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Regulation of B-cell development and tolerance
by different members of the miR-17B92 family
microRNAs
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The molecular mechanisms that regulate B-cell development and tolerance remain

incompletely understood. In this study, we identify a critical role for the miR-17B92

microRNA cluster in regulating B-cell central tolerance and demonstrate that these miRNAs

control early B-cell development in a cell-intrinsic manner. While the cluster member

miR-19 suppresses the expression of Pten and plays a key role in regulating B-cell tolerance,

miR-17 controls early B-cell development through other molecular pathways. These findings

demonstrate differential control of two closely linked B-cell developmental stages by different

members of a single microRNA cluster through distinct molecular pathways.
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A
defining feature of B-cell development is the process of

gene rearrangements in the B-cell receptor (BCR) loci,
through which B cells acquire the capacity to express a

BCR of a given specificity on the cell surface1. These
rearrangements occur in an orderly manner over time,
sequentially involving the immunoglobulin heavy (IgH) and
light (IgL) chain genes during the pro-B and the pre-B stages of
B-cell development, respectively. This is thought to depend on an
orderly accessibility of the corresponding loci to the RAG1 and 2
recombinases, which mediate rearrangements of variable (V),
diverse (D), and joining (J) gene segments through the process
called V(D)J recombination. At the end of this process, each
immature B cell expresses a single IgH and a single IgL chain,
with a single and, most times, unique antigen specificity. The
combinatorial and stochastic nature of gene rearrangements leads
to the generation of immature B cells with self-reactive receptors.
At this immature stage, the newborn B cells undergo the first
checkpoint for self-reactivity, to eliminate potentially autoreactive
cells by central tolerance mechanisms. Once a newborn B cell
encounters a self-antigen for which its BCR is specific, it attempts
to escape autoreactivity by continuing V(D)J recombination
at the IgL locus (receptor editing) or dying by apoptosis (clonal
deletion). When the cell has passed this developmental
checkpoint, it differentiates into a mature B cell. Self-reactive B
cells can be further regulated in the periphery through peripheral
tolerance mechanisms, including the induction of anergy2,3.
Previous studies of human B cells showed that self-reactivity is
progressively diminished during normal B-cell development,
consistent with the idea that several tolerance mechanisms are at
work at different stages of the life of B cells4.

Despite intensive study, our understanding of molecular
pathways regulating B-cell development and tolerance is still
incomplete. Specifically, the function of individual microRNAs
(miRNAs) in B-cell development and tolerance remains poorly
understood. miRNAs are endogenously encoded single-stranded
RNAs of B22 nucleotides in length. To date, B2,500 human and
B1,900 mouse miRNAs have been identified and many of them
play essential roles in the immune system5–7. They regulate gene
expression by pairing with messenger RNAs through imperfect
sequence complementarity, resulting in reduced protein output
by mRNA cleavage, translational repression or promotion of
mRNA decay8. It has been estimated that 25B40% miRNA
precursors are located in close proximity (o10 kb) of other
miRNA precursors, constituting miRNA clusters9–11. The
majority of miRNA clusters are first transcribed into single
polycistronic primary transcripts (pri-miRNAs) and then cleaved
by Drosha into individual hairpins (pre-miRNAs), which are
further processed by Dicer to produce mature miRNAs. Gene
expression profiling studies have shown that the expression of
different miRNAs in a cluster is generally co-regulated12,13,
suggesting that they may cooperate with each other to accomplish
common functions. Furthermore, comparative genomics show
that miRNA clusters are evolutionarily stable and conserved
across species, suggesting functional importance of such
organization14,15. Some clusters consist of miRNAs with
identical seed regions (termed homogeneous miRNA clusters),
probably a result of gene duplication. The regulatory effect of
homogeneous miRNA clusters may simply be an increase in gene
dosage. Other clusters are composed of miRNAs with different
seed regions (termed heterogeneous miRNA clusters). It remains
unclear how members of heterogeneous miRNA clusters operate
together to accomplish common functions15.

In this study we dissected the roles of the miRNA-17B92
family miRNAs at different stages of B-cell development.
The miR-17B92 family consists of three miRNA clusters:
miR-17B92, miR-106aB363 and miR-106bB25. Together, these

three clusters contain 15 miRNA stem loops that give rise to 13
distinct mature miRNAs, which fall into four miRNA subfamilies
(miR-17, miR-18, miR-19 and miR-92 subfamilies), with
members in each subfamily sharing the same seed sequence16.
The genomic organization and mature miRNA sequences of this
family are conserved in all vertebrates17. During lymphocyte
development, these miRNAs are highly expressed in progenitor
cells, with expression levels decreasing two- to threefold on
maturation13,18. Mouse genetic studies showed that miR-17B92-
deficient mice were runted and died at birth due to lung and heart
hypoplasia. In the haematopoietic system, there was a partial
block of early B-cell development at the pro- to pre-B transition.
Deletion of miR-106aB363 and miR-106bB25 has no obvious
phenotypic consequences, whereas compound mutant embryos
lacking both miR-17B92 and miR-106bB25 died at
midgestation, suggesting functional redundancy between these
miRNA clusters19. Conversely, overexpression of miR-17B92
family miRNAs occurs frequently in a broad spectrum of human
cancers and in lymphocytes from patients with autoimmune
diseases16,20–23. These observations suggest that miR-17B92 is
involved in lymphoma development and autoimmune diseases.
We have generated a conditional miR-17B92 transgenic allele
(termed miR-17B92 Tg) whose expression can be turned on by
Cre recombinase24. When miR-17B92 Tg was turned on
specifically in B cells using CD19-Cre, transgenic mice
exhibited premature death25. About 80% of those mice
developed lymphomas, demonstrating that miR-17B92 is a
powerful cancer driver25. Notably, the other 20% miR-17B92
transgenic mice died of autoimmune diseases. We speculate that
miR-17B92 might play a critical role in the control of
B-cell tolerance. In this study, we use two newly generated
in vivo models to investigate the function and mechanism of
miR-17B92 family miRNAs in regulating B-cell development
and tolerance, and demonstrate functional specificity of different
members of this cluster at two closely linked developmental stages
of B cells.

