
Daily rhythms in behavior and physiology are regulated 
by the circadian system, a hierarchical group of biologic 
clocks widely distributed in mammalian tissues. The central 
clock of the circadian system, located in the suprachiasmatic 
nucleus (SCN) of the hypothalamus, is synchronized by the 
day/night cycle and coordinates the phases of many periph-
eral clocks [1]. Photic entrainment of the SCN clock involves 
rods, cones, and melanopsin-containing light-sensitive retinal 
ganglion cells, or intrinsically photosensitive retinal ganglion 
cells (ipRGCs) [2-6]. The mammalian retina also contains a 
light synchronized circadian clock that controls many aspects 
of retinal physiology, including photoreceptor disc shedding 
[7], melatonin release [8-10], and dopamine synthesis [11,12].

The cell autonomous oscillations in both central and 
peripheral clocks involve autoregulatory positive and nega-
tive transcriptional and translational feedback loops that are 

composed of a set of clock genes including brain and muscle 
aryl-hydrocarbon receptor nuclear translocator-like protein-1 
(Bmal1), circadian locomotor output cycles kaput (Clock), 
period (Per1, Per2 and Per3), and cryptochrome (Cry1 and 
Cry2) [13]. Additional regulatory loops involving nuclear 
hormone receptors such as Ror and Rev-erbα are also impli-
cated in the control of circadian clock function [13]. These 
positive and negative feedback loops drive circadian physi-
ologic outputs by regulating the expression of downstream 
clock-controlled genes, such as albumin D-site-binding 
protein (Dbp) and E4BP4 (a basic leucine zipper transcription 
factor). About 15–30% of the transcriptome in all tissues is 
under the control of clock genes depending on the tissue or 
the cell type [14-16].

Impairments in retinal function due to retinal diseases 
can potentially impact the central clocks and the circadian 
organization of the entire organism [17]. Diabetic retinopathy 
is one of the most common consequences of diabetes that 
affects millions of working-age adults worldwide and leads 
to progressive degeneration of the retina, visual loss, and 
blindness [18]. Studies in patients and animal models have 
shown that diabetes alters rhythmic clock gene expression in 
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with circadian disruption of the central and peripheral circadian clocks, but the mechanisms responsible for such altera-
tions are unknown. Using a streptozotocin (STZ)-induced model of diabetes, we investigated whether diabetes alters 1) 
the circadian regulation of clock genes in the retina and in the central clocks, 2) the light response of clock genes in the 
retina, and/or 3) light-driven retinal dopamine (DA), a major output marker of the retinal clock.
Methods: To quantify circadian expression of clock and clock-controlled genes, retinas and suprachiasmatic nucleus 
(SCN) from the same animals were collected every 4 h in circadian conditions, 12 weeks post-diabetes. Induction of 
Per1, Per2, and c-fos mRNAs was quantified in the retina after the administration of a pulse of monochromatic light 
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at 12 weeks post-induction of diabetes in comparison with the control mice, suggesting a deficit in light-induced neuronal 
activation of the retinal clock. Finally, we quantified a 56% reduction in the total number of tyrosine hydroxylase (TH) 
immunopositive cells, associated with a decrease in DA levels during the subjective day (ZT2).
Conclusions: These findings demonstrate that diabetes affects the molecular machinery and the light response of the 
retinal clock and alters the light-driven retinal DA level.
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the central and peripheral clocks. In experimental or genetic 
models of type 1 and type 2 diabetes, pronounced phase 
advance or delay in the rhythms of several clock and clock-
controlled genes have been reported in the heart, liver, and 
retina [19-22], whereas in the SCN and the cerebral cortex, 
no changes in expression were observed [22,23]. However, 
we previously reported that diabetic retinopathy affects 
clock genes and behavioral responses of the circadian timing 
system to light, possibly through direct alterations of ipRGCs 
[24].

Because these changes in clock genes have been reported 
under diurnal conditions, it is not possible to unequivocally 
assess whether the effects described are due to effects on 
the circadian pacemaker or to complex masking processes 
of light. In the current study, we investigated the impact of 
diabetic retinopathy on the circadian expression and light 
response of clock and clock-controlled genes in the retina 
and in the SCN using a streptozotocin (STZ) mouse model of 
diabetes. In several models of diabetes, a dysfunction of the 
retinal dopaminergic system has been observed [25-27]. Since 
dopamine (DA) is involved in many physiologic aspects of 
retinal neuromodulation, mediation of light responsiveness, 
and clock gene regulation [28-30], we thus evaluated light-
driven retinal DA as a major output marker of the retinal 
clock.

