferromagnetically
ordered®® with a large magnetic moment, which takes the role
of the magnetic field in the nanowire experiments. Unlike
previous proposals, this magnetic field is mostly localized on the
Fe chain, with small leakage outside. Superconductivity is not
destroyed along the chain. In this setup, the energy scale of the
exchange coupling of the Fe atoms is typically much larger than
that of the Rashba spin-orbit coupling and the superconducting
pairing. The ferromagnetically ordered Fe atoms induce localized
Shiba states within the gap of the superconductor?®~28, The
hybridization of these states forms the band structure of a 1D
p-wave superconductor that supports Majorana end states?®30,
Because the Fe bands are fully spin split, no additional control
over the chemical potential is necessary. A similar scenario
applies when the Fe orbitals are magnetic but itinerant®4,

In this article, we point out that this strategy can also be
successful in 2D. Magnetic adatoms on the surface of a
superconductor with strong spin-orbit coupling, when arranged
in a 2D lattice, can yield a 2D topological chiral p-wave
superconductor whose chiral Majorana edge modes can be
observed in scanning tunneling microscope measurements.

The chiral p-wave superconductor in two dimensions (2D)

To shed light on the rich range of possibilities, we analyse the
topological properties of a system with dense local moments
that are exchange coupled to a model 2D superconductor,
demonstrating that topological superconductors with higher
Chern numbers, and consequently multiple chiral Majorana edge
channels, can easily occur. We are also able to analyse the model’s
dilute magnetic impurity limit analytically and obtain numerical
topological phase diagrams for intermediate impurity concentra-
tions. Based on density-functional-theory (DFT) calculations,
we further propose realizing 2D topological chiral p-wave
superconductors experimentally by depositing transition metal
adatoms on superconducting Pb. The type of magnetic ion can be
varied to access different strengths of the magnetic moment. In
the case of Fe adatoms on a Pb (111) surface, we show that strong
magnetic order in general leads to an odd number of 2D Fermi
surface segments. As a consequence the proximity-induced
superconducting phases can have nonzero Chern numbers and
chiral Majorana edge modes.

Results

Model Hamiltonian. We first present a model system that bears a
number of generic features of superconductor surfaces with
ferromagnetically ordered magnetic adatoms (see Fig. 1).
To render the analytical calculations tractable, we consider a
Hamiltonian that models only the surface layer of a bulk 3D
s-wave superconductor on which the s-wave superconducting
order parameter A is induced from the bulk. On this super-
conducting layer, we model the magnetic impurities as classical
spins whose only interaction with the electrons in the super-
conductor is through Zeeman-like couplings?®~28. Employing a
tight-binding description on a 2D square lattice A that is spanned
by the primitive lattice vectors €; and &, we consider the
mean-field Hamiltonian

H :Z[t(cchéI +cjcr+é2) — EcjchrAchL

reA 2
+iOC(CjO'2Cr+é1 7Cj,.O'1Cr+é2> +h.c.] (1)
+] Z c:ra;cr.

reA*

Here, ¢ = QCIT,C: l) is a spinor of the creation operators for
electrons at

ite r with spin 1, |, and ¢;,i=1,2,3, are the three
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Figure 1 | Topological superconductivity in Shiba lattice systems. A very
thin layer of magnetic adatoms, such as Fe or Co, is deposited on the
surface of a conventional s-wave superconductor with strong spin-orbit
coupling, such as Pb, and forms a one-dimensional chain or a
two-dimensional island that is ferromagnetically ordered (represented by
the upward arrows). The resultant lattice of magnetic-impurity-induced
bound states, or Shiba lattice, generically bears chiral topological
superconductivity and the associated chiral Majorana boundary modes
(represented by yellow dots or lines with unidirectional arrows). In two
dimensions, one or many Majorana modes may appear depending on the
density of the magnetic adatoms. These modes can be detected by
tunneling techniques.
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Figure 2 | Phase diagrams in the dense impurity limit. (a,b) Chern numbers, and (c,d) ratios of the induced superconducting gap to the host
superconducting gap, as functions of the chemical potential u and the exchange field strength J, both in units of hopping strength t. (a) and (c), (b) and
(d) correspond to the case of one magnetic adatom every 2 x 2, or 3 x 3 lattice sites, respectively. These phase diagrams are obtained by using the
Hamiltonian in equation (1) with A=0.06t and « = 0.1t; i has been shifted such that g = 0 implies the chemical potential lying in the center between the

two spin-split band bottoms.