Results
miR-17B92 regulates B-cell central tolerance. To analyse the
effect of transgenic miR-17B92 expression on B-cell central
tolerance, we used the recently established IgMb-macroself mouse
model26. In this model, mice are engineered to ubiquitously
express a superantigen reactive to the heavy chain constant region
of IgM, the first BCR expressed on the surface of immature B
cells. As receptor editing changes only the light chain, it fails to
eliminate superantigen reactivity and all developing B cells
undergo cell death by clonal deletion. As a consequence, these
mice have almost no mature B cells in the spleen and lymph
nodes. We analysed B-cell development in IgMb-macroself
recipients (with surface marker CD45.1þ ) reconstituted with
bone marrow from CD19-Cre;miR-17B92 Tg/Tg (TG) or
wild-type (WT) mice (with surface marker CD45.2þ ) (Fig. 1a).
The WT-IgMb-macroself chimeras exhibited a severe B-cell
lymphopenic phenotype recapitulating that of the IgMb-
macroself mice, characterized by a complete developmental
block at the immature B-cell stage in the bone marrow that
results in the absence of mature B cells in the spleen. Strikingly,
B-cell development in the TG-IgMb-macroself chimeras was
similar to that in WT-WT chimeras (Fig. 1b,c). Consistent with
the restoration of peripheral B cells, serum IgM levels were also
substantially restored in the TG-IgMb-macroself chimeras
(Supplementary Fig. 1a). Moreover, these rescued B cells
appeared to be functional, as TG-IgMb-macroself chimeras
mounted a close-to-normal antibody response upon NP-CGG
immunization (Supplementary Fig. 1b). This is the first time that
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we observed such a complete restoration of B-cell development in
the IgMb-macroself central tolerance model by a miRNA gene.

Central tolerance, when functionally intact, protects against
autoimmunity by purging a large majority of self-reactive B cells
from the B-cell compartment2,3. As B cells with elevated
miR-17B92 expression were able to escape from central
tolerance in IgMb-macroself model, in which all B cells are self-
reactive, we reasoned that the BCR repertoire in TG mice might
be significantly different from that of WT mice. To assess this, we
analysed the BCR repertoire by performing deep sequencing of Ig
heavy chain V genes (IGHV) of WT and TG mice. As predicted,
TG mice exhibited an IGHV landscape different from that of
WT mice, with drastically increased usage in TG mice (43-fold)
of three IGHV genes (IGHV12-3, IGHV4-1 and IGHV11-2)
(Fig. 1d). Among these, VH11 and VH12 gene families are
predominantly associated with germline-encoded autoantibodies
of phosphatidylcholine specificities27,28. A large numbers of
VH11þ B cells, which are rarely detected in the spleen of WT
mice, were present in the spleen of TG mice, as detected by using
an anti-idiotypic monoclonal antibody for VH11 (Supplementary
Fig. 1c). Conversely, we found reduced usage of IGHV11-2 and
IGHV12-3 in B cells deficient for the miR-17B92 miRNA family
(CD19tKO) (Supplementary Fig. 1d). In addition, we measured

the presence of anti-double-stranded DNA autoantibodies in the
serum of WT and TG mice at terminal analysis. High titres of
autoantibodies were detected in 4 out of 45 TG mice, but were not
found in any of the WT mice (Supplementary Fig. 1e).

We next investigated the function of physiological levels of
miR-17B92 family miRNAs in B-cell central tolerance. We
analysed receptor editing in WT mice and mice with B-cell-
specific deletion of this miRNA family (by either Mb1-Cre or
CD19-Cre, termed Mb1tKO and CD19tKO mice, respectively).
Deletion of the miR-17B92 family miRNAs in B cells impaired
receptor editing, as indicated by increased k/l-light chain ratios
and reduced percentages of l-light chain-positive (Iglþ )
immature B cells (Supplementary Fig. 2a–d). Conversely,
transgenic miR-17B92 expression promoted receptor editing
(Supplementary Fig. 2c–d). These results show that endogenous
levels of miR-17B92 family miRNAs exquisitely regulate
receptor editing at the B-cell central tolerance checkpoint. We
further analysed the effect of transgenic miR-17B92 expression
on B-cell central tolerance in the IgHEL;mHEL mouse model29.
In this model, IgHEL mice express a transgenic BCR that is
specific for hen egg lysozyme (HEL) in their B cells, whereas
mHEL mice express a membrane-bound HEL in a wide range of
cells. In IgHEL;mHEL double transgenic mice, developing B cells
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Figure 1 | miR-17B92 controls B-cell central tolerance. (a) Outline of bone marrow reconstitution experiment. In the bone marrow of IgMb-macroself

recipient mice, all nascent immature B cells undergo negative selection as a result of the interaction between the surface IgM and the ubiquitously

expressed anti-IgM superantigen. (b) Representative flow cytometry plots showing B-cell development in the bone marrow and spleen of recipient mice.

(c) Numbers of donor-derived splenic B cells (CD45.2þCD19þ IgMþ ) in bone marrow-reconstituted mice, with each dot representing a single mouse and

the horizontal bar indicating the average cell number for each group. (d) BCR repertoire analysis based on IGHV gene usage in splenic B cells from WT

C57BL/6J (WT) and CD19Cre;miR-17B92 transgenic (TG) mice. B cells were activated in vitro to facilitate the analysis. Results are presented as fold

change of TG over WT mice. The dotted line was set at the arbitrary value of 3, to indicate IGHV genes with more than threefold increase in usage in TG

mice as compared with WT mice. Data are representative of three (b,c) and two independent experiments (d) (mean±s.e.m. in d) with n¼ 5 (WT to WT)

or 6 (WT to IgMb-macroself and TG to IgMb-macroself) in b,c and n¼ 3 in d.
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are deleted in the bone marrow and few mature B cells appear in
the peripheral lymphoid organs30. Consistent with the previous
report, we detected very small numbers of B cells bearing IgHEL
(IgDaþ ) in the spleens of mHEL mice reconstituted with bone
marrow cells from WT IgHEL mice (WT; IgHEL). The number of
splenic IgHEL (IgDaþ ) B cells increased by fivefold when mHEL
mice were reconstituted with bone marrow cells from IgHEL
mice with B-cell-specific transgenic miR-17B92 expression
(TG;IgHEL) (Supplementary Fig. 3). These data, together with
previous results from the IgMb-macroself model (Fig. 1b,c),
demonstrate a general effect of elevated miR-17B92 expression
on B-cell selection against self-antigens. Therefore, our data show
that miR-17B92 is a critical regulator of B-cell central tolerance
at the immature B-cell stage.