METHODS

Animals: Wild-type male C57BL/6J mice (Janvier, Le-Gesest-
St-Isle, France) were maintained in a temperature-controlled 
room (23±1 °C) under a 12 h: 12 h light-dark cycle with 
broadband white light at 300 lux, with food and water ad 
libitum. All treatments of animals were in strict accordance 
with current national and international regulations on animal 
care, housing, breeding and experimentation and are in agree-
ment with the ARVO Statement for the Use of Animals in 
Ophthalmic and Vision Research. The specific protocols 
used in this study were approved the CELYNE Committee 
n° C2EA42-13-02-0402-005.

Induction of experimental diabetes in mice: Diabetes was 
chemically induced in 3-week-old fasted male mice as previ-
ously described [24,31]. Animals received an intraperitoneal 
injection of STZ (85 mg/kg, Calbiochem, San Diego, CA) 
dissolved in 0.01 M sodium citrate buffer (pH 4.5) during 
3 successive days. The diabetic state was confirmed by 
measuring blood glucose levels. Mice with glucose levels 
higher than 2 g/l were considered to be diabetic. Age-
matched non-diabetic control animals were injected with 
0.01 M sodium citrate buffer. Animals were maintained 
until 12 weeks after the onset of diabetes. At this stage, the 

control group exhibited mean blood glucose of 1.66±0.17 g/l 
(p≤0.001), whereas the mean level in the diabetic mice was 
4.99±0.3 g/l. This increase in the blood glucose level was 
correlated with a weight loss in the STZ group (21±1.05 g) 
compared to the control group (28.50±0.57 g; p≤0.001).

Circadian expression of clock and clock-controlled genes 
in the retina and the SCN: Wild-type (n = 16) and diabetic 
(n = 16) mice were initially maintained under a 12 h: 12 h 
light-dark cycle, and subsequently, at 10 weeks post-injection, 
the mice were kept in constant darkness (DD) for 15 days. 
To quantify the circadian expression of clock and clock-
controlled genes (Clock, Bmal1, Per1–2-3, Cry1–2, Rev-erbα, 
Rorβ, Dbp, and E4BP4), retinas and SCN from the same 
animals were collected at 12 weeks post-diabetes during the 
first circadian cycle every 4 h (CT0, CT4, CT8, CT12, CT16, 
and CT20). Pooled retinas (n = 4 for each CT and each group) 
from the same animal and individual SCN (n = 4 for each CT 
and each group) were directly collected under dim red light 
(below 0.1 lux), frozen on dry ice, and stored at −80 °C.

Light induction of Per1, Per2, and c-fos in the retina: Mice 
were maintained under a 12 h: 12 h light-dark cycle (n = 11–12 
for both groups) until 12 weeks after the onset of diabetes and 
subsequently maintained for one cycle under DD conditions. 
To analyze photic induction of Per1, Per2, and c-fos mRNAs, 
a pulse of monochromatic light (480 nm, 1.17×1014 photons/
cm2/s, 15 min) was administered at circadian time 16 (CT16), 
the first day in DD. After the light pulse, the animals (n = 7 
for each group) were returned to DD and were euthanized 
with cervical dislocation 30 min after the beginning of the 
light pulse. The dark control (n = 4–5 for each group) animals 
were handled identically but were not exposed to light. Two 
retinas from the same animal were pooled and stored at 
−80 °C until RNA was extracted and quantified. Handling 
and transfer of the animals and dissections were performed 
under dim red light.