Pauli matrices. We denote by t the nearest neighbor hopping
integral in the superconductor, u the chemical potential, and «
the strength of the Rashba spin-orbit coupling. Classical magnetic
moments ferromagnetically aligned normal to the plane in the g3
direction are positioned on a sublattice A* of A and are exchange-
coupled to electrons via the term proportional to J. Drawing
experience from the 1D situation and the ab-initio calculations
presented below, the physically relevant hierarchy of energy scales
that we consider here is given by

t>] >0~ A (2)

Dense impurity limit. As a warmup, it is instructive to consider
the simplest situation in which each lattice site is coupled to a
magnetic moment, ie., A=A*. This limit is representative of
system with self-assembled islands of magnetic adatoms. Its
consideration allows us to highlight the difference between the
regime in equation (2), and that of small J that has been studied
previously! 21415 In particular, it is possible to access a phase
with Chern number 2 in the large J limit. For the case A =A*
and o« =0, the Hamiltonian in equation (1) is gapless at zero
energy with nodal lines in momentum space defined by (see
Supplementary Note 1)

ao= /]2 — A% (3)

where &, =2t(cos k; + cos k,) — u. Adding spin-orbit coupling
o#0 will generically lift these degeneracy lines and gap the
spectrum, except if the degeneracy occurs at the four inversion-
symmetric momenta [k; = (1 —i, 1 —j)n/2 with i, j= + ] where
the spin-orbit coupling vanishes. The occurrence of these nodal
points is a signature of transitions between phases characterized

by different Chern numbers. The critical chemical potentials are

therefore determined by equation (3) with k=k;;, which yields

i =20+ )t + AP =A%, ijl=+. (4)

Around each of the nodal points in the three-dimensional k-u
parameter space, we can reduce the Hamiltonian to an effective
two-band model and expand it to linear order in the deviations
ok from k;; and the deviations ou from u;;; yielding

eff Aa . . AZ
Hy; (0k,0u) = — 7(]5k201 —idkyoy) + A4/ 1 — ]—25uo3. (5)

Here the Pauli matrices act on a subspace defined by the two
bands that satisfy condition in equation (3). In the k-u space, the
Hamiltonian in equation (5) is a Weyl Hamiltonian that is
characterized by a unit topological charge i x j x A= £ 1. As the
chemical potential ramps through a critical point at p;j;, the
Chern number associated with the original Hamiltonian in
equation (1) changes precisely by the value of the topological
charge, or the total topological charges when multiple nodal
points occur at the same p. Therefore, by increasing p and
assuming 2t >1/J? — A%, the system exhibits phases with the
Chern numbers (see Supplementary Note 1)

C:_1707+2707_1: (6)

where we have neglected the trivial phases with p falling outside
the band width. Hence, with homogeneous magnetization, the
superconductor may already exhibit Chern number equal to 2. In
cases where magnetic impurities are spaced more sparsely, that is,
if A* is a sublattice of A, even higher Chern numbers can be
obtained.
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We solved the Hamiltonian in equation (1) numerically for the
case of one magnetic impurity every 2 x 2 and 3 x 3 plaquettes of
the square lattice, and show the phase diagrams in Fig. 2. From
the phase diagrams, we can read off three general features. First,
at small chemical potentials around the band bottom, where the
Fermi wavelengths are larger than or comparable to the lattice
spacing of A*, the sequence of Chern numbers (—1, 0, +2)
always occurs when J/t is not too large—this universal feature
corresponds to the dense limit that we have discussed above;
Second, at larger chemical potentials, more than two Fermi
surfaces can exist in the reduced Brillouin zone defined by A* as
the Fermi wavelengths are significantly smaller than the lattice
spacing of A*, as a consequence higher Chern numbers can occur
(for example, 8 in Fig. 2a and 15 in Fig. 2b) but the trade-off is an
overall smaller induced gap; Third, the phases with different
Chern numbers are generally separated by lines (in the 2D
parameter space) defined by conditions similar to equation (4),
and across each specific line the change of Chern numbers is a
constant determined essentially the same way as in our preceding
analysis.

Dilute impurity limit. To better understand the dilute impurity
limit, we complement our results on the lattice by a calculation in
which we treat the underlying 2D superconductor in the con-
tinuum limit and consider sparsely distributed Shiba impurities
that are arranged in a square lattice on top of it. This allows us to
derive an effective two-band model for the hybridizing Shiba
states. This effective Hamiltonian represents a chiral p-wave
superconductor in the appropriate parameter regime.

