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Abstract

IMPORTANCE—Cannabis dependence (CAD) is a serious problem worldwide and is of growing 

importance in the United States because cannabis is increasingly available legally. Although 

genetic factors contribute substantially to CAD risk, at present no well-established specific genetic 

risk factors for CAD have been elucidated.

OBJECTIVE—To report findings for DSM-IV CAD criteria from association analyses performed 

in large cohorts of African American and European American participants from 3 studies of 

substance use disorder genetics.

DESIGN, SETTING, AND PARTICIPANTS—This genome-wide association study for DSM-
IV CAD criterion count was performed in 3 independent substance dependence cohorts (the Yale-

Penn Study, Study of Addiction: Genetics and Environment [SAGE], and International 

Consortium on the Genetics of Heroin Dependence [ICGHD]). A referral sample and volunteers 

recruited in the community and from substance abuse treatment centers included 6000 African 

American and 8754 European American participants, including some from small families. 

Participants from the Yale-Penn Study were recruited from 2000 to 2013. Data were collected for 

the SAGE trial from 1990 to 2007 and for the ICGHD from 2004 to 2009. Data were analyzed 

from January 2, 2013, to November 9, 2015.

MAIN OUTCOMES AND MEASURES—Criterion count for DSM-IV CAD.

RESULTS—Among the 14 754 participants, 7879 were male, 6875 were female, and the mean 

(SD) age was 39.2 (10.2) years. Three independent regions with genome-wide significant single-

nucleotide polymorphism associations were identified, considering the largest possible sample. 

These included rs143244591 (β = 0.54, P = 4.32 × 10−10 for the meta-analysis) in novel antisense 

transcript RP11-206M11.7; rs146091982 (β = 0.54, P = 1.33 × 10−9 for the meta-analysis) in the 

solute carrier family 35 member G1 gene (SLC35G1); and rs77378271 (β = 0.29, P = 2.13 × 10−8 

for the meta-analysis) in the CUB and Sushi multiple domains 1 gene (CSMD1). Also noted was 

evidence of genome-level pleiotropy between CAD and major depressive disorder and for an 

association with single-nucleotide polymorphisms in genes associated with schizophrenia risk. 

Several of the genes identified have functions related to neuronal calcium homeostasis or central 

nervous system development.

CONCLUSIONS AND RELEVANCE—These results are the first, to our knowledge, to identify 

specific CAD risk alleles and potential genetic factors contributing to the comorbidity of CAD 

with major depression and schizophrenia.

After nicotine, cannabis is the most widely abused drug worldwide.1 In the United States, 

the accelerated decriminalization of cannabis is based on the erroneous perception that it is 

relatively harmless.2 In fact, cannabis use produces craving,3 dependence,4 and drug-seeking 
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behavior,5 as with the use of other substances. Despite these risks, the prevalence of 

cannabis use and cannabis use disorders has dramatically increased since 2001,6 and the 

political momentum to increase availability has continued. Use of cannabis early in life is 

associated with an increased risk for schizophrenia (SCZ),7 and sets of SCZ-associated risk 

alleles predict cannabis use.8 Cannabis use is also a risk factor for depressive symptoms,9 

and a twin study showed cannabis dependence (CAD) to be associated with an elevated risk 

for major depressive disorder (MDD).10 Substance use and other psychiatric illnesses may 

share common genetic risk factors; or reverse causation, self-medication, or confounding by 

other factors may explain their co-occurrence.

Despite knowledge of the neurobiology of the endocannabinoid system and its response to 

tetrahydrocannabinol, little is known about specific genetic factors influencing susceptibility 

to CAD or cannabis abuse. A twin study showed that several aspects of cannabis use are 

heritable, including an early opportunity to use (h2 = 72%), early onset of use (h2 = 80%), 

lifetime use of cannabis 11 or more times (h2 = 76%), and cannabis abuse or dependence (h2 

= 21%–72%), where h2 is hertiability.11–13 Possible evidence of linkage of CAD on 

chromosome 1614 and linkage and association encompassing the neuregulin 1 gene (NRG1 
[OMIM 142445]; known as a possible SCZ risk gene15) on chromosome 816 have been 

found. Despite several genome-wide association studies (GWAS) on cannabis-related traits, 

no genome-wide significant (GWS) associations were observed for initiation of use17 or for 