Real-time RT–PCR: Total RNA was extracted using TRIzol 
reagent (Invitrogen, Villebon sur Yvette, France). Total RNAs 
was reverse transcribed using random primers and MMLV 
Reverse Transcriptase (Invitrogen). Real time RT-PCR was 
then performed on a LightCycler™ system (Roche Diag-
nostics, Meylan, France). PCR reaction was performed with 
1 µl of cDNA supplemented with 0.75 µl of LightCycler® 
FastStart Enzyme and LightCycler® FastStart Reaction 
Mix SYBR Green (Roche Diagnostic), 0.8 µl of forward and 
reverse primers (10 µM; Eurofins, Ebersberg, Germany), 1.2 
µl of MgCl2 (4 mM; Roche Diagnostic) in a total volume of 
10 µl. The thermal cycler conditions were as follows: 8 min 
at 95 °C, and then 45 cycles of denaturation at 95 °C for 15 s, 
annealing at 68 °C for 15 s and the temperature was reduced 
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by 0.5 °C each cycle until 60 °C. Hypoxanthine ribosyl-
transferase (Hprt) was used for normalization. Initially, two 
housekeeping genes were tested for RT–PCR, the Hprt and 
36b4 genes. The Hprt gene was finally used for internal stan-
dardization of target gene expression as this gene exhibits 
only constitutively non-regulated expression in both groups 
and independently of the physiologic state or the experimental 
conditions. The efficiency and the specificity of the ampli-
fication were controlled by generating standard curves and 
carrying out melting curves. Relative transcript levels of each 
gene were calculated using the second derivative maximum 
values from the linear regression of cycle number versus log 
concentration of the amplified gene. Primer sequences are 
shown in Table 1.

Immunohistochemistry: Twelve weeks post-injection, at Zeit-
geber time 4 (ZT4), the male mice were deeply anesthetized 
with ketamine (100 mg/kg) and perfused intracardially with 
saline followed by 4% paraformaldehyde in phosphate buffer 
(PB, pH 7.4). Flatmounted retinas (n = 6 for the control and 
n = 5 for the diabetic groups) were rinsed three times (10 
min each) in 0.01 M saline PBS (0.01 M phosphate buffer, 
0.09% NaCl, pH 7.4), and endogenous peroxidase activity 
was suppressed using a solution of 50% ethanol with 0.03% 
H2O2 for 1 h. Retinas were preincubated in 0.01 M PBS 
containing 0.3% triton and 0.1% sodium azide (PBSTA) and 
blocked with 1% bovine serum albumin for 2 h, and then 
in antityrosine hydroxylase (TH) primary antibody (1:1,000; 
Millipore, Fontenay ss Bois, France) for 2 days, at 4 °C. 
Retinas were then washed twice in PBST and reacted with 
the secondary goat anti-rabbit biotinylated immunoglobulin 
(IgG ; 1 :200 ; Vector Laboratories, Burlingame, CA) for 

2 h. Immunoreactivity was visualized using a Vectastain 
ABC Elite kit (1:200; PK-6100, Vector Laboratories) for 90 
min at room temperature, followed by incubation in 0.2% 
3,3′-diaminobenzidine, 0.5% ammonium nickel sulfate, and 
0.003% H2O2 in 0.05 M Tris buffer (pH 7.6). The flatmounted 
retinas were mounted on slides, dehydrated in graded 
ethanol, cleared in xylene, and coverslipped. The number of 
TH-positive cells was determined using the software package 
Mercator running on ExploraNova technology.

Biochemistry: Control and diabetic mice were maintained 
under a 12 h: 12 h light-dark cycle. Twelve weeks after the 
onset of diabetes, pooled retinas from the same animal were 
directly collected at ZT2 and ZT14 (n = 7 for control and n 
= 8 for diabetic mice for each ZT time), frozen on dry ice, 
and stored at −80 °C until analysis. Frozen retinas were 
homogenized by sonication in 60 µl buffered perchloric acid 
0.1 M and centrifuged at 5,000 ×g for 15 min at 4 °C. The 
supernatants were injected into the high-performance liquid 
chromatography (HPLC) separation system (column Spheri-
Sorb RP18–5UM, mobile phase 50 mM KH2PO4, 15 mg/ml 
EDTA-Na, 0.26 mM sodium octyle sulfate, methanol 8%, 
adjusted to pH 4.5, flow rate 0.3 ml/min). DA and 3,4-dihy-
droxyphenylacetic acid (DOPAC) peaks were identified based 
on retention time, and concentrations were estimated by 
rationing the peak areas of each substance and their respec-
tive external standard (analytical software AZUR, Datalys, St 
Martin d’Heres, France). The DA and DOPAC concentrations 
are expressed as pg/mg tissue.

Statistical analysis: To evaluate circadian rhythmicity in 
gene expression, data were analyzed with the cosinor method 
(Sigmaplot Systat software). Rhythmicity in gene expression 

Table 1. Primers.