miR-19 plays a key role in B-cell central tolerance. We
next investigated the functional contribution of individual
miR-17B92 members in regulating B-cell central tolerance. The
six miRNAs of miR-17B92 fall into four miRNA subfamilies (the
miR-17, miR-18, miR-19 and miR-92 subfamilies), with members
in each subfamily sharing the same seed region and probably
similar functions. We generated two groups of lentiviral vectors
expressing either the miR-17B92 cluster with one miRNA sub-
family deleted, or four tandem copies of individual miRNAs
(Fig. 2a). Northern blot analyses confirmed that these lentiviral
vectors expressed encoded miRNAs at levels comparable to a
lentiviral vector encoding the full-length (FL) miR-17B92 cluster
(Fig. 2b). Highly enriched CD45.2þ WT haematopoietic stem
cells (HSCs) were transduced with lentiviruses encoding various
combinations of miR-17B92 miRNAs and were used to
reconstitute lethally irradiated IgMb-macroself recipients
(CD45.1þ ), together with unmanipulated WT bone marrow cells
(CD45.1þ ) (Fig. 2c). Twelve weeks after reconstitution, the bone
marrow chimeras were analysed for splenic B cells. Although
chimeras reconstituted with control lentivirus-transduced HSCs
exhibited the same B-cell lymphopenic phenotype as unmani-
pulated IgMb-macroself mice, lentiviral expression of miR-
17B92 restored the B-cell compartment in IgMb-macroself
recipient mice, similar to that by TG bone marrow cells (Figs 1b,c
and 2d,e). The contribution of each miR-17B92 miRNAs to the
regulation of B-cell tolerance was determined by quantifying the
numbers of splenic B cells that escaped IgMb-macroself-mediated
deletion. As shown in Fig. 2e, deletion of the miR-19 subfamily
almost completely abrogated the escape of B cells, whereas
miR-17 subfamily deletion caused a modest reduction in splenic
B-cell numbers. Deletion of miR-18 or miR-92 did not alter the
ability of miR-17B92 to restore B-cell development in IgMb-
macroself recipient mice. Consistently, lentiviral expression
of miR-19 alone restored B-cell development substantially,
whereas other individual miR-17B92 miRNAs did not have any
significant effect (Fig. 2e). Based on these observations, we
conclude that miR-19 subfamily miRNAs are the key members of
the miR-17B92 cluster in regulating B-cell central tolerance,
whereas miR-17 subfamily miRNAs play a supporting role in this
process.

miR-19 controls B-cell central tolerance by suppressing Pten.
Our previous photoactivatable-ribonucleoside-enhanced cross-
linking and immunoprecipitation analyses of mature B cells
identified 868 protein-coding genes that contain miR-17B92
miRNA-binding sites conserved in humans and mice25. To
gain new insights into the molecular mechanisms by which
miR-17B92 regulates B-cell central tolerance, we focused on
target genes containing binding sites for miR-19, the critical
member of miR-17B92 in this process. The miR-19 targetome

contains 386 protein-coding genes with 404 binding sites. These
genes function in a broad spectrum of biological processes.
Among them, regulators of the phosphatidylinositol-3 kinase
(PI3K) pathway (phosphatase and tensin homologue (PTEN) and
Phlpp2) and apoptosis pathway (Bim) are of special interest. The
PI3K pathway plays a critical role in supporting B-cell survival at
the mature B-cell stage31, whereas the apoptosis pathway is
thought to determine the cell fate during B-cell central
tolerance32,33.

To assess whether miR-17B92 regulates the expression of
these target genes in immature B cells, we purified B220þ IgMþ

CD93þ IgD� immature B cells from an in vitro culture of bone
marrow B-cell precursors (Supplementary Fig. 4) and measured
protein expression by immunoblot analysis. Expression of
PTEN and Phlpp2 in TG immature B cells was reduced to 70%
and 80% of WT levels, respectively. The expression levels of Bim
were reduced marginally and this reduction did not reach
statistical significance (Fig. 3a). To determine whether miR-19
directly binds to the Pten and Phlpp2 mRNAs, we performed
reporter assays with a Renilla luciferase (Rluc) reporter gene
containing the Pten and Phlpp2 30-untranslated region (UTR)
fragments encompassing the predicted miR-19 binding sites.
Overexpression of miR-19 decreased the Pten reporter activity by
440%, but did not reduce the Phlpp2 reporter activity (Fig. 3b).
Mutation of the miR-19 binding site in the Pten 30-UTR
abrogated the inhibitory effect of miR-19, further confirming
that miR-19 directly regulates Pten expression. Consistently,
miR-19 overexpression significantly reduced endogenous PTEN,
but not Phlpp2, protein levels in HeLa cells (Fig. 3c).

To evaluate whether the reduction in PTEN protein levels
contributes to miR-17B92 regulation of B-cell tolerance, we
reconstituted lethally irradiated IgMb-macroself mice with bone
marrow from Pten-deficient mice. Heterozygous deletion of Pten
(Ptenfl/þ ;CD19-Cre) resulted in significant restoration of the
B-cell compartment in IgMb-macroself recipients (Fig. 3d,e).
Remarkably, homozygous deletion of the Pten gene (Ptenfl/fl;
CD19-Cre) completely restored the B-cell compartment, which is
comparable to TG-IgMb-macroself chimeras (Fig. 3d,e). We
next used the lentiviral expression system to co-express miR-19
and Pten in HSCs, as illustrated in Fig. 3f, to test whether
restoring Pten expression can prevent the break of B-cell central
tolerance by miR-19 in the IgMb-macroself recipients.
The miR-19-expressing lentivirus encodes GFP, whereas the
Pten-expressing lentivirus encodes Ametrine, therefore allowing
distinguishing cells transduced by a single lentivirus from those
transduced by both. Terminal analysis of the reconstituted mice
showed no difference in the total numbers of splenic B cells that
escaped the central tolerance checkpoint, whether Pten or its
vector control was introduced to the miR-19 overexpression
scheme. However, we observed a drastic difference in the
compositions of these escaped B cells. In the miR-19þ control
group, the number of B cells expressing miR-19 alone (GFPþ

Ametrine� ) was comparable to that of B cells co-expressing
miR-19 and control (GFPþAmetrineþ ). In the miR-19þ Pten
group, the escaped B cells were predominantly those expressing
miR-19 alone (GFPþAmetrine� ), whereas the number of B cells
co-expressing miR-19 and Pten (GFPþAmetrineþ ) was close to
the IgMb-macroself background level (Fig. 3g,h). Taken together,
these results suggest a miR-19-Pten pathway that regulates B-cell
central tolerance.