CAD.18 Herein we report on findings for DSM-IV CAD criteria from association analyses 

performed in large cohorts of African American and European American participants from 3 

studies of substance use disorder genetics who underwent genotyping with genome-wide 

microarrays. The primary cohort has been used in previous studies to identify genes 

associated with opioid (OD),19 cocaine (CD),20 alcohol (AD),21 and nicotine (ND) 

dependence22 and posttraumatic stress disorder.23

Methods

Participants and Diagnostic Procedures

The samples included 6000 African American and 8754 European American participants 

(race was assigned based on genetic data; eMethods in the Supplement) from the following 3 

studies: (1) the Yale-Penn Study cohort of small nuclear families and unrelated individuals 

(2020 individuals in 850 families and 6951 unrelated individuals), collected to study the 

genetics of substance dependence19–21; (2) the GWAS data set from the Study of Addiction: 

Genetics and Environment (SAGE),24–27 collected to study the genetics of AD, ND, and CD 

(183 individuals in 89 families and 3707 unrelated individuals); and (3) the GWAS 

International Consortium on the Genetics of Heroin Dependence (ICGHD),28,29 a 

collaboration formed to identify genes associated with heroin dependence risk (66 

individuals in 33 families and 1827 unrelated individuals). The SAGE and ICGHD data sets 

are publicly available via application. The present study received institutional review board 

approval from all participating institutions, and written informed consent was obtained from 

all study participants.
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Key Points

Question

What specific genetic variants contribute to cannabis dependence risk?

Findings

Three regions had genome-wide significant evidence of association with cannabis 

dependence and evidence of genetic overlap between cannabis dependence and 

schizophrenia and major depressive disorder.

Meaning

Cannabis dependence has a genetic risk component that may overlap with other 

psychiatric disorders.

Participants from the Yale-Penn Study were recruited from 2000 to 2013. These participants 

were administered the Semi-Structured Assessment for Drug Dependence and Alcoholism30 

to derive DSM-IV diagnoses of lifetime CAD and other major psychiatric traits. Data were 

collected for the SAGE trial from 1990 to 2007, and participants underwent phenotyping 

with the Semi-Structured Assessment for the Genetics of Alcoholism.31 Data were collected 

for the ICGHD from 2004 to 2009, and participants completed a comprehensive psychiatric 

diagnostic interview based on the Semi-Structured Assessment of the Genetics of 

Alcoholism–Australia.31 The method of phenotyping was similar across the 3 samples. 

Additional information about recruitment, genotyping, imputation, and quality control for 

the study cohorts is provided in eMethods in the Supplement.

Statistical Analysis

Data were analyzed from January 2, 2013, to November 9, 2015. Association analyses were 

performed using a count of DSM-IV CAD criteria (0–7) as the outcome variable and the 

imputed minor allele dosage (adjusted for sex, age, and the first 3 ancestry principal 

components) as a predictor variable. This ordinal trait model has greater power to detect 

genetic associations than a univariate model based on disease status because of greater 

information content and improved specificity of the dependence measure. Association tests 

were performed using linear association models embedded in generalized estimating 

equations to correct for correlations among related individuals.32 Analyses were performed 

separately within each data set and population group, and the results were combined by 

meta-analysis using the inverse variance method implemented in the program METAL.33 

Genomic inflation factors (λ) were calculated within each subpopulation, and P values were 

corrected accordingly. We performed a second correction for the λ factor calculated after the 

meta-analysis.

For the primary analysis, individuals were included regardless of cannabis exposure. As 

secondary analyses, individuals who reported never having used cannabis were excluded, 

and the primary model was repeated adjusting for the criterion counts for AD, CD, and OD. 

Participants from 2 genotyping batches in the Yale-Penn cohort (Yale-Penn 1 and Yale-Penn 

2) were combined with the SAGE sample to form a discovery data set. A sample consisting 
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of the ICGHD data and additional samples from the Yale-Penn cohort who did not undergo 

genotyping at the time of the discovery analyses (Yale-Penn 3) were used to replicate the top 

associations.

