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Abstract
Drug resistance develops in nearly all patients with 
colon cancer, leading to a decrease in the therapeutic 
efficacies of anticancer agents. This review provides 
an up-to-date summary on over-expression of ATP-
binding cassette (ABC) transporters and evasion of 
apoptosis, two representatives of transport-based and 
non-transport-based mechanisms of drug resistance, 
as well as their therapeutic strategies. Different ABC 
transporters were found to be up-regulated in colon 
cancer, which can facilitate the efflux of anticancer 
drugs out of cancer cells and decrease their therapeutic 
effects. Inhibition of ABC transporters by suppressing 
their protein expressions or co-administration of 
modulators has been proven as an effective approach 
to sensitize drug-resistant cancer cells to anticancer 
drugs in vitro . On the other hand, evasion of apoptosis 
observed in drug-resistant cancers also results in drug 
resistance to anticancer agents, especially to apoptosis 
inducers. Restoration of apoptotic signals by BH3 
mimetics or epidermal growth factor receptor inhibitors 
and inhibition of cancer cell growth by alternative cell 
death pathways, such as autophagy, are effective 
means to treat such resistant cancer types. Given that 
the drug resistance mechanisms are different among 
colon cancer patients and may change even in a single 
patient at different stages, personalized and specific 
combination therapy is proposed to be more effective 
and safer for the reversal of drug resistance in clinics.
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Core tip: Drug resistance in colon cancer is still an 
obstacle to successful chemotherapy. This review focuses 
on over-expression of ATP-binding cassette transporters 
and evasion of apoptosis, two representatives of 



A number of underlying mechanisms conferring 
drug resistance have been described in the past 
decades, which have been broadly classified into two 
categories: the non-cellular and cellular resistance 
mechanisms. Non-cellular mechanisms refer to 
the extracellular factors, such as limited vascular 
accessibility and tumor microenvironment[10]. Cellular 
mechanisms, on the other hand, are mainly concerned 
with the drug targets, enzymes and transport systems 
inside the cancer cells[11], which are further divided 
into two categories: classical/transport-based and non-
classical/non-transport-based mechanisms[11]. Since 
the experimental models can be easily generated by 
in vitro selection with cytotoxic compounds, cellular 
mechanisms of drug resistance in cancer have been 
intensively studied so far[12]. Given the accumulating 
literature regarding this field, the present review 
will focus on cellular mechanisms of drug resistance 
in colon cancer and its reversal strategies, with an 
emphasis on the over-expression of drug efflux 
transporters and evasion of apoptosis, two represen-
tatives of transport-based and non-transport-based 
cellular mechanisms, respectively.

TRANSPORT-BASED CELLULAR 
MECHANISMS
The transport-based cellular mechanisms of drug 
resistance mainly refer to the efflux of drugs out of 
cancer cells through a variety of membrane transporters, 
thereby leading to decreased intracellular accumu-
lation of anticancer drugs and chemotherapy failure. 
Membrane transporters are a group of membrane-
associated proteins that control the transport of their 
substrates into and out of the cells[13]. To date, more 
than 400 membrane transporters have been annotated 
in the human genome, and they are divided into two 
major superfamilies: ATP-binding cassette (ABC) and 
solute carrier (SLC) transporters. Representative ABC 
transporters include P-gp, breast cancer resistance 
protein (BCRP) and multidrug resistance-associated 
proteins (MRPs); whereas, transporters such as the 
organic anion transporters, organic cation transporters 
and organic anion transporting polypeptides belong to 
the SLC superfamily[13,14]. In fact, the most commonly 
observed mechanism conferring drug resistance in 
cancer cells is the over-expression of ABC transporters 
on plasma membrane[15].

ABC transporters
The ABC transporter superfamily includes a number 
of transporters located on the cellular plasma mem-
brane that mediate the efflux of endogenous and 
exogenous substances using energy provided by ATP 
hydrolysis[13]. There are at least 48 known human ABC 
transporters. Based on their amino acid sequences, 
they are grouped into 7 subfamilies, designated A 
though G[13]. It has been recognized that several 
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transport-based and non-transport-based mechanisms 
of drug resistance, as well as their therapeutic 
strategies. Given that the drug resistance mechanisms 
are different among colon cancer patients and may 
change even in a single patient at different stages, 
personalized and specific combination therapy is 
proposed to be more effective and safer for the reversal 
of drug resistance in the clinical setting.
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2016; 22(30): 6876-6889  Available from: URL: http://www.
wjgnet.com/1007-9327/full/v22/i30/6876.htm  DOI: http://dx.doi.
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INTRODUCTION
Colon cancer, a disease during which malignant tumors 
form in the tissues of colon, is the third most frequently 
diagnosed cancer and one of the leading causes of 
cancer-related deaths worldwide[1-3]. Currently, surgery 
and chemotherapy are the two main treatment 
options for colon cancer, depending on the cancer 
stages and tumor location at diagnosis, as well as 
individual characteristics of the patients[4]. Generally, 
chemotherapy can be used at different stages during 
the treatment and is often given after surgery as an 
adjuvant therapy for patients with advanced colon 
cancer. It is also used before surgery as neoadjuvant 
chemotherapy to shrink the tumor before removal[5]. 
Due to the availability of various chemotherapy 
regimens, the overall survival of patients with advanced 
colon cancer has been improved over the past decades. 
However, even though the response rate to current 
systemic chemotherapies can reach up to 50%, drug 
resistance reportedly develops in nearly all patients 
with colon cancer and limits the therapeutic efficacies 
of anticancer agents and finally leads to chemotherapy 
failure[6].

