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Abstract
The hepatic stellate cells in the liver are stimulated 
sustainably by chronic injury of the hepatocytes, activating 
myofibroblasts, which produce abundant collagen. 
Myofibroblasts are the major source of extracellular 
proteins during fibrogenesis, and may directly, or secre-
ted products, contribute to carcinogenesis and tumor 
progression. Cancer-associated fibroblasts (CAFs) are 
one of the components of the tumor microenvironment 
that promote the proliferation and invasion of cancer 
cells by secreting various growth factors and cytokines. 
CAFs crosstalk with cancer cells stimulates tumor 
progression by creating a favorable microenvironment 
for progression, invasion, and metastasis through the 
epithelial-mesenchymal transition. Basic studies on CAFs 
have advanced, and the role of CAFs in tumors has been 
elucidated. In particular, for hepatocellular carcinoma, 
carcinogenesis from cirrhosis is a known fact, and 
participation of CAFs in carcinogenesis is supported. In 
this review, we discuss the current literature on the role 
of CAFs and CAF-related signaling in carcinogenesis, 
crosstalk with cancer cells, immunosuppressive effects, 
angiogenesis, therapeutic targets, and resistance to 
chemotherapy. The role of CAFs is important in cancer 
initiation and progression. CAF-targeted therapy may 
be effective for suppression not only of fibrosis but also 
cancer progression.
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Core tip: Cancer-associated fibroblasts (CAFs) are 
one of the most crucial components of the tumor 
microenvironment that promote the carcinogenesis, 
proliferation and invasion of cancer cells by secreting 
various growth factors and cytokines. In hepatocellular 
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carcinoma (HCC), cirrhosis caused by chronic 
inflammation was considered the main reason for 
carcinogenesis, and field cancerization was explained 
by the epigenetic changes in fibroblasts in tissues 
surrounding the tumor. In this review, we discuss 
the findings from current literature on the role of 
CAFs in HCC. CAF-targeted therapy may be effective 
for suppression not only fibrosis but also cancer 
progression.

Kubo N, Araki K, Kuwano H, Shirabe K. Cancer-associated 
fibroblasts in hepatocellular carcinoma. World J Gastroenterol 
2016; 22(30): 6841-6850  Available from: URL: http://www.
wjgnet.com/1007-9327/full/v22/i30/6841.htm  DOI: http://dx.doi.
org/10.3748/wjg.v22.i30.6841

INTRODUCTION
Hepatocellular carcinoma (HCC) is the second most 
common cause of death from cancer worldwide, 
and accounted for nearly 746000 deaths in 2012[1]. 
Malignant tumors comprise cancer cells and stromal 
cells. For a long time, the malignant potential of the 
tumor was thought to be entirely due to the cancer 
cells because the stromal cells were not undergoing 
differentiation or activate proliferation[2]. Stromal cells 
were considered to simply surround the cancer cells 
and have a non-malignant function. Recent studies 
have clarified the origins, features, and roles of the 
stromal cells.

Fibroblasts in cancer tissues are similar in mor-
phology to the myofibroblasts that are activated during 
the wound healing process[3]. Recent studies have 
shown the importance of cross talk between cancer cells 
and the fibroblasts called cancer-associated fibroblasts 
(CAFs)[4]. CAFs are active in a wound healing process 
similar to normal myofibroblasts[5], and promote tumor 
proliferation, invasion, and metastasis via secretion of 
various growth factors, cytokines and degradation of 
extracellular matrix proteins[6-8] (Figure 1). 

CAFs are large spindle-shaped mesenchymal cells 
with positive immunostaining for vimentin, alpha 
smooth muscle actin, and developed fibronexus[9,10]. 
The types of surface marker proteins on CAFs and 
non-tumoral fibroblasts (NTFs), which are primary 
cells from cirrhotic tissue, can be detected by flow 
cytometry and immunofluorescence[4]. No significant 
difference between CAFs and NTFs in surface markers 
is evident, but mRNA expression of αSMA is higher 
in CAFs compared to NTFs[4]. It has been reported 
that DNA-methylation-based epigenetic changes have 
already occurred in activated hepatic stellate cells 
(HSC)[11,12]. Therefore, NTF, which are activated HSCs 
from cirrhotic tissue, may have already undergone 
a genetic change that affects surface markers. 
Collagen 11A1 expression is a remarkable biomarker of 
human carcinoma-associated stromal cells[13]. It was 