Cross-Disorder Analysis

We attempted to uncover shared genetic variation between CAD and 5 psychiatric disorders, 

including SCZ, MDD, bipolar affective disorder, attention-deficit/hyperactivity disorder, and 

autism spectrum disorder using the GWAS analysis reported herein and publicly available 

GWAS results from the Psychiatric Genomics Consortium (http://www.med.unc.edu/pgc/).34 

To explore cross-disorder genetic relationships, we used stratified quintile-quintile (QQ) 

plots to evaluate the relative enrichment of single-nucleotide polymorphisms (SNPs) 

associated with both disorders. The QQ plots, which contrast the observed distribution of P 
values with the expected distribution under the null hypothesis (uniform in GWAS), were 

used to assess P value inflation in the GWAS results. Grouping associated SNPs for one 

disorder and comparing (across groups) the QQ plots of another disorder, however, could 

also reveal the enrichment of GWAS signals between disorders, which made them suitable 

for cross-disorder enrichment screening.

We also applied a statistical framework for pleiotropy analysis, Genetic Analysis 

Incorporating Pleiotropy and Annotation (GPA).35 The GPA was built as a mixture model 

with parameters estimated using an efficient expectation-maximization algorithm, where 

associated SNPs were modeled with a β [α, 1] distribution and unassociated SNPs with a 

uniform [0, 1] distribution. A likelihood ratio test assessed the significance of pleiotropy 

between disorders. The GPA also detected the SNPs that were pleiotropic by calculating the 

posterior probability of association with both disorders.

Results

Participant demographic characteristics and the correlation between the criterion counts for 

CAD and other substance use disorder traits are shown in Table 1. The DSM-IV CAD 

criterion counts were significantly (P < .05) correlated with the criteria counts for AD, CD, 

OD, and ND. The correlations varied by sample and population and ranged from r2 = 0.15 

for OD to r2 = 0.61 for CD criteria. The CAD criterion counts were significantly heritable in 

European American (19%–25%; P = .006) but not African American (10%–11%; P = .08) 

participants. eFigure 1 in the Supplement shows a histogram of the CAD criterion count in 

African American and European American participants in each cohort; 3 or more criteria 

indicate a diagnosis of CAD. The criterion count distribution is very similar in African 

American and European American participants. In the Yale-Penn sample, where comorbid 

psychiatric diagnoses were available, CAD was significantly associated with MDD in 

African American participants (odds ratio, 1.07; P = .006) but not SCZ, bipolar affective 

disorder, attention-deficit/hyperactivity disorder, or autism spectrum disorder. Cannabis 

dependence was not associated with any of these disorders in European American 

participants.
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GWAS Results

Manhattan and QQ plots for the meta-analysis discovery GWAS results for African 

American and European American Yale-Penn 1 and 2 and SAGE cohorts are displayed in 

eFigures 2 and 3 in the Supplement. We found little evidence of P value inflation. Table 2 

shows associations in the discovery sample with P < 1.0 × 10−5 in African American or 

European American participants or the combined meta-analysis, trimmed for linkage 

disequilibrium. eTable 1 in the Supplement shows the same results, together with additional 

information about each SNP, including the results within each discovery sample subgroup, 

after excluding individuals with no cannabis exposure, and after adjusting for comorbid 

substance use disorders. We identified GWS associations with reliably imputed SNPs in 3 

distinct regions (Table 2), 2 specific to African American participants and 1 in the combined 

sample. First, rs186825689 (P = 1.86 × 10−8 for the African American meta-analysis) is 

located 12.4 kb upstream from the gene encoding S100 calcium binding protein (S100B) 

with contributions from both informative African American samples. Second, rs143244591 

(P = 2.18 × 10−8 for the African American meta-analysis) maps to a novel antisense 

transcript RP11-206M11.7 (Havana gene: OTTHUMG00000159583) located in the gene of 

the same name on chromosome 3 with at least nominally significant evidence in each of the 

3 African American samples. Third, rs77378271(P = 2.76 × 10−8 for the European American 

meta-analysis) is an intronic SNP in the CUB and Sushi multiple domains 1 gene (CSMD1 
[OMIM 608397]) with evidence of association in 3 of the 6 samples. We also identified 

consistent, non-GWS evidence of association in the combined sample of European 

American and African American participants with a large block of SNPs in and around the 

phosphatidylinositol 4-kinase type 2β gene (PI4K2B [OMIM 612101]), with consistent 

effect direction in every European American and African American population tested 

(minimum P = 1.74 × 10−7 for the meta-analysis). This signal was GWS when individuals 

without cannabis exposure were excluded (minimum P = 2.98 × 10−8 for the meta-analysis).