Drug resistance is the reduction in effectiveness 
of drugs, including antibiotics, antiviral and chemo-
therapeutic agents, during the treatment of various 
diseases[7]. Cancer drug resistance has been exten-
sively investigated since the discovery of a novel type 
of resistance correlated with P-glycoprotein (P-gp) in 
several Chinese hamster ovary cell lines in 1976[8]. 
It refers to resistance to a variety of structurally and 
functionally unrelated chemotherapeutic agents after 
exposure to a single cytotoxic compound. Till now, 
multidrug resistance in cancer is still an obstacle to 
successful chemotherapy[9]. In fact, most cancer-
related deaths are due to chemotherapy failure caused 
by drug resistance that occurs during the course 
of cancer progression and chemotherapy. Thus, 
investigation of the mechanisms of drug resistance 
and their reversal strategies plays an important role in 
the success of cancer chemotherapy.



members of three ABC subfamilies - in particular P-gp 
of the ABCB subfamily, MRP1 of the ABCC subfamily 
and BCRP of the ABCG subfamily - play pivotal roles in 
the transport of anticancer drugs out of cells, as well 
as in the development of drug resistance.

P-gp, a 170-kDa protein encoded by the human 
ABCB1 gene, is one of the most well characterized 
ABC transporters. As an ATP-dependent drug efflux 
pump, the functional unit of P-gp consists of two 
nucleotide-binding domains (NBDs) and two trans-
membrane domains (TMDs) containing 12 (2 × 6) 
membrane-spanning alpha helices (Figure 1)[16]. The 
two NBDs form a common binding site, where the 
energy of ATP is harvested to promote the efflux 
of substrates through a pore that is delineated by 
the transmembrane helices[17]. P-gp preferentially 
transports relatively large, lipophilic and positively 
charged molecules[13]. The 190-kDa MRP1, encoded 
by ABCC1 in humans, has a P-gp-like core structure 

containing two NBDs and two TMDs, and an additional 
third TMD (TMD0) with five predicted transmembrane 
segments and an extra N-terminus (Figure 1)[18]. 
Generally, the substrates of MRP1 are unconjugated 
and conjugated organic anions. The conjugation 
of drugs with glutathione, glucuronate, phosphate 
or sulfate by phase Ⅱ drug-metabolizing enzymes 
usually makes them better substrates of MRP1[13]. 
Unlike P-gp and MRP1, however, BCRP is a 72-kDa 
“half transporter” encoded by ABCG2 in humans and 
consisting of only one NBD and one TMD (Figure 1)[19]. 
BCRP also transports a broad range of endogenous 
and exogenous substrates across the cellular plasma 
membrane[13].

Physiologically, ABC transporters are expressed in 
important biological barriers in the body, such as small 
intestine, liver, kidney, blood-brain barrier, choroid 
plexus, testis and placenta, functioning to pump their 
substrates out of the cells and protecting the body 
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Figure 1  Schematic model of ATP-binding cassette transporters P-glycoprotein, multidrug resistance-associated protein 1 and breast cancer resistance 
protein. The functional unit of P-gp consists of two NBDs and two TMDs containing 12 (2 × 6) membrane-spanning alpha helices. MRP1 also has a core structure 
containing two NBDs and two TMDs. Besides, it still has a third TMD (TMD0) with five predicted transmembrane segments and an extra N-terminus. BCRP is a "half 
transporter", consisting of only one NBD and one TMD. BCRP: Breast cancer resistance protein; MRP1: Multidrug resistance-associated protein 1; NBD: Nucleotide-
binding domain; P-gp: P-glycoprotein; TMD: Transmembrane domain.
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1beta in HT29 cells was demonstrated to be related to 
nitric oxide-related signaling pathways[37].