Impaired B-cell development in the absence of miR-17B92.
A previous study showed that germline deletion of miR-17B92
led to a partial block of early B-cell development at the pro- to
pre-B transition and Bim was suggested to be a key functional
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target of miR-17B92 in this process19. However, another study
reported that transgenic mice with ubiquitous overexpression of
miR-17, a member of the miR-17B92 cluster, exhibited overall
growth retardation and severely reduced numbers of B lineage
cells in both the bone marrow and the spleen34. Therefore, the
cell autonomous function of the miR-17B92 family, as well as the
functional contribution of individual miRNAs of this family, in
B-cell development remains to be elucidated. To investigate

the cell-intrinsic role of miR-17B92 family miRNAs in
B-cell development, we generated Mb1-Cre;miR-17B92fl/fl;
miR-106aB363� /� ;miR-106bB25� /� mice (termed Mb1tKO).
In these mice, miR-17B92 is deleted specifically in the B-cell
lineage by Mb1-Cre, a Cre allele expressed from the earliest stage
of B-cell development35, whereas the two paralogue clusters,
miR-106aB363 and miR-106bB25, are deleted in the germline,
resulting in a complete absence of this family in the B-cell lineage.
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Analysis of Mb1tKO mice revealed a twofold reduction in B-cell
numbers in the bone marrow (Fig. 4a). Consistent with the
previous study of miR-17B92 germline knockout mice, Mb1tKO
mice showed an accumulation of pro-B cells (B220intcKitþ ) and
a reduction of pre-B cells (B220intCD25þ ) (Fig. 4b,c). The
splenic B-cell number in Mb1tKO mice was also reduced by
threefold (Fig. 4d). Apoptosis of pro-B and pre-B cells of
Mb1tKO mice was determined by flow cytometry analysis of
Annexin V and active caspase 3. We observed an increased
apoptotic rate in pre-B cells of Mb1tKO mice when compared
with their counterparts in WT mice (Fig. 4e). In conclusion, the
miR-17B92 family miRNAs control the pro- to pre-B transition
during B-cell development in a cell-autonomous manner and the
complete absence of this miRNA family leads to increased
apoptosis of pre-B cells.

A central role of miR-17 in early B-cell development. We next
analysed which individual miRNA subfamily of the miR-17B92
cluster plays an essential role in the pro- to pre-B-cell transition.
To evaluate the functional contribution of each miRNA subfamily
of the miR-17B92 cluster to the regulation of early B cell
development, we restored the expression of miR-17B92 miR-
NAs, either individually or in combination (Fig. 2a), in Mb1tKO
HSCs by lentiviral transduction and determined their ability to
undergo the pro- to pre-B-cell transition. A mixed bone marrow
reconstitution approach, in which Mb1tKO B cells were com-
peting with their WT counterparts during B-cell development,
was performed to highlight the B-cell developmental block of
Mb1tKO mice (Fig. 5a). In this experimental setting, the changes
in the ratio of virus-transduced CD45.2þ cells (GFPþ ) versus
WT competitors (CD45.1þ ) during the pro- to pre-B transition
provided a measurement for the developmental defect. In the
control WT:WT mix group, as no major difference existed
between these two populations, the GFPþ /CD45.1þ ratios
remained unchanged during the pro- to pre-B transition,
resulting in a pre-B/pro-B ratio close to 1 (Fig. 5b upper panels
and Fig. 5c). In contrast, cells derived from the Mb1tKO HSCs,
when transduced with control virus, underwent a severe
developmental block in competition with WT cells. Therefore, the
GFPþ /CD45.1þ ratio shifted drastically as WT cells became
dominant in the pre-B population, resulting in a pre-B/pro-B
ratio below 0.2 (Fig. 5b middle panels and Fig. 5c). As expected,
when Mb1tKO cells were transduced with virus expressing the FL
miR-17B92, they became fully competitive with WT cells and
the GFPþ /CD45.1þ ratio in pre-B cells was comparable to that
in pro-B cells, resulting in a pre-B/pro-B ratio close to 1 (Fig. 5b
lower panels and Fig. 5c). Interestingly, among the group of
lentiviral vectors expressing the miR-17B92 cluster with one

miRNA subfamily deleted, deletion of the miR-17 subfamily
almost completely abrogated the ability of this cluster to rescue
the pro- to pre-B transition defect of Mb1tKO cells (Fig. 5c and
Supplementary Fig. 5). Conversely, lentiviral expression of
miR-17 alone significantly restored the pro- to pre-B-cell
transition (Fig. 5c and Supplementary Fig. 5). Deletion of miR-19
or miR-92 subfamily had a minor effect on the rescue and
expression of miR-92 and miR-19 family had no effect or minor
effect in this process, respectively. Therefore, we conclude that the
miR-17 subfamily plays a central role in regulating the pro- to
pre-B transition during early B-cell development, with additional
support from the miR-19 and miR-92 subfamilies. Our functional
dissection of the miR-17B92 cluster reveals a shift of power
among these co-expressed miRNAs in two sequential and closely
linked stages of B-cell development: although miR-17 plays a
central role in controlling pro- to pre-B transition, miR-19 is
critical for regulating B-cell central tolerance at the immature
B-cell stage.

PTEN, Phlpp2 and Bim do not control early B-cell development.
The PI3K pathway has been shown to control early B-cell
development36. Our results showed that the miR-17B92 family
miRNAs suppress the expression of PTEN and Phlpp2 in
immature B cells (Fig. 3a) and mature B cells25. Moreover, flow
cytometry analysis of pAkt in developing B cells of Mb1tKO mice
showed decreased Akt phosphorylation in pro-B cells when
compared with their WT counterparts (Fig. 6a). Previous studies
have also suggested Bim as a key functional target mediating
miR-17B92 regulation of B-cell development19,37. We found
slightly increased protein Bim levels in Mb1tKO pro-B cells
compared with WT cells (Fig. 6a). For those reasons, we
speculated that miR-17B92 family miRNAs regulate early
B-cell development by suppressing the expression of PTEN,
Phlpp2 and Bim.

To test whether decreased PTEN and Phlpp2 expression
rescues the B-cell development defect of Mb1tKO mice, we
generated a panel of mouse strains by introducing Pten and/or
Phlpp2 deletion to Mb1tKO mice. As shown in Fig. 6b,c and
Supplementary Fig. 6a,b, heterozygous and homozygous deletions
of Pten and Phlpp2, either individually or in combination, were
not able to rescue the pro- to pre-B transition block in Mb1tKO
mice. Interestingly, homozygous deletion of Pten was detrimental
to pro-B cells on the Mb1tKO background, as shown by the
complete loss of B220intcKitþ pro-B cells when both Pten alleles
were deleted.