Replication Results

The SNPs in Table 2 were tested for CAD association in the 2 replication samples (ICGHD 

and Yale-Penn 3). Table 3 shows the replication cohort-specific results for these SNPs, with 

the meta-analysis results from the discovery phase and the discovery + replication phase. 

The smallest P value in the ICGHD cohort among the 13 SNPs that could be reliably 

imputed and analyzed (this cohort was European Australian) was at rs74823926 (P = .064) 

in an intergenic region on chromosome 1. Several associations, however, were replicated in 

the Yale-Penn 3 sample (Table 3). The P values for 2 of the 3 GWS SNPs improved after 

meta-analysis with the replication cohorts (rs143244591 in RP11-206M11.7, from 1.38 × 

10−8 to 4.32 × 10−10; rs77378271 in CSMD1, from 2.84 × 10−8 to 2.13 × 10−8), as did the P 
value for another SNP, rs146091982 in the solute carrier family 35 member G1 (SLC35G1 
[Ensembl ENSG00000176273]) (from 1.31 × 10−7 to 1.33 × 10−9). The signal in PI4K2B 
also improved (P = 5.57 × 10−8 for the full meta-analysis). However, rs186825689 near 

S100B was no longer GWS (P = 8.27 × 10−8) in the full meta-analysis. The Figure shows 

Manhattan plots for the regions encompassing RP11-206M11.7 (Figure, A), SLC35G1 
(Figure, B), CSMD1 (Figure, C), and PI4K2B (Figure, D) in the discovery sample and after 

meta-analysis with the replication samples.
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Cross-Disorder Analysis Results

The QQ plots of 5 Psychiatric Genomics Consortium traits (SCZ, bipolar affective disorder, 

autism spectrum disorder, attention-deficit/hyperactivity disorder, and MDD) were stratified 

based on our CAD GWAS results at significance levels of P < .05, P < .01, P < 1 × 10−3, and 

P < 1 × 10−4. We observed enrichment of the MDD GWAS signal in the CAD GWAS 

(eFigure 4 in the Supplement) in European American participants, but no clear enrichment 

for the other 4 psychiatric disorders in either population group (eFigure 5 in the 

Supplement).

We used GPA to test the significance of pleiotropy between CAD and the same 5 psychiatric 

disorders (eMethods in the Supplement). For each disease pair, we estimated the percentage 

of SNPs shared by 2 diseases and tested the significance of pleiotropy (eTable 2 in the 

Supplement). The European American population yielded significant evidence of CAD-

MDD pleiotropy (P = 2.39 × 10−5); genome wide, 1.7% of all imputed SNPs were estimated 

to be associated with both CAD and MDD. Of these, rs10954732 in P450 

oxidoreductase(POR[OMIM124015]) had the largest posterior probability (although not 

significant) of association with both traits (P = 2.59 × 10−6 for CAD; P = .02 for MDD; 

posterior probability, 0.70).

Discussion

We report herein the first GWS results for CAD to our knowledge. The sample includes a 

large proportion (18%–36%, depending on race and cohort) of individuals with CAD from 2 

ancestral populations in 3 independent cohorts. We identified 3 regions with GWS SNPs 

imputed to the 1000 Genomes reference panel that implicate several biological processes 

and provide insight into the biology of CAD, including evidence of an inflammatory 

component in the disorder, which may also mediate risk for SCZ36 and MDD.37,38 The 

smallest P value observed (P = 4.32 × 10−10) was at rs143244591 in RP11-206M11.7. Little 

is known about this antisense transcript or which, if any, genes it regulates. Minor alleles 

were protective. The next most significant locus was SLC35G1 (rs146091982, P = 1.33 × 

10−9), a potential member of the drug/metabolite transporter superfamily (EamA, previously 

DUF6). Ubiquitously expressed, SLC35G1 binds stromal interaction molecule 1, a calcium 

sensor that communicates the calcium load within the endoplasmic reticulum to store-

operated channels in the plasma membrane39 when calcium stores in the endoplasmic 

reticulum are depleted.40 The SLC35G1–stromal interaction molecule 1 complex likely 

regulates the activity of the transporters that coordinate cytosolic calcium through 

modulation of pump activities.40 The third GWS locus, CSMD1 (rs77378271; P = 2.13 × 

10−8), is highly expressed in the growth cones of developing central nervous system 

neurons, where it likely acts as a regulator of complement activation and inflammation.41 

Different SNPs in CSMD1 have been associated with SCZ at the GWS level.42 Thus, 

CSMD1 is the second gene to be implicated in both disorders (after NRG116) and may 

explain at least part of their shared genetic susceptibility.