Induction of BCRP was also observed during the 
acquirement of resistance to anticancer drugs. In 
fact, it was cloned from human colon carcinoma 
cells S1-M1-80 after selection with mitoxantrone[38]. 
Dramatically over-expressed BCRP mRNA was also 
detected in HT29 cells selected with mitoxantrone[39]. 
The resistance of HT29 cells to doxorubicin was also 
shown to be mediated by elevated BCRP expression, 
which was associated with c-MET/PI3K signaling[40]. In 
Caco-2 cells after chronic exposure to imatinib, BCRP 
expression was found to be up-regulated by 17-fold[27]. 
The mRNA expression of BCRP in SW1116 cells 
resistant to hydroxycamptothecin, a topoisomerase 
I inhibitor, was 200-fold higher than its level in the 
parental SW1116 cells[41]. Up-regulation of MRP2 and 
BCRP was also involved in the cisplatin-induced drug 
resistance in colon cancer cells Caco-2 and LS174T[42]. 
In HCT8 cells with BCRP expression, the intracellular 
accumulation of CI1033, a tyrosine kinase inhibitor 
and BCRP substrate, was reduced. By inhibition of 
BCRP-mediated drug efflux, CI1033 enhanced the 
cytotoxicities of SN-38 and topotecan in HCT8 cells[43]. 
Besides, expression of P-gp and BCRP was significantly 
higher in side population (SP) colon cancer cells than 
in non-SP cells, which conferred the higher resistance 
of SP cells to 5-FU and irinotecan[44].

Besides P-gp, MRP1 and BCRP, several other ABC 
transporters could also be induced by anticancer drugs 
in colon cancer cells and play roles in drug resistance. 
For instance, ABCB5 expression was substantially 
increased in clinical colorectal cancers after 5-FU-based 
chemotherapy and contributed to the development 
of resistance to 5-FU[45]. Based on an analysis of 45 
patients, MRP2 was reported to be important for the 
resistance of colon cancer to cisplatin treatment[46], 
and its level was also increased in SW620 and LoVo 
cells selected by oxaliplatin[20]. MRP4 and MRP5 were 
also induced in WiDr and COLO-205 cells treated with 
celecoxib at a clinically relevant concentration[47]. Taken 
together, these findings suggest that over-expression 
of ABC transporters could be induced by various 
anticancer drugs and that ABC transporters contribute 
to both intrinsic and acquired drug resistance in colon 
cancer.

As shown in Figure 2, the over-expression of ABC 
transporters can facilitate the efflux of their substrate 
anticancer drugs out of cancer cells, which consequently 
decreases the drug intracellular concentrations and 
therapeutic effects, giving rise to drug resistance[48]. So 
far, a number of clinically used anticancer drugs have 
been identified as the substrates of ABC transporters. 
A non-exhaustive list is shown in Table 1. Some of 
the anticancer drugs such as 5-FU, oxaliplatin and 
irinotecan are often used alone or as combination 
therapy for the treatment of advanced colon cancer. 
Thus, efflux of these drugs by ABC transporters can 

against endogenous toxins and xenobiotics[13]. These 
biological barriers are also important tissues involved in 
the disposition of various drugs in the body. Thus, from 
a pharmacokinetic point of view, ABC transporters 
play pivotal roles in the absorption, distribution and 
excretion of anticancer drugs, and thereby affect their 
efficacy and safety profiles.

Over-expression of ABC transporters in cancer cells
In addition to their physiological roles in host detoxi-
fication and pharmacokinetics, dysregulation of ABC 
transporters is associated with a variety of diseases. 
ABC transporters, in particular the P-gp, MRP1 and 
BCRP, have been reported to be up-regulated in 
different tumors and over-expressed in various cancer 
cells cultured under specific microenvironments, such 
as conditions of insult by different cytotoxic agents[20-22].

The involvement of P-gp in clinical tumors has 
been extensively characterized. Approximately 50% 
of human cancers express P-gp at levels sufficient to 
confer drug resistance[23]. Colon cancer is insensitive 
to most chemotherapeutic agents from the beginning 
of therapy. Indeed, high expression of P-gp has been 
observed at the time of colon cancer diagnosis, which 
is associated with the intrinsic resistance of various 
colon cancer cell lines to anticancer drugs derived from 
natural products[24-26]. P-gp expression is also inducible 
by chemotherapeutic agents in cancer cells. For 
instance, its expression level was up-regulated by 5-fold 
in Caco-2 cells after chronic exposure to imatinib[27]. 
Using HCT15 colon cancer cells, nuclear factor- 
kappaB (NF-κB) activation was reported to induce P-gp 
expression, and inhibition of NF-κB or P-gp to increase 
the level of apoptosis induced by daunomycin[28]. 
Hypoxia-inducible factor-1alpha (HIF-1α) was also 
reported to be associated with the expression of P-gp 
in human colon carcinoma tissues and colon cell lines, 
including HCT116, HT29, LoVo and SW480[29]. Down-
regulation of P-gp by HIF-1α inhibition reversed the 
drug resistance in LoVo multicellular spheroids[30]. 
Besides, suppression of P-gp via inhibition of transient 
receptor potential channel 5 also reversed the resis-
tance of human colon cancer HCT8 and LoVo cells to 
5-fluorouracil (5-FU), the first-line drug used for colon 
cancer therapy[31]. Thus, multiple signaling pathways 
are involved in the regulation of P-gp in cancer cells.