Primer Sens Reverse
Hprt ATCAGTCAACGGGGGACATA AGAGGTCCTTTTCACCAGCA
Clock GTTTGATCACAGCCCAACTC CTCCGCTGTGTCATCTTTTC
Bmal1 CTCAGCTGCCTCGTTGCAAT GCTGTCGCCCTCTGATCTAC
Per1 GCGTTGCAAACGGGATGTGT GAACCTGCAGAGGTGCCAG
Per2 CCACACTTGCCTCCGAAATA ACTGCCTCTGGACTGGAAGA
Per3 CAGTGGCAGAGACGTGCGT GACACTGTCGATACAGTTCAT
Cry1 GCCAGCTGATGTATTTCCCAG CGCCAGCCTCAGTAGCCAG
Cry2 GAGAGACCTCGGATGAATGC CTCGCCACAGGAGTTGTCCA

Rev-erbα GCTCCATCGTTCGCATCAAT CTAGAGGGCACAGGCTGCT
Rorβ GCGAGCACAAATTGAAGTGA AACGGTTCCTGTTGGTTCTG
E4BP4 CGGAAGTTGCATCTCAGTCA GCAAAGCTCTCCAACTCCAC
Dbp CGTGGAGGTGCTAATGACCT CGGCTCCAGTACTTCTCATC
c-fos AGCGCCCCATCCTTACGGAC TCAGCAGATTGGCAATCTCA

http://www.molvis.org/molvis/v22/959


Molecular Vision 2016; 22:959-969 <http://www.molvis.org/molvis/v22/959> © 2016 Molecular Vision 

962

was assessed by fitting the 24 h data to a cosine curve using 
the following equation:

f(x) = M+A x cos x (2π x (T- φ)/24)	

T represents the time (h), M represents the mean value 
of the cosine curve (mesor), A represents the amplitude of the 
curve (half of the sinusoid), and φ the acrophase (h). Two-way 
ANOVA followed by the post-hoc Newman-Keuls test were 
used to compare the Per1, Per2, and c-fos mRNAs, DA and 
DOPAC concentrations, and the DOPAC/DA ratio between 
the control and diabetic groups. One-way ANOVA followed 
by the post-hoc Newman-Keuls test was used to compare the 
number of TH-positive cells between the control and diabetic 
animals.

RESULTS

Circadian expression of clock genes and clock-controlled 
genes in the retina and the SCN of control and diabetic 
animals: The circadian expression of clock genes (Clock, 
Bmal1, Per1–3, Cry1–2, Rev-erbα, and Rorβ) was analyzed 
in the retina and the SCN and compared in diabetic mice 
to the age-matched control animals 12 weeks post-onset of 
diabetes (Figure 1). In the DD conditions, cosinor analysis 
showed that in the whole retina, a significant rhythmicity 
was found in a few clock genes in the control and diabetic 
mice. In the control mice, only Bmal1 (p = 0.00016) and Per3 
(p = 0.006) were rhythmic, while Clock, Per1–2, Cry1–2, 
Rev-erbα, and Rorβ did not show a significant 24 h rhythmic 
component (p≥0.05). In diabetic mice, Bmal1 remained 
rhythmic (p≤0.05) with a significantly reduced amplitude 
(0.16±0.07) compared to the control mice (0.27±0.06; p≤0.05) 
but with a similar acrophase between the control (1.4±1.04 h) 
and diabetic mice (0.68±2.3 h). Per1 (p = 0.30) and Cry1 (p 
= 0.11) that were non-rhythmic in the control mice exhibited 
circadian expression in the diabetic mice with an acrophase 
of 11.79±1.5 h for Per1 and 22.8±1.1 h for Cry1 (Figure 1, 
Table 2).

In the SCN, all the genes studied (Per1–3, Clock, 
Cry1, Rev-erbα, and Rorβ) showed circadian expression, 
except Cry2 in the control and diabetic mice, Bmal1 in the 
control mice, and Rorβ in the diabetic mice. The expres-
sion of Per2 showed greater amplitude in diabetic animals 
(0.33±0.007) compared to the control animals (0.26±0.007, 
p≤0.05). However, no significant difference in acrophases 
was observed between the diabetic and age-matched control 
mice except Cry1 (Figure 1, Table 2) that exhibited around a 
5 h phase delay in the diabetic group (15.10±1.32 h) compared 
to 10.04±0.8 h in the control group (p≤0.05).