reported that even without exposure to cancer cells, 
the tumor promoting characteristics of CAFs can be 
stably maintained[14]. There remains a persistent risk 
for HCC in patients with advanced fibrosis who have 
achieved a sustained virologic response (SVR)[15]. 
These observations indicate that genetic or epigenetic 
changes may have already existed in the CAFs 
independent of the original tumor[14]. Furthermore, 
activated HSCs can be stimulated by cancer cells, 
which then become CAFs. Details of differentiation 
into quiescent HSCs, HSCs, and CAFs is shown in the 
Table 1. Quiescent HSCs were characterized by the 
stored vitamin A with fat droplets[16] and are derived 
from the mesoderm[17]. HSCs have a function in wound 
healing and fibroblast production. Characterization of 
CAFs revealed that they were affected by cancer cells 
through “crosstalk”.

CARCINOGENESIS
It is well established in other systems that complex 
intercellular signaling networks exist between tumors 
and CAFs, contributing to cancer initiation, growth, and 
progression[18-22]. Tumor secretion of cytokines, such 
as transforming growth factor-β (TGF-β), stimulate 
myofibroblast activation leading to profound changes 
in extracellular matrix composition and organization. 
The role of mesenchymal stroma alterations in cancer 
initiation was proposed in the context of colon[23] and 
prostate[24] cancers. Chronic liver injuries caused 
by viral hepatitis, autoimmune hepatitis, alcoholic 
hepatitis, and non-alcoholic steatohepatitis activate 
and transform quiescent fibroblasts into activated 
myofibroblasts through the actions of increased growth 
factors and continued expression of inflammatory 
cytokines such as PDGF, TGF-β, TNF-α, IL-6, and IL-
1β[25,26]. Fibroblasts might be directly activated by 
hepatitis C infection, which leads to production of 
reactive oxygen species and TGF-β[27]. The activated 
fibroblasts produce massive amounts of extracellular 
matrix proteins, including type I collagen, which leads 
to liver fibrosis[28]. Persistent inflammation in chronic 
hepatitis plays a major role in the development of 
HCC[29-31]. There remains a persistent risk for HCC in 
patients with advanced fibrosis who have achieved 
SVR[15]. Around 90% of HCC cases are associated with 
fibrotic or cirrhotic livers[32,33].

Dotto[34] suggested that while changes in tumor 
stroma are frequently viewed as secondary to changes 
in the epithelium, recent evidence indicates that they 
can play a primary role in both cancer progression and 
initiation. These changes include epigenetic events 
such as loss of p53[35-37]. These processes may explain 
the phenomenon of field cancerization, namely the 
occurrence of multifocal and recurrent epithelial 
tumors that are preceded by and associated with 
widespread changes of surrounding tissue or organ 
fields[34]. It thought that epigenetic changes affect 
CAFs in HSCs in cases of liver cirrhosis that include 
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abundant fibrosis. However, gene analysis is not 
performed often enough in human HSCs of the liver 
cirrhosis or CAFs[38].

CROSSTALK BETWEEN CANCER-
ASSOCIATED FIBROBLASTS AND HCC 
CELLS
Recent studies have shown the importance of 
crosstalk between cancer cells and their stromal 
microenvironment, including HCC[4,39,40]. CAFs are the 
most important cell type in the stroma and play a 
critical role in modulating neighboring cancer cells[41]. 
CAFs stimulate malignant cell proliferation by providing 