Increased expression of MRP1 also occurs early in 
colorectal carcinogenesis in humans[32]. Up-regulation 
of MRP1 was found during the development of drug 
resistance in the HT29 colon cancer cells[33]. Besides, 
MRP1 and MRP3 were induced by non-steroidal anti-
inflammatory drugs in the human colon cancer cells 
HCT15, HT29 and HCA7[34]. The activities of MRP1 
and BCRP were increased in HT29 cells treated with 
hypericin and in turn affected the accumulation of 
hypericin in cancer cells[35]. Like P-gp, the MRP1 
gene can also be induced by HIF-1α in LoVo cells[36]. 
Induction of MRP1 gene expression by interleukin-
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decrease their therapeutic efficacies for colon cancer. 
In terms of the transport of chemotherapeutic agents, 
of note, the substrate specificity of ABC transporters 
overlaps extensively, which increases the barrier 
function of these efflux transporters and makes the 
chemotherapy of drug-resistant cancer more difficult.

Modulation of ABC transporters to reverse drug 
resistance
Given that over-expression of ABC transporters is 
one of the most commonly observed mechanisms 
contributing to drug resistance in cancer cells, inhibition 
of these transporters is proposed to be an effective 
approach to sensitize drug-resistant cancer cells to 
chemotherapeutic agents[15]. One method to suppress 
the ABC transporters is to regulate their expression 
levels. Different antisense oligonucleotides, ribozymes 
and small interfering RNAs have been reported to 
successfully reduce the expression levels of ABC trans-
porters and reverse the drug resistance in cancer cells 
over-expressing these transporters[49-53]. Besides the 
regulation of protein expression, another important 
method to inhibit ABC transporters is the co-admini-

stration of their inhibitors, of which the P-gp inhibitors 
will be discussed in detail in this review.

Since the discovery of P-gp inhibition by verapamil in 
1981, at least three generations of P-gp inhibitors have 
been identified[54]. The first-generation P-gp inhibitors, 
including quinidine, verapamil and cyclosporine A, 
have relatively low affinity for P-gp, which requires the 
treatment of high doses and leads to severe side effects 
when co-administrated with anticancer drugs[54]. Most of 
the second-generation P-gp inhibitors are derivatives of 
the first-generation modulators, such as dexverapamil, 
valspodar and biricodar. As compared with the first 
generation, the second-generation inhibitors are more 
specific for P-gp, with greater potency and less toxicity. 
However, they also inhibit the metabolism and excretion 
of co-administrated drugs, resulting in unpredictable 
pharmacokinetic interactions[54]. To overcome this 
drawback, the third generation of P-gp inhibitors was 
investigated, most of which have been developed by 
combinatorial chemistry. Some representatives include 
tariquidar, zosuquidar and laniquidar, and a number 
of new tariquidar derivatives have also shown potent 
inhibition on P-gp in cell-based studies[55]. They are 
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Figure 2  Over-expression of ATP-binding cassette transporters and evasion of apoptosis confer drug resistance in cancer. Over-expression of ABC 
transporters on the plasma membrane, a transport-based cellular mechanism of drug resistance, can mediate the efflux of their substrate anticancer drugs out 
of cancer cells, and decrease their intracellular accumulation and therapeutic efficacies. On the other hand, evasion of apoptosis, a non-transport-based cellular 
mechanism of drug resistance, also leads to the resistance of cancer cells to therapeutic agents, in particular apoptosis inducers. Generally, DNA damage caused by 
anticancer drugs activates p53, which triggers apoptosis through targeting Bax. p53 also suppresses anti-apoptotic protein Bcl-2 and promotes apoptosis. However, 
anti-apoptotic proteins, such as Bcl-2 and Mcl-1, are over-expressed in various cancers, whereas the pro-apoptotic proteins including p53, Bax and Bim are mutated 
or suppressed. The alteration of these proteins decreases the sensitivity of cancer cells to DNA-damaging agents and leads to their resistance to apoptosis. Besides, 
protein tyrosine kinase EGFR is also over-expressed in tumors, through its regulation of anti-apoptotic signaling pathways, including PI3K/Akt and STATs. Over-
expression of EGFR also contributes to the resistance of cancer cells to apoptosis. ABC: ATP-binding cassette; EGFR: Epidermal growth factor receptor; STAT: Signal 
transducer and activator of transcription. 
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more specific for P-gp without affecting the activity of 
cytochrome P450 enzymes[54,56].

All three generations of P-gp inhibitors have been 
reported to dramatically sensitize various drug-resistant 
cancer cells to the known P-gp substrate anticancer 
drugs in vitro[57]. Some of them, such as verapamil, 
cyclosporine A, dexverapamil, valspodar and tariquidar, 
have also been studied as chemosensitizers in clinical 
trials[58-62]. However, so far, none of them has been 
used in the clinical setting because of such undesirable 
drawbacks as poor selectivity, low potency, high toxicity 
and unpredictable pharmacokinetic interactions[54]. 
In order to develop novel P-gp inhibitors with good 
safety and efficacy profiles, nowadays, a lot of research 
work is focused on natural products and subsequent 
structural modifications, owing to their versatile 
applications and relatively low toxicities[63].