Two other established SCZ risk genes, RIMS1 (OMIM 606629) (minimum SNP, P = 1.59 × 

10−5) and MEF2C (minimum SNP, P = 5.22 × 10−5), showed suggestive association with 

CAD. MEF2C is highly expressed in developing mammalian neurons and is thought to 
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mediate calcium-dependent survival of neurons that have made the appropriate synaptic 

connections.43 From a biological perspective, RIMS1 is immediately relevant; RIMS1 acts 

as a scaffold protein that regulates synaptic vesicle exocytosis, affecting cannabinoid 

receptor 1 (CR1)–mediated long-term suppression of γ-aminobutyric acid release, ultimately 

mediating presynaptic forms of long-term plasticity.44 Minor alleles at rs142305709 in 

RIMS1 were associated with fewer CAD criteria in African American participants. We 

observed at least a nominally significant signal in both Yale-Penn African American analysis 

subsets and a non-significant trend in SAGE African American participants.

Limitations of the GWAS findings should be noted. One of the significant SNPs identified 

(rs143244591 on chromosome 3) has little supportive evidence for association from other 

SNPs in the region, possibly owing to low linkage disequilibrium. However, despite 

stringent imputation quality thresholds for including SNPs in the analysis (r2≥0.8) and 

evidence of an association in the replication sample, this signal may represent an imputation 

artifact. Second, although none of the GWS SNPs identified in the full GWAS analysis are 

rare, they could be described as infrequent, with minor allele frequencies in a range 

sometimes associated with false-positive results (4%–6%). Also, of the GWS regions, only 

CSMD1 showed evidence of associations in European American and African American 

participants. The region containing PI4K2B, which became GWS after excluding unexposed 

individuals (see below), was also at least nominally associated with CAD in both 

populations. The 2 African American–specific SNPs were rare or monomorphic in European 

American participants. The lack of association in European American participants could be 

owing to different linkage disequilibrium patterns or the absence of causal variants. The 

Yale-Penn samples who underwent genotyping on the HumanOmni1-Quad and Human Core 

Exome chips showed more consistent results than the corresponding SAGE population, 

which is not surprising insofar as SAGE participants were recruited from different areas and 

ascertained using different criteria (AD, CD, and OD in Yale-Penn and primarily AD and 

ND in SAGE). The difference in ascertainment criteria (use of licit vs illicit drugs) across 

studies likely explains the fact that the proportion of cannabis-exposed individuals varied 

significantly across cohorts (2293 in SAGE population [76.9%] and 7626 in the Yale-Penn 

population [85.0%]). The limitations of phenotypic distribution and population differences 

are more relevant to the Australian ICGHD replication cohort and may explain the lack of 

replication in this cohort. Despite this, we obtained statistically significant evidence for 

formal replication for the SNP in SLC35G1 and stronger evidence for association at many of 

the top SNPs after including the replication samples. Finally, these cohorts have higher rates 

of polysubstance dependence than the general population and may not be generalizable to 

individuals who only use cannabis.

Effect of Exposure Status and Comorbidity

Because the inclusion of genetically at-risk individuals who never initiated cannabis use 

might have influenced our results, we repeated the primary analyses in the discovery cohort 

after removing unexposed individuals. Two of the 3 regions identified remained GWS 

(eTable 1 in the Supplement). The P value for rs143244591 on chromosome 3 improved 

slightly (P = 1.13 × 10−8, meta-analysis exposed) and was associated at P ≤ .02 in each of 

the African American subgroups. The signal at rs77378271 in CSMD1 was almost identical 
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(P = 2.95 × 10−8, meta-analysis exposed) and showed association at P < 5.07 × 10−3 in 2 of 

the 3 European American subgroup and at P = 4.46 × 10−4 in 1 of the African American 

subgroups. In addition, the block of SNPs in and around PI4K2B became GWS with a 

consistent effect direction (minor alleles being protective) in every European American and 

African American population tested and became GWS (minimum P = 2.98 × 10−8, meta-

analysis exposed, at rs147170184). The evidence for pleiotropy between CAD and MDD 

was attenuated substantially (P = .60) after excluding unexposed participants. That the 

removal of unexposed individuals from the analysis had a relatively minor effect on the 

primary findings and actually improved the strength of some suggests that any loss in power 

owing to the smaller sample was offset by an increase in phenotypic precision. In the 

pleiotropy analysis, which relies on genome-level association results and is not limited to the 

most significantly associated SNPs, the power loss apparently outweighed any increase in 

precision. The significance of each of the top SNPs was modestly attenuated after adjusting 

for the DSM-IV criterion counts for AD, CD, and OD (eTable 1 in the Supplement).