different types of growth factors and cytokines in a 
context-dependent manner[20] such as SDF-1[42-45], 
HGF[46-48], members of the epidermal growth factor 
family[49], fibroblast growth factor (FGF)[50,51], Wnt 
families[52], forkhead box F1[53], IL-6[54-56], TGF-β[57,58], 
and EGF. When HCC cells are co-cultured with CAFs, 
CAFs induced by TIMP-1 repress HCC apoptosis with 
an increased Bcl-2/BAX ratio through SDF-1/CXCR4/
PI3K/AKT signaling[44]. Moreover, CAFs upregulated 
gene expressions of TGF-β and FAP, whereas NTFs 
did not induce the expression of either gene[4]. HGF is 
expressed by CAFs, HSCs, and myofibroblasts[48,59,60], 
and it is a highly potent hepatocyte growth factor 
regulating cell proliferation, migration, survival, and 
angioneogenesis[61-64]. IL-6 stimulated progranulin 
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Figure 1  Microenvironment to be formed with cancer-associated fibroblasts and tumor-associated macrophages. Cancer-associated fibroblasts (CAFs) 
mainly located at the tumor marginal zone and secreted the various cytokines such as HGF and crosstalk with hepatocellular carcinoma cells and stimulate the tumor 
progression, invasion and metastasis through the epithelial mesenchymal transition. TIMP-1 suppressed the tumor cell apoptosis via SDF-1/PI3K/AKT signaling. 
Angiogenesis is occured by the angiogenic factors including VEGF, PDGF, ang-1 and ang-2 secreted by CAFs. TAMs and CAFs make the microenvironment to the 
immunosuppressive condition to create favorable microenvironment for tumor progression. TAM: Tumor associated macrophage.

Table 1  Differentiation into quiescent hepatic stellate cells, hepatic stellate cells, and cancer-associated fibroblasts 

Quiescent hepatic stellate cells Hepatic stellate cells Cancer associated

(fibroblast) (myofibroblast) fibroblasts

Morphology Spindle shape with numerous 
intracellular droplets[16]

Spindle shape Spindle shape

Origin Mesoderm[17] Quiescent hepatic stellate cells Activated hepatic stellate cells
Location Space of Disse, sinusoidal spaces Periportal lesion Tumor stroma
Biological markers Desmin[17] αSMA, p75NTR[17] αSMA, COL11A1[13]

Function Store the vitamin A and fat Wound healing fibrosis Tumor progression
Cytokines - Production of the collagens, PDGF, TGF-β, 

TNF-α, IL-6, IL-1β[25,26]
production of the collagens, TGF-β, HGF, 

FGF, VEGF, IL-6[42-58], etc

p75NTR: p75 neurotrophin receptor; αSMA: Alpha smooth muscle actin; COL11A1: (pro)collagen 11A1; TGF-β: Transforming growth factor-β; HGF: 
Hepatocyte growth factor; FGF: Fibroblast growth factor; PDGF: Platelet-derived growth factor; VEGF: Vascular endothelial frowth factor; IL-6: 
Interleukin-6. 
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suppressive elements[84], including regulatory T cells 
(Tregs)[85], tumor-associated macrophages (TAMs)[86], 
and tumor-associated neutrophils (TANs)[87,88]. Among 
the immune cell types present within the HCC, TAMs 
play a leading role in the setting of the crosstalk 
between tumor and stromal cells[89]. TAMs are mainly 
polarized towards an M2 phenotype, which is a major 
component of leukocyte infiltration of tumors and 
plays a pivotal role in tumor progression of HCC[90]. 
Increased TAMs are correlated with angiogenesis, 
metastasis, and poor prognosis[91-94]. STAT3 activation 
is correlated with aggressive behavior of HCC and may 
be mediated via TAMs[95]. 

CAFs educate NK cells to acquire a deactivated 
phenotype and create an unresponsive condition in 
tumors[96]. This suppression is eliminated by indolea-
mine 2,3-dioxygenase (IDO) and/or PGE2 inhibitors[96]. 
CAFs recruit regulatory dendritic cells and educate 
them to acquire a tolerogenic phenotype through 
IL-6 mediated STAT3 activation[97] and upregulate 
the production of Tregs by secreting TGF-β in tumor 
microenvironments[98]. The mechanisms underlying 
CAFs’ immunomodulatory effects in HCC may be 
mediated via upregulation of human B7 homolog 1 
(B7-H1) in CAFs[99]. B7-H1/programmed death 1 (PD-1) 
signaling promotes Treg cell induction and immuno-
suppressive function through the down regulation 
of mTOR and AKT phosphorylation[100]. Using these 
immunosuppression effects, CAFs that receive cytokine 
signals from cancer cells produce an environment that 
is convenient for cancer cells.