The P-gp modulators from natural products belong 
to the fourth generation of P-gp inhibitors[64]. In fact, 
more than 70% of the inhibitors reported in the last 
decade were natural products and their synthetic 
derivatives[65]. Some of them were able to sensitize 
drug-resistant colon cancer cells. For instance, crypto-
tanshinone and dihydrotanshinone, the two tanshinones 
from Salvia miltiorrhiza, were reported to inhibit P-gp 
function and enhance the cytotoxicities of doxorubicin 
and irinotecan in SW620 Ad300 cells over-expressing 
P-gp[66]. Sipholenol A, a marine-derived triterpene, also 
specifically reversed P-gp-mediated drug resistance in 
SW620 Ad300 cells[67]. Using an in situ cancerous colon 
perfusion model in rat, curcumin was shown to increase 
the permeability of irinotecan via inhibition of P-gp 
function[68].

In addition to P-gp inhibitors, modulators of other 
ABC transporters have also been identified and shown 
as capable of sensitizing drug-resistant cancer cells. 
Selective inhibitors of P-gp, MRP1 and BCRP are 
summarized in Table 1. However, most of the current 
findings were obtained from cell-based studies, 
and the in vivo effects of these potential candidates 
have not been well investigated[69]. Thus, pre-clinical 

and clinical trials including both pharmacodynamic 
and pharmacokinetic studies should be carried out 
for their further development as chemosensitizers. 
Nevertheless, the development of novel inhibitors 
of ABC transporters is an important approach to 
overcoming drug resistance in various cancers, 
including colon cancer.

NON-TRANSPORT-BASED MECHANISMS
The non-transport based mechanisms of drug resi-
stance are often associated with altered activities of 
specific enzymes and alterations in various cell death 
signaling pathways. For instance, over-expression 
of glutathione S-transferases (GSTs), the phase Ⅱ 
metabolic enzymes involved in drug metabolism, can 
facilitate the anticancer drug detoxification in cancer 
cells and decrease their therapeutic effects[70,71]. Down-
regulation of topoisomerases, enzymes that regulate 
the process of DNA replication, can also cause drug 
resistance of cancer cells to such anticancer drugs as 
doxorubicin and etoposide[72]. In addition to the change 
of enzymes, another important non-transport-based 
mechanism of drug resistance is the alterations in 
cell death signaling pathways, in particular apoptosis, 
the type Ⅰ programmed cell death[73]. This type of 
drug resistance develops with the over-expression of 
proteins that inhibit cell death and/or with the loss 
of proteins required for cell death[74-76]. Most of the 
conventional anticancer drugs such as doxorubicin, 
cisplatin, oxaliplatin and cyclophosphamide are apop-
tosis inducers[77], therefore, defects in the apoptotic 
signaling pathways could protect cancer cells from 
this type of programmed cell death, leading to drug 
resistance to chemotherapy in the clinical setting.

Programmed cell death: Apoptosis and autophagy
Programmed cell death, which has been recognized 
since the 1960s, is any type of cell death in which 
the cell uses specialized intracellular machinery to 
kill itself[78]. Apoptosis, the best-described type of 
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Table 1  Selective anticancer drug substrates and inhibitors of ATP-binding cassette transporters P-glycoprotein, multidrug 
resistance-associated protein 1 and breast cancer resistance protein

Transporters Anticancer drug substrates Inhibitors Ref.

P-gp (ABCB1) Actinomycin D, bisantrene, colchicine, daunorubicin, 
dasatinib, docetaxel, doxorubicin, epirubicin, etoposide, 
imatinib, irinotecan, mitoxantrone, nilotinib, paclitaxel, 

saquinavir, teniposide, topotecan, vinblastine, vincristine, 
vindesine, vinorelbine

Biricodar, chloroquine, cryptotanshinone, curcumin, 
cyclosporin A, dexverapamil, dihydrotanshinone, 

dofequidar, laniquidar, nifedipine, quinidine, 
sipholenol A, tamoxifen, tariquidar, valspodar, 

verapamil, zosuquidar

[12,66-68,132,133]

MRP1 (ABCC1) Colchicine, doxorubicin, etoposide, imatinib, irinotecan, 
methotrexate, mitoxantrone, saquinavir, topotecan, 

vinblastine, vincristine

Biricodar, celecoxib, curcumin, dinaciclib, 
dofequidar, flavonoids, ibrutinib, myricetin, 

sulindac, tariquidar

[133-141]

BCRP (ABCG2) Bisantrene, daunorubicin, doxorubicin, etoposide, 
gefitinib, imatinib, irinotecan, methotrexate, 

mitoxantrone, SN-38, teniposide, topotecan, vincristine

Biricodar, corticosterone, curcumin, cyclosporin A, 
elacridar, gefitinib, imatinib, ketoconazole, lopinavir, 

nifedipine, quercetin, rotenoids, stilbenoids, 
tariquidar, tectochrysin

[12,142-146]



programmed cell death, is triggered by different 
extracellular and intracellular signals and characterized 
by cell shrinkage, chromatin condensation, DNA 
laddering and nuclear fragmentation[79]. The extra-
cellular signals include hormones, nitric oxide, growth 
factors, cytokines, toxins and chemotherapeutic 
agents; whereas, the intracellular apoptotic signals 
are often initiated in response to various stresses, 
such as radiation, heat, hypoxia, viral infection, 
nutrient deprivation and increased intracellular calcium 
concentration[79]. Through elimination of damaged, 
unnecessary and old cells, apoptosis plays an impor-
tant role in the body growth and development as well 
as in maintaining the health of the body. Impaired 
apoptosis is involved in a diverse range of diseases 
such as viral infections, inflammatory diseases, 
autoimmune diseases and cancers[80,81].