The strategy of our derivation is inspired by the calculation for
1D Shiba chains of Pientka et al.2? (for details, see Methods and
Supplementary Note 2). We start from a 4 X 4 Bogoliubov-de
Gennes (BdG) Hamiltonian

me— (3 4) )

that acts on 4-spinor valued wave functions V(r) = (¥, ¥,
Ul =y (), re R with &=k%/(2m) — u+olkio, — kyon).
In addition, the magnetic impurities are represented by the
Hamiltonian

H™ = —] 3" 5(r—1")Ss, (8)

rreA”
where S; = 03 ® 1, with 74 the identity matrix acting on particle-
hole space. If we restrict the wave-function ¥(r) to the locations
r*e A* of the impurities, we obtain the self-consistency equation

(B-139) (~ 5% (a) = P(a) ©)

for the Fourier transforms W(q) = Y. e " ¥(r*), where the
rreA’

momentum g€ [0,27)%> now belongs to the A* Brillouin zone and

we have set the impurity spacing to unity.

We need two more steps to reduce equation (9) to an effective
two-band model for the Shiba states, assuming they are deep in
the superconducting gap and dilute compared with the Fermi
wavelength. First, the left-hand side is expanded to linear order in
the energy E to cast the equation in the form of the time-
independent Schroedinger equation. Second, we project the
effective Hamiltonian into the eigenstates of an isolated Shiba

impurity on every site, given by ¥, = (1,0,1,0)"/v/2 and
¥_ =(0,1,0, —1)"/v/2 (ref. 29). We obtain the effective
two-band Hamiltonian

Heff _
1 n + d07q

[(1 /A d07q)0'3 —d; 401 +d1,q62]7 (10)

where

o= > ¢ L E]), (1)

r* #0

*

J —iqr- Ti "
dig=1>> e 9" L f (|r)), (12)
244, |

are defined in terms of the functions

677/4

— (1=2)/2, /@) @, T
fi(r)—nFm;;(il) Vi eos (k= 5). (13)

In the equation above, ¢ is the coherence length of the
2D  superconductor (without the magnetic impurities),

vp = /02 + 241/ m is its Fermi velocity, k(Fi> =/ 2mu+otm? F
mo are the Fermi wave-vectors for its two spin-split bands,

andn =7 [k(;) + kéf)] /4vr is a dimensionless parameter. In the
deep Shiba limit in which the projection in the states ¥, and
¥ _ is justified, we have n~1.

The Hamiltonian in equation (10) represents the effective
superconductor formed by the Shiba bound states within the gap
of the underlying s-wave superconductor. Similar to the case of
the effective two-band model in equation (5), this Hamiltonian
can have nodal points in k-u-space at which the Chern number
changes. However, unlike in equation (5), the nodes can occur at
any point in the Brillouin zone, making an analytic treatment
intractable. In addition, the validity of equation (10) requires a
self-consistency that permits the low-energy expansion of
equation (9). Therefore, instead of computing the Chern numbers
in an extended parameter space (for examples of Chern numbers
along several linecuts of the parameter space, see Supplementary
Fig. 1), we focus on information that can be obtained at special
points of the Brillouin zone at infinitesimal energy. To that end,
observe that the Hamiltonian in equation (10) has C, rotational
symmetry. Thus, any gap closing at points other than the C,-
symmetric momenta k= (0, 0) and k= (n, ) changes the Chern
number by an even integer due to the symmetry-imposed
multiplicity of the nodal points. By expanding the Hamiltonian
into Dirac form around the C,-symmetric momenta, we obtain
the expression (see Supplementary Note 2)

(— 1)C = sgn [do,(o,o)}Sgn [do.(n,n)] (n=1) (14)

0.05

Figure 3 | Phase diagram in the dilute impurity limit. Parity of the Chern
number (white for even and black for odd) for the Bogoliubov-de Gennes
band structure of an s-wave superconductor decorated with dilute Shiba
impurities, following equation (14). Here the spin-orbit coupling strength o
is scaled by the Fermi velocity vi, and the lattice spacing of the Shiba
impurities a,- is scaled by the Fermi wavelength Ar. Both vr and Ar are taken
in the limit «—0 and we have assumed the superconducting coherence
length ¢ =304¢
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for the parity of the Chern number. The numerical evaluation of
this equation is shown in Fig. 3 in the form of a phase diagram.