Cosinor analysis of the clock-controlled genes showed 
that in the retina and the SCN, Dbp exhibited a circadian 
rhythm with a similar acrophase in the control and diabetic 
groups (Figure 1, Table 2). The acrophase was 7.7±1.4 h for the 
control mice and 7.07±0.9 h for the diabetic mice (p≥0.05) in 
the retina and 9.43±0.64 h for the control mice and 9.23±0.67 
h for the diabetic mice in the SCN (p≥0.05). In the retina, 
E4BP4 showed a circadian variation with an acrophase of 
18.02±1.5 h only in the diabetic mice (p = 0.0002), whereas 
in the SCN no significant circadian rhythm was found for 
either group (p≥0.05).

Altered light induction of c-fos, Per1 and Per2 in the retina 
of diabetic mice: Our previous work has shown that diabetes 
induces morphological changes in ipRGCs, including soma 
swelling and dendritic varicosities, associated with decreased 
c-fos and clock genes induction by light in the SCN at 12 
weeks post-onset of diabetes [24]. Here, we analyzed the 
effect of light stimulation on the induction of c-fos and Period 
genes in the retina to assess the role of ipRGCs in the light 
response of the retinal clock. Mice were exposed to a 480 
nm monochromatic light pulse of constant irradiance and 
duration (1.17×1014 photons/cm2/s; 15 min) at CT16, known 
to induce significant Per1 and Per2 expression [32]. c-fos 
and Per1 were significantly induced by light in the control 
animals compared to the respective dark-exposed mice (F(1–10) 
= 7.9; p≤0.001 for c-fos and F(1–10) = 8.36; p≤0.001 for Per1), 
whereas no significant induction by light was observed in 
the diabetic mice for both genes (Figure 2). A reduction in 
c-fos induction by light was observed between the control 
and diabetic mice (p≤0.05). ANOVA analysis showed that 
the expression of the Per2 gene was not induced by light in 
either the control (F(1–10) = 3.58; p≥0.05) or diabetic (F(1–10) 
= 2.04; p≥0.05) mice in comparison to the respective dark 
control animals.

Diabetes induced a significant reduction in the total number 
of TH-positive neurons and the retinal dopamine content: 
DA is a crucial neurotransmitter involved in many physi-
ological aspects of retinal neuromodulation, mediation of 
light responsiveness, and clock gene regulation [29]. We 
first evaluated the impact of diabetes on the total number of 
TH-positive cells in whole-mounted retinas at 12 weeks post-
onset of diabetes (Figure 3A). A reduction of 56% in the total 
number of TH-positive cells was found in the STZ-diabetic 
mice compared to the control animals (controls: 719.5±67.11 
cells/retina and STZ-diabetic: 404.2±66.48 cells/retina with 
F(1–10) = 15.69; p≤0.001). In the diabetic mice, the DA level 
was decreased at ZT2 (p = 0.04) but not at ZT14 (p≥0.05). 
Diabetes did not alter the DOPAC levels (F(1–27) = 0.0016; 
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Figure 1. Circadian expression of clock genes (Per1–3, Bmal1, Clock, Cry1–2, Rev-erbα, and Rorβ) and clock-controlled genes (Dbp and 
E4BP4) in the retina and the SCN of the wild-type and STZ-diabetic mice at 12 weeks post-diabetes. Animals were euthanized in constant 
darkness (DD). Pooled retinas (n = 4 for each circadian time (CT) and each group) and individual suprachiasmatic nucleus (SCN; n = 4 
for each CT and each group) from the same animals were isolated every 4 h (CT0, CT4, CT8, CT12, CT16, and CT20), and mRNA levels 
were measured using real-time reverse transcription PCR (RT–PCR). Results are expressed as mean ± standard error of the mean (SEM). 
Data from CT0 are double plotted at CT24. Continuous (wild-type) and dashed (diabetic) lines represent the periodic sinusoidal function 
determined by Cosinor analysis. Only periodic sinusoidal functions with amplitude significantly different from zero are represented (p≤0.05, 
zero amplitude test).
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p≥0.05) or the ratio of DOPAC to DA at the two zeitgeber 
times ((F(1–27) = 0.036; p≥0.05; Figure 3).