Macroautophagy (hereafter referred to as auto-
phagy), type Ⅱ programmed cell death, is charac-
terized by the degradation of cellular components 
including Golgi apparatus, mitochondria, polyribosomes 
and endoplasmic reticulum as well as the formation of 
numerous autophagosomes[82]. Autophagy is activated 
in response to stressful stimuli, including starvation, 
hypoxia and high temperature or intracellular stress 
such as damaged organelles and mutant proteins. 
During the cellular process of autophagy, the redundant, 
damaged or aged organelles and cells are sequestered, 
degraded and recycled[83]. One important function 
of autophagy is to overcome stress conditions and 
maintain cellular homeostasis. Conversely, excessive 
activation of autophagy may lead to cell death by 
destroying major proportions of the cytoplasm[84]. Impaired 
autophagy is also involved in various diseases including 
neurodegeneration, cardiovascular diseases, auto-
immune diseases, aging, rheumatoid arthritis, infection 
and cancers[85]. Currently, the role of autophagy in 
tumorigenesis is still controversial. Autophagy can 
promote the survival of rapidly growing cancer cells by 
targeting damaged or aged organelles for degradation 
and recycling. On the other hand, its death-promoting 
effect may lead to growth inhibition of cancer cells and 
suppress tumorigenesis[86]. As a double-edged sword in 
cancer, the function of autophagy may differ at different 
stages of cancers[87].

Evasion of apoptosis in cancer cells
Evasion of apoptosis, one of the hallmarks of human 
cancers, contributes to carcinogenesis and tumor 
progression, as well as drug resistance in cancer[73]. 
Indeed, suppression of apoptosis has been observed in 
drug-resistant cancer cells, leading to drug resistance 
to chemotherapeutic agents, especially to apoptosis 
inducers[88,89]. Resistance to apoptosis in cancer cells 
is often associated with increased expression of anti-
apoptotic genes and proteins, as well as decreased 
expression of pro-apoptotic genes and proteins (Figure 
2)[90]. For instance, Bcl-2, Bcl-XL, Mcl-1 and X-linked 
inhibitor of apoptosis protein have been found to be 

over-expressed in various cancers, whereas p53, Bax, 
Bim, p53 up-regulated modulator of apoptosis and 
apoptotic protease activating factor 1 are mutated or 
suppressed[90]. Indeed, in colon cancer SW620 Ad300 
cells over-expressing P-gp, which were selected by 
doxorubicin and resistant to apoptosis, Bcl-2 protein 
level was significantly up-regulated as compared to the 
parental SW620 cells, whereas Bax and p53 levels were 
down-regulated[91]. Loss of Bax expression was found 
to reduce the sensitivity of colon cancer cells HCT116 to 
apoptosis induced by 5-FU and oxaliplatin[92]. Besides, 
epidermal growth factor receptor (EGFR), a protein 
tyrosine kinase, was also over-expressed in colorectal 
tumors[93]. Through its regulation on the anti-apoptotic 
signaling pathways including PI3K/Akt and signal 
transducer and activator of transcription (STAT), over-
expression of EGFR also contributes to the resistance of 
cancer cells to apoptosis (Figure 2)[94,95]. Nevertheless, 
these altered genes and proteins are potential targets 
for the development of novel anticancer drugs and 
successful chemotherapy for cancers resistant to 
apoptosis.

As the most frequent mutant gene in cancer, tumor 
suppressor p53 plays a pivotal role in the regulation 
of apoptosis and in the protection of the body against 
cancer. The p53 protein is a transcriptional factor 
activated and stabilized by post-translational modifi-
cations following DNA damage (Figure 2)[96]. Usually, 
p53 executes its function through the transactivation of 
target genes that are mainly involved in the regulation 
of cell cycle arrest and apoptosis[97,98]. When DNA is 
slightly damaged, activation of p53 results in G1 phase 
cell cycle arrest by targeting p21 and the subsequent 
inhibition of cyclin-dependent kinases, to allow DNA 
repair to proceed. However, if DNA damage is severe 
and cannot be repaired successfully, p53 triggers 
apoptosis through targeting of Bax, which is essential 
for mitochondrial outer membrane permeabilization, 
cytochrome c release and caspase activation[99]. 
In addition, the anti-apoptotic protein Bcl-2 is also 
suppressed by wild-type p53, and its down-regulation 
by p53 promotes apoptosis[100]. 