Helical magnetic order. We have also performed calculations for
magnetic orders other than simple ferromagnetism. In particular,
the case where the magnetic configurations corresponds to 2D
helices is related to previous studies on 1D helices®! =4,
We obtained criteria for such a system to be fully gapped
by proximity effect, and found that the fully-gapped
superconducting phases can be generically topologically
nontrivial. The results and phase diagrams are presented in
Supplementary Note 3 and Supplementary Figs 2-4.

Material proposal. We complement our simple model con-
siderations with a specific material proposal to realize a super-
conductor with nonzero Chern numbers. For that, we consider
transition metal atoms, in particular Fe, deposited on the (111)
surface of Pb, a strong type-II superconductor. The same com-
bination of materials, but a different surface of Pb, was used in the
experimental realization for the 1D p-wave superconductor?’,
The Pb atoms on the (111) surface form a triangular lattice.
Through ab-initio calculations that assume a ferromagnetic
alignment of the Fe magnetic moments and include spin-orbit
coupling, we compared the relaxation energies for various
densities and arrangements of Fe adatoms on the Pb (111)
surface, and found that a deposition with one Fe atom in each
triangular plaquette is particularly favorable (see Supplementary
Figs 5 and 6). In this case, the Fe atoms form a honeycomb lattice

R -
00

O
O
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0000

0 ©

(¢}

Band energy (eV)

in which the atoms sit at different heights in each sublattice (see
Fig. 4a). We further performed DFT calculations of the electronic
structure. The resulting (not spin-degenerate) Fermi surface and
band structure restricted to the Fe d-orbitals is shown in Fig. 4b,c.
Critically, we find an odd number of Fermi surfaces (for examples
of the Fermi surfaces at several Fermi energies, see Supplementary
Fig. 7). The Chern number of the corresponding BdG
Hamiltonian is indeed nonzero over a large range of the
chemical potential (see Fig. 4d).

Discussion

In conclusion, we have proposed a versatile platform for realizing
chiral superconductors in 2D. We have obtained analytically the
topological phase diagram (Chern number and gaps of the
superconductor) of the dilute and dense limit, and numerically
evaluated the phase diagram in the intermediate regime. We then
showed through a more realistic ab-initio calculation that
ferromagnetically ordered Fe atoms on the (111) surface of Pb
in the dense limit could give rise to a chiral superconductor.
To find flat islands of magnetic adatoms on the Pb substrate,
however, is currently an experimental challenge because under
standard growth conditions the magnetic adatoms tend to ball up
instead of making flat islands on the (111) surface of Pb
(see Supplementary Fig. 5).

The presence of a 2D chiral superconductor could be
established experimentally by tunneling into the chiral Majorana
modes, whose number is equal to the Chern number of the phase,
and which would take place only on the edge of a 2D thin island

b "

a
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3 !
I
g 2 '
@ 1
2 I
5 |
c 1 T
= I
2 I
o 0 1
I
I
—1 |
1

—0.1 0 0.1 0.2
E: (V)

Figure 4 | Fe adatoms on Pb (111) surface. Electronic structure obtained from density-functional-theory (DFT) calculations. (@) The atomic configuration:
Fe adatoms form a buckled a honeycomb lattice on the Pb (111) surface. (b) Fermi surface of the Fe d-orbitals at energy Er =0.09 eV, where the Wigner-
Seitz cell (dashed line) and the primitive vectors (arrowed lines) for the reciprocal lattice are indicated. A single Fermi surface is found around the I" point in
this case. (¢) DFT band structure of the Fe d-orbitals with spin-orbit coupling. (d) Chern number of the Bogoliubov-de Gennes bands, as a function of Fermi
energy, when s-wave superconductivity (A =0.01eV in this calculation) is introduced in the system. The green dashed lines in both (¢) and (d) mark the

same energy corresponding to the Fermi surface given in (b).
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of Fe on the surface of Pb. Such a technique has been used to
image 1D topological edge states of bismuth bilayers in
the absence of superconductivity*!. Similar observations of
quasiparticle edge modes inside the superconducting gap will be
a strong signature of topological superconductivity proposed in
this paper.