Previous studies showed that Mb1-Cre-mediated deletion of
Dicer led to a severe block of early B-cell development at the
pro- to pre-B transition37, which is similar to but stronger than

Figure 3 | PTEN mediates miR-19 control of B-cell central tolerance at the immature B-cell stage. (a) Western blot analysis of PTEN, Phlpp2 and Bim

protein levels in in vitro-cultured immature B cells from B7-week-old WT and TG mice. Expression levels were normalized to Actin. (b) Reporter assays of

Rluc gene expression containing the Pten or Phlpp2 30-UTR fragments harbouring predicted miR-19-binding sites at indicated locations. HeLa cells were

co-transfected with luciferase reporter and miR-19-expressing or control vector. The Rluc/Luc activity ratio was arbitrarily set as 1 for control vector for

each reporter. The miR-19-binding site was mutated in Pten-30-UTR-mut. (c) Western blot analysis of PTEN and Phlpp2 protein levels in HeLa cells

transduced with miR-19-expressing (miR-19) or control lentiviruses (vector). Protein levels were normalized to Actin. (d) Representative flow cytometry

plots showing spleen B-cell compartment of recipient mice. Donor genotypes are indicated above each plot. (e) Numbers of splenic B cells in

IgMb-macroself mice reconstituted with bone marrow cells from mice of indicated genotypes. (f) Outline of experimental strategy. HSCs enriched from WT

donors were transduced with lentiviruses expressing miR-19 and GFP (miR-19) together with lentiviruses expressing Pten and Ametrine (Pten) or Ametrine

alone (Control), and used to reconstitute IgMb-macroself mice, which were analysed for splenic B cells 12 weeks later. (g) Representative flow cytometry

plots of escaped B cells and bar graphs summarizing the frequencies of GFPþAmetrine� and GFPþAmetrineþ cells among lentivirus-transduced B cells.

(h) Numbers of splenic B cells in IgMb-macroself recipient mice. GFPþAmetrine� cells were from HSCs transduced with miR-19-expressing lentiviruses

alone, whereas GFPþAmetrineþ cells were from HSCs transduced with miR-19-expressing lentiviruses together with lentiviruses expressing Pten and

Ametrine (Pten) or Ametrine alone (Control). Data are representative of 3 (a,g) or 2 (c) or 3 (d) or pooled from 4 (b,e), 2 (c) or 3 (g,h) independent

experiments (mean±s.e.m. in a,b,c,e,g,h) with n¼ 3 (CD19Cre), 5 (Ptenfl/þCD19Cre) or 6 (Ptenfl/flCD19Cre) in d,e and n¼ 7 (miR19þControl) or 8

(miR-19þ Pten) in g,h. B-cell numbers above the dash line indicates break of tolerance (e,h).
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that caused by germline deletion of miR-17B92 (ref. 19), or by
the complete deletion of the miR-17B92 family miRNAs
specifically in the B-cell lineage (that is, Mb1tKO mice in this
study). An Em-Bcl-2 transgene (Bcl2Tg) was able to partially
rescue the pro- to pre-B transition block caused by Dicer
deletion37,38. We therefore tested whether the same Bcl2Tg was
able to restore B-cell development in Mb1tKO mice. As shown in
Supplementary Fig. 6c,d, although Bcl2Tg did restore the splenic
B-cell number, probably by prolonging the survival of mature B
cells in the periphery39, it did not have any measurable effect on

the pro- to pre-B transition block in Mb1tKO mice. Taken
together, these results exclude PTEN, Phlpp2 and Bim as major
mediators of the regulation of early B-cell development by the
miR-17B92 family miRNAs. Thus, other target genes and
molecular pathways must play more important roles in this
process.

Discussion
The present study revealed critical roles of the miR-17B92 family
miRNAs in two sequential events in the development of B cells:
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Figure 4 | Complete deletion of the miR-17B92 miRNA family impairs early B-cell development. (a) B-cell percentages in the bone marrow of
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(b) Representative plots of IgMþ B cells (B220þ IgMþ ), pro-B cells (B220intckitþ ) and pre-B cells (B220intCD25þ ) in the bone marrow of control and
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percentages in the spleen of representative control and Mb1tKO mice are shown in the histograms and splenic B-cell numbers are shown in the graph.

(e) Apoptosis of pro-B and pre-B cells was measured by flow cytometry analysis of annexin V and active caspase 3. *Po0.05 and **Po0.01 (two-tailed

Student’s t-test). Data are representative of 2 (a,b,d) or pooled from 2 (c,d,e: active caspase 3) or 3 (e: Annexin V) independent experiments
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the pro- to pre-B cell transition and the establishment of B-cell
central tolerance. The use of two novel in vivo models, Mb1tKO
and the IgMb-macroself mice, enables us to dissect the dynamic
functional contribution of individual members of a miRNA
cluster in two closely linked developmental stages of B cells.
As miR-17B92 plays essential roles in both events, functional
analysis of individual miRNAs encoded by this cluster in each
event provides new insights into the question of specificity versus
redundancy of individual members of heterogeneous miRNA
clusters. Our findings demonstrate that different members of
the miR-17B92 cluster play central roles in controlling B-cell
development and tolerance through different molecular pathways.

To our knowledge, miR-17B92 is the first miRNA cluster that
has been discovered to control B-cell tolerance. During early
B-cell development, miR-17B92 miRNAs are relatively abundant
in pro- and pre-B cells, but their expression goes down drastically
when developing B cells transit from pre-B to immature
B cells13,18. As miR-17B92 is generally thought to play pro-
survival and pro-proliferation roles, keeping its expression level
low renders immature B cells sensitive to self antigen-induced
apoptosis, when the opportunity of receptor editing is exhausted.
Among the six miRNAs encoded by miR-17B92, miR-19 plays a
key role in controlling B-cell central tolerance, at least partly
through suppressing the expression of PTEN, a negative regulator
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of the PI3K-Akt pathway. This PI3K-Akt pathway was previously
shown to be essential for BCR tonic signalling, which is essential
for the survival of mature B cells31. Our results demonstrate that
this pathway also plays critical roles in supporting the survival of
immature B cells.