Mutated p53 has been found in more than 50% 
of all types of human cancers[101]. In fact, loss of p53 
function was found in approximately 80% of colorectal 
cancers[102]. The majority (> 75% in colorectal 
carcinomas) of the mutations are missense mutations 
consisting of single amino acid substitutions, which 
affect the responses of cancer cells to chemotherapeutic 
agents[103]. In contrast to wild-type p53, mutant p53 
attenuates its pro-apoptotic function and inhibits wild-
type p53 function. As a result, the suppression or loss 
of wild-type p53 function could decrease the sensitivity 
of cancer cells to DNA-damaging agents and facilitate 
evasion of p53-mediated apoptosis (Figure 2)[104]. 
Although the apoptotic signaling pathways are not 
totally inactivated in p53 mutant cancer cells, the cells 
become insensitive to DNA damage, thereby increasing 
the threshold required for DNA damage to activate 
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apoptosis and finally giving rise to drug resistance to 
apoptosis inducers[105].

Accumulating evidence has demonstrated that p53 
mutant or null cancer cells tend to be more resistant 
to a range of cytotoxic drugs, including DNA cross-
linking agents, antimitotic agents, antimetabolites 
and topoisomerase Ⅰ/Ⅱ inhibitors, as compared with 
their respective p53 wild-type cells[106,107]. It has been 
reported that apoptosis induced by 5-FU and oxaliplatin 
was significantly reduced in p53 mutant HCT116 
cells, when compared with the p53 wild-type cells[108]. 
Disruption of p53 function also led to the resistance 
of human colon cancer cells to 5-FU both in vitro and 
in xenograft tumors in nude mice[109]. Besides, clinical 
study showed that colorectal tumors with mutant 
p53 had weak or no response to 5-FU treatment, and 
patients with wild-type p53 colorectal tumors had 
longer survival than those with mutant p53 tumors[110]. 
Of note, the extent of resistance for different agents is 
different, partly depending on the cancer cell lines, the 
p53 gene status and the mechanisms of action of the 
agents[107]. For instance, the sensitivity of colon cancer 
cells to irinotecan is independent of p53 status in xeno-
transplanted colorectal tumors[111]. 

Strategies to overcome resistance to apoptosis
Since apoptosis is suppressed in drug-resistant cancer 
cells, restoration of apoptotic signals and inhibition of 
cancer cell growth by alternative cell death pathways 
are proposed to be effective means to treat such 
resistant cancers. 

To restore the impaired apoptotic signals in cancer 
cells, BH3 mimetics, small molecules that mimic the 
BH3-only proteins by inserting their BH3 domain into 
the hydrophobic groove of the Bcl-2 proteins, were 
developed to inhibit the function of Bcl-2 proteins 
and induce apoptosis[112]. A number of BH3 mimetics 
were reported to induce apoptosis and sensitize the 
apoptosis-resistant colon cancer cells to anticancer 
drugs. For example, combination treatment of carfil-
zomib and ABT-263, a BH3 mimetic, synergistically 
enhanced apoptosis in colon cancer cells with mutant 
KRAS-mediated apoptosis resistance[113]. Another BH3 
mimetic, obatoclax, was shown to reduce HIF-1α level 
in colon cancer cells HT29, HCT8 and HCT116 and 

to sensitize the hypoxic cells to apoptosis induced by 
5-FU[114]. BH3 mimetic ABT-737 was able to overcome 
resistance to immunotoxin-mediated apoptosis in 
colon cancer DLD1 cells. It also increased the level of 
apoptosis in suspended SW480 cells and sensitized the 
metastatic SW620 cells to anoikis[115,116]. In addition 
to BH3 mimetics, EGFR tyrosine kinase inhibitors 
are also used to restore the apoptosis function in 
cancer cells. Some inhibitors including cetuximab and 
panitumumab have already been approved by the 
United States’ Food and Drug Administration for the 
treatment of advanced colon cancer as monotherapy 
or adjuvant therapy. Combination treatment of 
irinotecan with cetuximab could overcome resistance 
to irinotecan through abrogating drug efflux, restoring 
apoptosis and impairing DNA-repair activity[117]. This 
combination of treatment was also used to treat 
patients with metastatic colorectal cancer resistant 
to fluoropyrimidine and oxaliplatin[118]. A list of BH3 
mimetics and EGFR inhibitors with the activity to 
restore apoptotic signals is presented in Table 2.