Methods

Effective Hamiltonian in the dilute impurity limit. We outline the general
formalism by which an effective Hamiltonian for bound states of a Shiba lattice can
be derived in the limit where the impurity spacing is large compared with the
spacial extend of the bound states of an isolated impurity. We want to derive the
low-energy effective theory for a Hamiltonian of the general form

H=Hy+H, H = Zvné(r—rn),

nec

(15)

where H,, is the original superconducting BdG Hamiltonian which is gapped (x A)
around zero energy, and H; is the Hamiltonian for a collection of delta-function
impurities at positions r,, where n takes values in a set ¢, for example, a lattice.
Here, V,, are matrices associated with the local degrees of freedom (such as spin
and particle-hole) which can induce in-gap states. We implicitly keep r as a
d-dimensional vector, so that the formalism is applicable for systems in any
dimension d (the same applies to r,,, n, m, k, g, R and n,, below).

We start with the Schrodinger equation for bound state wave functions ¥

(Ho+H;,)¥Y =E¥, (E<A). (16)
It follows that
Go(E)H,\¥ =P,

where Go(E) = (E — Hy) ~ ! is the Green function.
Because H; is composed of delta-functions for a small set ¢, GoH; is nonzero
only in the columns corresponding to ¢, thus equation 17 is equivalent to

(17)

> Go(E; 1, 10) Vi (1) = (1), (18)
nec
In the simplest case, if ¢ contains only one single point, labelled by 0, then
equation 18 implies
Go(E; o, 70) Vot (ro) = W (ro)- (19)
The energy of the excitations can be obtained by solving
Det[1 — Gy(E; 10, 79) Vo] = 0, (20)

(1)

In more complicated cases, the following equation, again implied by equation 18,
can serve as the starting point to extract an effective Hamiltonian

Go(E: 1o, 7o) = Go(E; 0) — /dk Go(E:K).

Vmec: Z Go (E; Ty Tn) VW (1n) = W (rm), (22)
nec
Go(E; T, tn) =Go(E; rim — 1)
’ . 23
:/ dk Go (E; k)erm =), @)
In addition, if Vn: V,, =V, and r,,=nR (neZd with d the dimension),

equation (22) can be transformed to k-space:
Y(@) =D e "Y(rn) (q€[—n/Rn/R)) (24)
= e Go(E; iy — ) Vol (1) (25)
-y / dk Go(E: K}~ 9m =) Ve~ (1) (26)
— [k Go(E: )| S o0k~ g~ 2/ )| Vb9 @)

- Ny
= Go(E; ) Vo (q), (28)
where

Go(E;q) ==Y _ Go(E;q+2mm/R). (29)

My
1, can be interpreted as the band index when the k-space is folded into the
Brillouin zone defined by [ — n/R, n/R). The application of this formalism to the
Hamiltonian in equation (7) is detailed in Supplementary Note 2 and results in the
Hamiltonian in equation (10).

6

First principle calculations. We performed electronic structure calculations
within the DFT formalism as implemented in the Vienna ab initio simulation
package*2. We used the all-electron projector augmented wave*>44 basis sets with
the generalized gradient approximation of Perdew, Burke and Ernzerhof* to the
exchange correlation potential. The Hamiltonian contains scalar relativistic
corrections, and the spin-orbit coupling was taken into account by the second
variation method?®.

In this work, we chose the host superconductor to be Pb thin film with a (111)
surface, and consider different transition metal adatoms. We started by finding the
stable configurations of the adatoms on top of the Pb surface. To this end we have
compared the relaxation energy (per atom) for an extensive collection of possible
configurations, four of which are shown in Supplementary Fig. 5. Based on this
energetic consideration and for simplicity, we adopted the configuration with two
adatoms per Pb unit cell (highlighted in Supplementary Fig. 5) in our following
simulations. When the transition metal element is chosen to be Fe, the details of
the configuration are shown in Supplementary Fig. 6. In this configuration, two
species of Fe atoms form a buckled honeycomb structure which gains bonding
energy due to the short nearest-neighbor distance.

To simulate the composite system and consider the effect of Pb, we used six
layers of Pb atoms as substrate in the relaxation calculations with roughly 15 A
vacuum space, taking into account spin-orbital coupling and the ferromagnetic
alignment of the Fe moments. We performed DFT calculations with the
abovementioned stable configuration. Based on the DFT calculations, we
constructed the maximally localized Wannier functions*”#® for Fe, and obtained a
tight-binding model with a band structure that agrees well with the DFT result.
We then used the tight-binding model and added a small s-wave superconducting
pairing term to it. We computed the Chern numbers of the thus-obtained
Bogoliubov-deGennes Hamiltonian to be nonvanishing, as shown in Fig. 4. For
completeness, we present a few more Fermi surfaces with different values of Eg in
Supplementary Fig. 7 to complement Fig. 4.
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