Several previous studies suggested that the miR-17B92 family
miRNAs are essential for the pro- to pre-B transition during early
B-cell development, but discrepancy exists among those reports.
In a study employing Mb1-Cre-mediated deletion of Dicer,
which abolished the expression of all mature miRNAs, B-cell
development was severely blocked at the pro- to pre-B transition.
miR-17B92-mediated suppression of Bim expression was
proposed to be the major underlying mechanism37. Indeed,
germline deletion of miR-17B92 caused a partial B-cell
development block at the pro- to pre-B transition and the Bim
protein level was higher in miR-17B92-deficient pre-B cells19.
The pro- to pre-B transition block caused by Dicer deletion was
partly rescued by a Em-Bcl2 transgene, further supporting an

important role of Bim in mediating miR-17B92 control of early
B-cell development37. However, another study reported that
transgenic mice with ubiquitous overexpression of miR-17,
a member of the miR-17B92 cluster, exhibited a severe
reduction in the number of B lineage cells in both the bone
marrow and the spleen34. The latter study casted doubt on the cell
autonomous function of the miR-17B92 family miRNAs in
controlling early B-cell development. In the present study, we
generated and analysed mutant mice harbouring B-cell-specific
deletion of the miR-17B92 family miRNAs (Mb1tKO mice).
These mutant mice exhibited a pro- to pre-B transition block that
is similar to that caused by Mb1-Cre-mediated deletion of Dicer
and germline deletion of miR-17B92 (refs 19,37). Therefore, the
miR-17B92 family miRNAs do play a cell-intrinsic role in
controlling early B-cell development. Our functional dissection
experiments revealed that, among the six miRNAs encoded by
miR-17B92, miR-17 plays a central role in controlling the pro- to
pre-B-cell transition, whereas miR-19 and miR-92 probably
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Mb1tKO;Ptenfl/flPhlpp2fl/þ ), 9 (Mb1tKO;Ptenfl/þ ), 6 (Mb1tKO;Phlpp2fl/fl and Mb1tKO;Phlpp2fl/þ ) or 3 (Mb1tKO;Ptenfl/flPhlpp2fl/fl) in b (proB).
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synergize with miR-17 to exert this function. Surprisingly,
although PTEN is an important mediator of the miR-17B92
function in immature B (shown in this study) and mature
B cells25, it does not seem to play critical roles in miR-17B92
regulation of early B-cell development. In addition, our results
excluded an important role of miR-17B92 regulation of Bim in
controlling early B-lymphocyte development, which was
suggested by previous studies19,37. Thus, other unknown
molecular pathways must mediate miR-17B92 family miRNA
control of the pro- to pre-B-cell transition. The elucidation of
these pathways warrants future investigation.

Our experimental approach provided a unique opportunity to
investigate how individual members of a heterogeneous miRNA
cluster work together to exert their functions in a dynamic
manner. Previous studies of miR-17B92 highlighted the
complexity of this issue. In a c-Myc-driven lymphomagenesis
model and a Notch-driven leukemogenesis model, miR-19 was
shown to be the key oncogenic member of the miR-17B92
cluster40–42. A recent study reported that miR-92 negatively
regulated the oncogenic cooperation between miR-19 and c-Myc,
suggesting functional antagonism among members of this
cluster43. In another study employing retroviral overexpression
of miR-17B92 and its individual members in HSCs,
overexpression of miR-19a and miR-92a resulted in B-cell
hyperplasia and erythroleukemia, respectively. Interestingly,
miR-92a-induced erythroleukemia development was abrogated
by co-overexpressing miR-17, suggesting functional antagonism
between miR-17 and miR-92a44. Our study focused on functional
dissection of the miR-17B92 cluster at two closely linked
developmental stages of the B-cell lineage. While miR-17 plays a
central role in controlling the pro- to pre-B transition, miR-19 is
critical for regulating B-cell central tolerance at the immature
B-cell stage. In both processes, other miRNAs in this cluster play
supporting, instead of antagonistic, roles (that is, miR-19 and
miR-92 contribute to the regulation of pro- to pre-B transition,
whereas miR-17 partly controls B-cell central tolerance).
Therefore, there is a shift of power among members of the
miR-17B92 cluster at these two closely linked developmental
stages of the B-cell lineage. It is conceivable that individual
members of a heterogeneous miRNA cluster regulate different,
yet overlapping, sets of target genes and might have different
effects on the molecular pathways controlled by the cluster. It is
also possible that at different developmental stages of a single cell
lineage, or in different cellular contexts, the functional relevance
of these molecular pathways may differ to a large degree. That
would explain the differential contribution of individual members
of a miRNA cluster to its roles in different cellular contexts. Thus,
miR-19 plays a critical role in regulating B-cell central tolerance
through suppressing the expression of Pten, whereas miR-17
controls the pro- to pre-B transition through other unknown
molecular pathways.

In summary, our study identified critical roles of miR-17B92
in two closely linked developmental stages of the B-cell lineage,
pro- to pre-B transition and immature B cells. Interestingly,
different members of this cluster play central roles in these
two processes by regulating different molecular pathways.
These findings illustrate dynamic functional specificity of
individual members of a heterogeneous miRNA cluster in B-cell
development.

Methods
Mice. The generation of miR-17B92 Tg (Jax stock 008517), miR-17B92fl/fl

(Jax stock 008458), miR-106aB363� /� (Jax stock 008461), miR-106bB25� /�

(Jax stock 008460), CD19-Cre (Jax stock 006785), Mb1-Cre, IgMb-macroself,
Ptenfl/fl (Jax stock 006440) and Em-Bcl-2 transgenic mice was previously
reported19,24,26,35,38,45,46. Phlpp2fl/fl mice were generated in the Xiao lab using

EUCOMM ES clone HEPD0619_1_C08. All these strains are in the C57BL/6J
genetic background. Both male and female mice of 8–12 weeks of age were used for
most experiments. For early B-cell development characterization, mice were
analysed at 6–8 weeks of age. All mice were bred and housed under specific
pathogen free (SPF) conditions. All animal experiments were approved by the
Animal Care and Use Committee of The Scripps Research Institute.

Lentiviral vector generation and virus production. Lentiviral plasmids pWPXLd,
pMD2.G and psPAX2 were gifts from Dr Didier Trono laboratory (Addgene
plasmids #12258, 12259 and 12260). The expression vectors for the FL
miR-17B92, miRNA subfamily deletion mutants and individual miRNA
components were constructed by stepwise cloning of various combinations of
individual miRNAs (precursor sequences with 30–50 nucleotide flanking regions)
into pWPXLd. The Ametrine expression vectors were constructed by replacing the
GFP cassette of pWPXLd with the IRES-Ametrine 1.1, a violet-excitable yellow-
fluorescing GFP variant. The Pten-coding sequence was subsequently cloned into
this vector for producing Pten-expressing lentiviruses. Recombinant lentivirus was
produced in 293T cells by co-transfecting the expression vectors with packaging
constructs pMD2.G and psPAX2 by the calcium phosphate method. The
virus-containing supernatant was harvested 48 h after transfection, filtered and
concentrated using PEG-it Virus Precipitation Solution (System Biosciences).