In terms of alternative cell death pathways, despite 
the finding that autophagy can protect cancer cells 
against apoptosis in response to chemotherapy, it can 
also lead to cell death in cancer cells, especially in 
the apoptosis-resistant cancer cells[119]. The pro-cell 
death function of autophagy suggests that treatment 
of autophagy inducers may be a novel therapeutic 
approach to overcome resistance to apoptosis in 
cancer cells. As reported, the DNA-alkylating agent 
temozolomide, and rapamycin, an inhibitor of the 
mammalian target of rapamycin, induced autophagy 
but not apoptosis in malignant glioma cells that highly 
express Bcl-2[120,121]. Histone deacetylase inhibitors 
sodium butyrate and suberoylanilide hydroxamic acid 
induced autophagy in HeLa cervical cancer cells over-
expressing Bcl-XL, but induced apoptosis in parental 
HeLa cells[122,123]. Cryptotanshinone and dihydro-
tanshinone also induced more autophagic cell death 
in apoptosis-resistant colon cancer cells than that in 
the parental cancer cells[91]. In addition, a number 
of structurally different natural products, such as 
curcumin, resveratrol, paclitaxel and quercetin, have 
been shown to activate autophagic signaling pathways 
and cause cell death in various cancer cell lines, 
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Table 2  Potential agents to overcome resistance of cancer cells to apoptosis (non-exhaustive list)

Restoration of apoptotic signals Alternative cell death Ref.

BH3 mimetics EGFR inhibitors Autophagy inducers Agents with p53-independent toxicity

ABT-199 (venetoclax), 
ABT-263 (navitoclax), 
ABT-737, 
apogossypol, 
apogossypolone, 
gossypol, maritoclax, 
obatoclax, sabutoclax

Afatinib, cetuximab, 
dacomitinib, erlotinib, 

gefitinib, lapatinib, 
matuzumab, neratinib, 

nimotuzumab, 
panitumumab, 
zalutumumab

Clonidine, cryptotanshinone, 
curcumin, dihydrotanshinone, 

evodiamine, genistein, helenalin, 
monascuspiloin, oridonin, paclitaxel, 

quercetin, rapamycin, resveratrol, 
sodium valproate, verapamil

Betulinic acid, crocetin, 
cryptotanshinone, 

dihydrotanshinone, epigallocatechic-
3-gallate, genistein, a-iso-cubebene, 

resveratrol, triptolide, thymoquinone, 
ursolic acid

[91,112-115,117,120,121,
124,127-129,147-156]

EGFR: Epidermal growth factor receptor.
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including colon cancer cells (Table 2)[124-127]. Thus, 
through the induction of type Ⅱ programmed cell 
death, autophagy inducers may be further developed 
for sensitizing the apoptosis-resistant cancer cells to 
chemotherapy.

As cancer cells with mutant p53 generally have 
greater resistance to chemotherapy than those with 
wild-type p53, cytotoxic agents that kill cancer cells 
p53-independently should be promising candidates to 
overcome drug resistance caused by p53 mutations. 
It has been reported that natural products such as 
triptolide, resveratrol and dihydrotanshinone could 
inhibit cell proliferation and induce p53-independent 
apoptosis in different cancer cell lines especially in 
p53-deficient cancer cells (Table 2)[127-129]. Hence, 
the apoptosis-resistant cancer cells with mutant p53 
should be relatively sensitive to this kind of cytotoxic 
agent in terms of cell death.

Taken together, agents such as the BH3 mimetics 
and EGFR inhibitors can restore the apoptotic signaling 
pathways in colon cancer cells. They are effective 
drugs for sensitizing apoptosis-resistant cancers to 
apoptosis induced by anticancer drugs. Moreover, phar-
macological compounds that can induce autophagic 
cell death or p53-independent cytotoxicity are also 
promising candidates to overcome resistance of colon 
cancer cells to apoptosis.

CONCLUSION
Combination treatments of conventional anticancer 
drugs with inhibitors of ABC transporters, BH3 mime-
tics, EGFR inhibitors or autophagy inducers have been 
proven effective approaches for the circumvention of 
drug resistance in colon cancer in pre-clinical studies. 
A few agents, such as cetuximab and panitumumab, 
have been successfully approved as drugs for colon 
cancer therapy in clinics. However, most of the 
combination of treatments failed to reverse drug 
resistance in clinical studies, suggesting that targeting 
a single mechanism is not sufficient to reverse drug 
resistance in patients with cancer.

Of note, polymorphisms in genes related to drug 
resistance, including ABCB1, ABCC1, ABCG2 and 
TP53, have been recognized[130,131], leading to the 
interindividual differences in tumorigenesis, drug 
resistance mechanisms and outcome of treatments. 
Besides, as the defense mechanism of cancer cells, 
drug resistance continues to develop during tumori-
genesis and drug treatments. Thus, the mechanisms 
of drug resistance may vary at different cancer stages, 
as well as at different phases of therapies. Given that 
the mechanisms of drug resistance are different among 
cancer patients and may change even in a single 
patient during the progression of cancer, personalized 
and specific combination therapy should be more 
effective and safer for achieving reversal of drug 
resistance in the clinical setting.

In summary, drug resistance in colon cancer is 
still an obstacle to successful chemotherapy and 
novel therapeutic strategies are urgently needed. 
Hence, investigation on the underlying mechanisms 
conferring drug resistance, as well as development of 
safe and effective reversing agents by targeting these 
mechanisms, will play a pivotal role in the successful 
chemotherapy for colon cancer.
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