Ion Homeostasis and Addiction

The previously published GWAS of OD19 and CD20 in a subset of this sample each 

identified risk genes and pathways involved in the regulation of neuronal calcium and 

potassium, and the pathway involving synaptic long-term potentiation was also identified for 

OD. Also, a cross-disorder analysis identified calcium signaling in neurons as a pathway 

mediating 5 psychiatric diseases, including SCZ and MDD.34 The GWS association in 

SLC35G1 and GWS (in the discovery sample only) associations in and around S100B 
suggest ion homeostasis may play a role in CAD risk.

Shared Risk for CAD and Other Psychiatric Disorders

Many previous studies7,8,45,46 have focused on the relationship between CAD and SCZ, 

whereas the correlation between CAD and MDD has received much less attention. Although 

depressive disorders are highly comorbid with CAD in clinical settings,47 to our knowledge 

no previous genomics study has explored CAD-MDD pleiotropy. We found some evidence 

for genetic correlation between the risks for CAD and MDD. The existence of shared 

genetic factors for CAD-MDD is supported by the overlap in SNPs nominally associated 

with both traits, although we found no significant evidence of pleiotropy at any single SNP. 

We also found limited support for the possibility that such a relationship exists for CAD and 

SCZ based on relatively strong signals for both traits with variants in CSMD1 (although not 

the same variants). Nongenetic explanations such as patients with SCZ or MDD mediating 

the symptoms of these disorders with cannabis use might also explain the comorbidity. 

These analyses are exploratory, and follow-up studies to validate and extend these findings 

are necessary.

Conclusions

This study provided the first GWS evidence to our knowledge for SNPs associated with 

CAD via GWAS in 3 distinct genomic locations. These findings will lead our understanding 

of genetic vulnerability to CAD in new directions that can inform our understanding of the 

biology of CAD. We obtained entirely novel evidence of genetic overlap between CAD and 
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MDD and conclude that CSMD1 may be a candidate gene that affects the risk for CAD and 

SCZ, a topic of considerable research interest.7,48–50 These results also suggest that common 

pathways (nervous system development, inflammation, and ion homeostasis) mediate the 

risk for multiple psychiatric disorders and dependence on multiple substances, including 

cannabis.
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Refer to Web version on PubMed Central for supplementary material.
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Figure. Regional Manhattan Plots of Association Results for DSM-IV Cannabis Dependence 
Criterion Count in 4 Genomic Regions
Association results from single-nucleotide polymorphisms (SNPs) in 4 regions. A, The 

148.8- to 149.2-MB region encompassing RP11-206M11.7 on chromosome 3 in the Yale-

Penn and Study of Addiction: Genetics and Environment (SAGE) African American 

participants. B, The 95.3- to 96-MB region encompassing SLC35G1 on chromosome 10 in 

the Yale-Penn and SAGE African American participants. C, The 2.8- to 4.8-MB region on 

chromosome 8 encompassing CSMD1 in the Yale-Penn, SAGE, and International 

Consortium on the Genetics of Heroin Dependence (ICGHD) African American and 

European American participants. D, The 25.07- to 25.43-MB region encompassing PI4K2B 
on chromosome 4 in the Yale-Penn, SAGE, and ICGHD African American and European 

American participants. In A and B, the SNPs are color coded according to the correlation 

coefficient (r2) in the 1000 Genomes African samples with the most significant SNP. In C 

and D, results from the African American and European American participants were 

combined, and no linkage disequilibrium information was displayed. The light purple circle 
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represents the −log10 P value for the most significant regional SNP in the meta-analysis of 

the discovery samples; the purple diamond, the result for that SNP after meta-analysis with 

the replication sample(s). The light blue line and right y-axis show the observed 

recombination rate.
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