Bone marrow transduction and reconstitution experiments. HSCs were
purified by enrichment of Sca-1þ cells using magnetic cell separation followed by
isolation of bone marrow side population cells using FACS based on the capacity of
these cells to actively exclude the vital dye Hoechst 33342 (ref. 47). Briefly, bone
marrow cells were prepared from the femurs and tibias. After red blood cell lysis,
Sca-1þ cells were enriched by anti-Sca-1 MACS MicroBeads according to
manufacturer’s instruction (Miltenyi Biotec). Sca-1þ cells were re-suspended in
HBSS containing 2% fetal bovine serum (FBS), penicillin–streptomycin and 10 mM
Hepes buffer, and stained with 8.8 mg ml� 1 Hoechst 33342 (Invitrogen) at 5� 106

cells per ml. After incubation at 37 �C for 90 min, the Hoechst 33342-negative side
population cells were isolated using a FACSAria cell sorter (BD Biosciences).

Purified HSCs were re-suspended in StemSpan medium (StemCell
Technologies) supplemented with 100 mg ml� 1 stem cell factor (SCF), 50 mg ml� 1

thrombopoietin (TPO), 100 mg ml� 1 Fms-related tyrosine kinase 3 ligand (FTL3),
10 mg ml� 1 interleukin-6 (all from PeproTech) and 2 mg ml� 1 Polybrene (Sigma-
Aldrich). Lentiviral transduction (multiplicity of infection¼ 10) was performed in
round bottom 96-well plates, using 10-15� 103 cells per 25ml reaction volume, at
37 �C for 24 h.

Recipient mice were irradiated with two doses of 5 Gy, 3 h apart and subjected
to bone marrow transplantation 2 h later by tail vein injection with: (i) 5� 106

bone marrow cells from the indicated donors or (ii) 10–15� 103 lentivirally
transduced HSCs mixed with 1� 106 congenic, unfractionated bone marrow cells.
Recipient mice were maintained with antibiotics-containing food or water for
30 days before switching to normal food and analysed at indicated time points.

Antibodies, western blot and flow cytometry analysis. For western blotting,
cells were lysed in RIPA buffer (140 mM NaCl, 10 mM Tris-HCl pH 8.0, 1 mM
EDTA, 1% Triton X-100, 0.1% sodium deoxycholate and 0.1% SDS) supplemented
with Halt Protease & Phosphatase Inhibitor Cocktail (Thermo Scientific). Cell
lysates were resolved on 4–20% SDS–PAGE. Antibodies used for western blotting
are anti-PTEN (Cell Signaling, 9559; dilution 1/1,000), anti-Phlpp2 (Bethyl,
A300-661A-1; dilution 1/500), anti-Bim (Cell Signaling, 2933; dilution 1/1,000) and
anti-b-actin (Sigma-Aldrich, AC-74; dilution 1/10,000). Images have been cropped
for presentation. Full-size images are presented in Supplementary Fig. 7.

Cell surface staining and flow cytometry analysis were performed following
established protocols. Intracellular staining was performed following fixation and
permeabilization using BD Phosflow Perm Buffer II. Stained cells were analysed on
FACSCalibur or LSR II (BD Biosciences). Data were analysed with FlowJo software
(Tree Star). Antibodies and reagents with the following specificities were used for
staining: anti-B220 (RA3-6B2, 103236; dilution 1/200), anti-CD45.1 (A20, 110730;
dilution 1/200), anti-CD45.2 (104, 109820; dilution 1/200), anti-CD19 (6D5,
115508; dilution 1/200), anti-CD25 (PC61, 102008; dilution 1/200), anti-TCRb
(H57, 109228; dilution 1/200) and anti-light chain l (RML-42, 407306; dilution
1/400) from BioLegend; Annexin V (88-8007-74; dilution 1/100), anti-cKit (ACK2,
17-1172-81; dilution 1/100), anti-IgD (11-26, 12-5993-82; dilution 1/500) and
anti-CD93 (AA4.1, 17-5892-83; dilution 1/200) from eBioscience; anti-active
Caspase 3 (550480; dilution 1/5), anti-CD19 (1D3, 550992; dilution 1/400),
anti-CD43 (S7, 553271; dilution 1/100), anti-B220 (RA3-6B2, 553093; dilution
1/200) and anti-light chain k (187.1, 561354; dilution 1/50) from BD Bioscience;
anti-IgM (115-097-020 and 115-175-075; dilution 1/500) from Jackson
ImmunoResarch; and anti-Bim (C34C5, 2933; dilution 1/200) and
anti-phospho-Akt-Thr308 (244F9, 4056; dilution 1/100) from Cell Signaling.

In vitro immature B-cell culture and enrichment. Total bone marrow cells were
isolated from the femur and tibia. B lineage cells were enriched by magnetic cell
sorting using anti-CD19 MACS MicroBeads (Miltenyi Biotech). CD19þ cells were
cultured in Advanced DMEM-reduced serum medium (Gibco) supplemented with
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10% FBS, 55mM b-mercaptoethanol, penicillin–streptomycin, 4 mM glutamine and
5 ng ml� 1 recombinant human IL-7 for 5 days. Expanded immature B cells were
enriched by incubating with biotin anti-IgM antibodies (RMM-1, 406503; dilution
1/500; BioLegend) at 4 �C followed by magnetic cell sorting using Streptavidin
MicroBeads (Miltenyi Biotech).

Immunization and ELISA assay. Antigens for immunization were prepared by
mixing NP36-CGG (Biosearch Technologies) dissolved in PBS and 10% KAl(SO4)2

at 1:1 ratio and adjusting pH to 7, to form precipitate. Five micrograms of NP-CGG
precipitated in alum was injected intraperitoneally for NP-specific antibody
responses.

Microtitre plates were coated with the following: (i) 10 mg ml� 1 NP30-BSA
(Biosearch Technologies) in PBS, for measurement of NP-specific antibody,
or (ii) 2.5 mg ml� 1 goat anti-mouse k- and goat anti-mouse l-antibodies diluted in
PBS containing Ca2þ and Mg2þ , pH 7.0–7.2, for measurement of total serum
antibodies. Nonspecific binding was blocked with 0.5% BSA in PBS. Serum samples
were serially diluted in 0.5% BSA in PBS and were incubated in blocked plates
overnight at 4 �C. Plates were incubated for 2 h with biotin-conjugated anti-IgM
(1020-08, 1 mg ml� 1, Southern Biotech), anti-IgG1 (1070-08, 1 mg ml� 1, Southern
Biotech) or anti-IgG (1030-08, 1 mg ml� 1, Southern Biotech), for 1 h with
streptavidin–alkaline phosphatase (Roche), and then with alkaline phosphatase
substrate solution containing 4-nitro-phenyl phosphate (Sigma) for colour
development, followed by quantification on a VERSAmax microplate reader
(Molecular Devices).