ANGIOGENESIS
A hypoxic condition activates Akt, which increases 
the expression of vascular endothelial growth factor 
(VEGF), the most important angiogenic factor. The 
rapid growth of the HCC requires new vessels. CAFs 
secrete angiogenic factors, including VEGF, PDGF, MMPs, 
FDF, TGF-β1, EGF, angiopoietin-1, and angiopoietin-2, 
which have a critical role in HCC initiation, progression, 
and metastasis, and creates new vessels[101-105]. VEGF 
receptor, PDGF receptor, and Tie-2 upregulation also 
occur during CAFs activation, resulting in increased 
mitogenesis in response to VEGF[19,106-108]. VEGF 
secretion by HSCs can be hormonally induced by 
leptin, or by physical stress such as hypoxia, and is 
upregulated in HCC[104,106,109]. Conditioned medium 
from HCC cells can activate CAFs and stimulate VEGF 
production. Oxidative stress enhances the malignant 
potential of HCC through the stimulation of angiogenesis 
by activation of the Akt-VEGF pathway[110]. Angiogenesis 
is also facilitated by TAM-derived proteases because 
extracellular proteolysis is necessary for new vessel 
formation. The most prominent proteinases that 
promote tumor-directed angiogenesis include matrix 
metalloproteinase, plasmin, and urokinase-type 
plasminogen activator and its receptor[111,112].

expression contributes to the malignancy of HCC 
cells by activating mTOR signaling[56]. After the IL-6/
STAT3 pathway is activated, malignant cells proliferate 
much faster and their anti-apoptosis ability increases 
significantly[65]. TGF-β complex is secreted by most cell 
types, including human HSCs and hepatocytes[66,67]. 
TGF-β signaling promotes HCC progression by two 
mechanisms: first, via an intrinsic activity as an 
autocrine or paracrine growth factor, and second, via 
an extrinsic activity by inducing microenvironment 
changes, including CAFs activation, T regulatory cell 
increases, and inflammatory mediators[68]. A recent 
study using transgenic mice suggested that PDGF-C 
overexpressing hepatocytes causes activation of HSC, 
which in turn produces HGF and cytokines, resulting in 
the development of HCC[69]. Crosstalk between TGF-β 
and PDGF signaling supports epithelial mesenchymal 
transition (EMT), which is crucial for tumor growth and 
the acquisition of an invasive phenotype[70]. MRC-5 
fibroblast-conditioned medium influences multiple 
pathways regulating invasion in HCC[71].

Lysophosphatidic acid (LPA) is a lipid mediator 
that is involved in multiple cellular events associated 
with tumor initiation and progression, invasion, and 
metastasis[72,73]. LPA is secreted by HCC cells and 
promotes transdifferentiation of myofibroblasts by 
the paracrine mechanism and has been clearly shown 
to be a therapeutic target for tumor-CAF interactions 
in HCC[41,74]. MMP-9 is downstream of LPA and has 
been postulated to have a critical role in HCC cell 
invasion and metastasis[73] by secreting various matrix-
degrading proteases as well as their activators such as 
uPA[75].

These functions of CAFs in supporting HCC growth 
were confirmed by in vitro experiments involving 
co-culture of HCC cell lines with CAFs[4]. Remarkably, 
the activation of CAFs was maintained after their 
isolation from cells of various cancer types such as 
squamous skin carcinoma, lung carcinoma, breast 
carcinoma, and scirrhous gastric cancer[76-78]. Exposure 
to leukemia inhibitory factor initiates an epigenetic 
switch causing the constitutive activation of JAK1/
STAT3 signaling, which results in sustained activation 
of CAFs[79]. DNA methylation plays critical roles in 
the control of sustained and constitutive activation of 
signaling pathways[80]. CAF activation is accompanied 
by stromal cell senescence[81,82]. Concomitant loss 
of CSL (also known as RBP-Jk) and p53 overcomes 
fibroblast senescence, enhances expression of CAF 
effectors, and promotes stromal and cancer cell 
expansion[81] through β-galactosidase[83], IL-6, and 
IL-8[82] respectively. Xenografts in nude mice also 
demonstrated in vivo tumor growth enhancement by 
CAFs[48]. 