Northern blotting. Total RNA was extracted from miRNA-encoding lentivirus-
transduced HeLa cells using TRIzol Reagent (Life Technologies) following the
manufacturer’s instructions. Ten micrograms of total RNA was used to detect
miRNAs. DNA oligonucleotides antisense to mature miRNAs were used as probes.
U6 small nuclear RNA was used as internal control for normalization. Northern
blotting results were acquired on a Typhoon 9410 imager (GE Healthcare) and
analysed using the ImageQuant software.

Luciferase reporter assays. The 30-UTR fragments of Pten and Phlpp2 containing
predicted miR-19-binding sites (Supplementary Data set 1) were cloned into the
psiCHECK2 vector (Promega), to generate Pten and Phlpp2 reporter plasmids. The
miR-19-binding site was subsequently mutated to generate the Pten–30-UTR-mut
construct. HeLa cells were plated into 24-well plates at 4� 104 cells per well 24 h
before transfection with 0.1 mg reporter plasmid and 0.4 mg miR-19-expressing
pWPXLd plasmid using the Lipofectamine 2000 transfection reagent (Invitrogen).
Luciferase assays were performed 48 h after transfection using the Dual-Luciferase
Reporter Assay System (Promega) following the manufacturer’s protocol. The Rluc
activity was normalized by the firefly luciferase activity (Luc) and expression is
presented as Rluc/Luc ratio, which was arbitrarily set as 1 for the empty pWPXLd
plasmid for each reporter.

IGHV gene analysis. B cells from the spleen and lymph nodes were enriched by
magnetic cell sorting using anti-CD19 MACS MicroBeads (Miltenyi Biotech).
Purified B cells (0.5� 106 cells per plate) were cultured in the presence of irradiated
40LB feeder cells (3� 106 cells per plate) in 40 ml RPMI-1640 medium (Gibco)
supplemented with 10% FBS, 1 mM soldium pyruvate, 55 mM b-mercaptoethanol,
penicillin–streptomycin, 10 mM HEPES and 1 ng ml� 1 recombinant IL-4
(PeproTech) and harvested after 5 days48.

Sample preparation and sequencing of mouse antibody libraries were
performed based on a similar procedure that has been described previously49.
Briefly, total RNA was extracted from 10 to 20 million in vitro-expanded B cells
into 30 ml of water with RNeasy Mini Kit (Qiagen). For unbiased antibody
repertoire analysis, 50-rapid amplification of cloned/complementary DNA ends
(RACE) was performed with SMARTer RACE cDNA Amplification Kit
(Clontech). The immunoglobulin PCRs were set up with Platinum Taq
High-Fidelity DNA Polymerase (Life Technologies) in a total volume of 50 ml, with
5 ml of cDNA as template, 1 ml of 50-RACE primer and 1 ml of 10 mM reverse
primer. The 50-RACE primer contained a PGM P1 adaptor, whereas the reverse
primer contained a PGM A adaptor. We adapted the 30-Cg1-3 inner primers and
30-Cm inner primers, 30-mCk outer primer and 30-Cml outer primer as reverse
primers for 50-RACE PCR processing of the H, k and l chains, respectively50.
Twenty-five cycles of PCRs were performed and the expected PCR products
(500–600 bp) were gel purified (Qiagen). The antibody heavy (H) and light
(k and l) chain libraries were quantified using Qubit 2.0 Fluorometer with Qubit
dsDNA HS Assay Kit and then used at a ratio of 1:1:1 for all the PGM sequencing
experiments. The dilution factor required for Ion Torrent PGM template
preparation was determined such that the final concentration was 50 pM. Template
preparation was performed with the Isothermal Amplification Kit obtained from
the Early Access Program. Before PGM sequencing, quality control of the template
was determined by the Qubit 2.0 Fluorometer with the Ion Sphere Quality Control
Kit. Sequencing was performed on the Ion Torrent PGM sequencer with the PGM
Hi-Q 400 Kit using an Ion 314 v2 chip for a total of 1,100 nucleotide flows.
Raw data were processed without the 30-end trimming in base calling, to extend the
read length.

Bioinformatics analysis of antibody sequence data followed the human
antibodyomics pipeline49,51–55. Specifically, the mouse H, k and l germline genes
from IMGT (http://www.imgt.org) including the V, D and J segments were
incorporated into the pipeline where such information is required for gene
assignment (step 2), error correction (step 3) and determination of H/LCDR3 and
variable region boundaries (step 5). For heavy chains, 313 VH genes along with 39
DH and 9 JH genes were compiled into three libraries, whereas for light chains, 151
VK genes along with 5 JK genes and 19 VL genes with 7 JL genes were used in
library construction, respectively. The mouse antibodyomics pipeline consists of
five consecutive steps. Given a data set of NGS-derived mouse antibody sequences,
each sequence was (1) reformatted and labelled with a unique index number;
(2) assigned to V, D (for heavy chain only) and J gene families using the current
rhesus macaque germline gene database and an in-house implementation of
IgBLAST, and sequences with E-value410� 3 for V gene assignment were
removed from the data set; (3) subjected to a template-based error-correction
procedure, in which insertion and deletion (indel) errors in the V gene segment
were detected based on the alignment to their respective germline gene sequences.
It is noteworthy that only indels of less than three nucleotides were corrected;
(4) compared with the template antibody sequences at both the nucleotide level
and the amino acid level using a global alignment module in CLUSTALW2
(ref. 56); (5) subjected to a multiple sequence alignment-based procedure to
determine the complementarity determining region 3 (CDR3), which was further
compared with the template CDR3 sequences at the nucleotide level and to
determine the sequence boundary of the V(D)J coding region. After FL variable
region sequences were obtained, a bioinformatics filter was applied to detect and
remove erroneous sequences that may contain swapped gene segments due to PCR
errors. Specifically, a FL read would be removed if the V gene alignment was
o220 bp. The processed and annotated antibody chain sequences were then
subjected to germline gene frequency analysis.

Statistical analysis. Data were analysed using unpaired two-tailed Student’s t-test
(*Po0.05, **Po0.01 and ***Po0.001). Results are shown as mean with error bars
indicating±s.e.m.

Data availability. The authors declare that the data supporting the findings of this
study are available within the article and its Supplementary Information files, or
from the authors upon a reasonable request. The IGHV deep-sequencing data sets
are available in SRA database with the accession code SRP075587.
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