Immunosuppression by CAFs
There is an impaired anti-tumor response within 
the HCC microenvironment due to various immune 
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CAFS AS THERAPEUTIC TARGETS IN 
HCC
Anti-cancer therapy targeting CAFs or inhibitors of 
the cytokines secreted by CAFs has been actively 
investigated recently. Inhibitors of TGF-β signaling have 
been shown to block HCC growth and progression 
by modulating EMT in different experimental models, 
leading to the clinical investigation of a TGF-β inhibitor 
monohydrate in HCC[68]. Several receptor tyrosine 
kinase inhibitors target VEGF and PDGF. Linifanib is a 
potent inhibitor of VEGF, PDGF, PDGFR-β, KDR, and 
colony stimulating factor-1-receptor (CSF). Sunitinib 
inhibits receptors for PDGF and VEGF, as well as 
other receptor tyrosine kinases such as CSF. Some 
groups have explored active targeting of CAFs to 
deliver therapeutic compounds. This involves coupling 
the selected compound to a carrier possessing a 
specific receptor binding ligand or an antibody. 
Carriers employed have included an antibody to the 
synaptophysin receptor on CAFs, and a liposome 
specific to the vitamin A receptor on CAFs[68,113,114]. 

These therapeutic targets are several cytokines 
secreted by CAFs or signals from CAFs that stimulate 
the HCC. Liver fibrosis is treated with anti-fibrotic 
drugs that inhibit the activation of quiescent HSCs and 
promote cell death in activated HSC. If CAFs are an 
activated state of HSC, it is possible that these drugs 
were effective for CAFs. A recent report suggested some 
anti-fibrotic drugs, such as PRI-724[115], conophylline[116], 
armepavine[117], follistatin[118], salvianolic acids[119], ursolic 
acid[120], gliotoxin[121], curcumin[122], sulfasalazine[123], 
benzodiazepine[124] and tanshinone I[125], which suppress 
activated HSCs and/or induce apoptosis. It is thought 
that these drugs not only control the fibrosis, but also 
suppress the HCC by controlling the function of CAFs. 
Restraining fibrosis may lead to controlling further 
carcinogenesis according to the theories about field 
cancerization.

Fibrolamellar HCC was surrounded by laminated 
fibrous stroma[126]. It was reported the overexpression 
of fibroblast growth factor receptor 1 in fibrolamellar 
HCC[127]. CAFs stimulate tumor cells by FGF[50,51] and 
produced fibrosis. Treatment targeting CAFs is might be 
effective in a fibrolamellar HCC.

CAFs stimulate malignant cell proliferation by pro-
viding different types of growth factors and cytokines 
in a context-dependent manner[20] such as SDF-1[42-45], 
HGF[46-48], members of the epidermal growth factor 
family[49], fibroblast growth factor (FGF)[50,51].

CHEMORESISTANCE
After undergoing EMT, malignant cells become more 
resistant to chemotherapy, and those expressing 
surface molecules of stem cells increase, suggesting a 
close link between CAF-induced EMT, tumor stem cells, 
and chemoresistance of tumor cells[128,129]. miR-27 

is associated with chemoresistance in esophageal 
cancer through transformation of normal fibroblasts to 
cancer-associated fibroblasts[130]. Tumors with stromal 
phenotypes are more chemoresistant and share more 
characteristics with tumor stem cells[131]. CAFs are 
primarily resistant to chemotherapy due to a small 
proportion of proliferating cells in contrast to malignant 
cells[132]. CAFs induce high mobility group box 1 and 
contribute to resistance to doxorubicin in breast cancer 
cells[133]. CAFs attenuate the sensitivity to cisplatin in 
ovarian cancer cells by promoting STAT3 signaling[134]. 
These findings about a connection between CAFs and 
chemoresistance are from recent studies, and the 
mechanisms of resistance are still unclear.

CONCLUSION
CAFs are one of the most crucial components of the 
tumor microenvironment that promote the growth 
and invasion of cancer cells by various mechanisms. 
Chronic inflammation was previously considered 
the main reason for carcinogenesis leading to HCC. 
However, there remains a persistent risk for HCC in 
patients with advanced fibrosis who have achieved 
SVR[15]. These results suggest that procancer stromal 
alterations were made by the CAFs and CAFs related 
cells. In conclusion, CAFs are important for cancer cell 
initiation and progression, and therapy targeting CAFs 
may be effective for treating fibrosis and preventing 
HCC progression. 
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