DISCUSSION

Diabetes alters the molecular machinery of the retinal clock: 
Dysregulation of clock gene expression has been identified 
as a key factor in several disease pathogenesis, including 

diabetes. Diabetes is associated with circadian disruption of 
the central and peripheral circadian clocks, such as in the 
heart and the liver [20,33,34]. Db/db mice, a model of type 2 
diabetes, show the hallmark features of diabetic retinopathy 
associated with dampened oscillations of clock genes in the 
vasculature [21]. Inversely, Clock and Bmal1 conditional 
mice develop type 1 diabetes [35-37], and Per2 mutant mice 

Table 2. Acrophase (± SD) of mRNA levels of clock and clock-controlled genes in the 
retina and the SCN of control and diabetic animals at 12 weeks post-diabetes.

Gene
Acrophase (h)
Retina SCN
Control SZT-diabetic Control SZT-diabetic

Per1 - 11.79±1.5 12.7±1.14 12.32±1.02 NS
Per2 - - 12.07±1.2 15.02±1.05 NS
Per3 14.7±1.3 - 11.8±1.22 13.43±1.17 NS
Bmal1 1.4±1.04 0.68±2.3 NS - 21.6±1.16
Clock - - 13,7±2.09 18.53±1.42 NS
Cry1 - 22.8±1.1 10.04±0.8 15.10±1.32 *
Rev-erb α - - 8.3±0.9 11.6±2.09 NS
Ror β - - 9.48±1.13 -
Dbp 7.7±1.4 7.01±0.9 NS - -
E4Bp4 - 18.02±1.52 - -

Acrophase values are determined using Cosinor analysis and test of amplitude to assess goodness of fit. 
Only rhythms with a significant value are shown. * p≤0.05.

Figure 2. Relative light-induced c-fos, Per1 and Per2 mRNA levels in the retinas of the control and diabetic mice at 12 weeks post-diabetes. 
The light stimulus is a 480 nm monochromatic light pulse (1.17× 1014 photons/cm2/s, 15 min duration) delivered at circadian time 16 (CT16). 
White bars represent animals that received the light pulse (L, n = 7 for each group). The dark control mice (D, black bars) were handled 
in the same way but did not received a light stimulus (n = 4–5 for each group). Data are represented as mean ± standard error of the mean 
(SEM). Asterisk indicates a statistically significant difference (* p≤0.05; ** p≤0.01; *** p≤0.001).
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present retinal vascular damage and neuronal loss in the 
bone marrow similar to that found in type 2 diabetes [38]. 
In rat models of type 1 and type 2 diabetes, the expression 
of several clock genes, including Clock, Bmal1, Per1, Per2, 
Cry1, and Cry2, are altered in the retina, whereas few effects 
are observed in the SCN [22,23,34]. In agreement with these 
studies, we found variable effects of diabetes on the expres-
sion of clock genes in the retina and only slight differences 
in phase and/or amplitude in the SCN. The main differences 
observed in the SCN include an increase in the amplitude of 
Bmal1 expression and a phase delay in Cry1 in STZ-diabetic 
animals compared to the control animals. In the retina of 
the STZ-diabetic animals, the amplitude of Per1 and Cry1 
gene expression increased leading to a significant circadian 
rhythm of their expression, whereas Per3 lost rhythmicity. 

However, our results disagree with the study by Wang et al.; 
they found a decrease in Per1 expression and an increase in 
Bmal1 expression in the retina of STZ-diabetic rats [34]. The 
discrepancy could be related to species or to experimental 
design. We euthanized the mice at an advanced stage of 
diabetes (12 weeks post-injection of STZ) in circadian condi-
tions, whereas Wang et al. [34] analyzed the diurnal rhythm 
of clock genes at an early stage of the pathology (6 weeks 
post-injection).

In general, a circadian rhythm of only a few clock genes 
is observed in the wild-type retina in comparison to the 
SCN [39]. This has been related to the existence of several 
clocks in the retina that oscillate with different periods and 
phases, resulting in low amplitude rhythmicity or masking of 
coherent clock gene expression [32,40] and cellular coupling 

Figure 3. Alteration of the dopaminergic system in diabetic mice at 12 weeks post-diabetes. A: Right panel: representative flatmounted retinas 
from a control and a streptozotocin (STZ)-diabetic animal, immunostained with tyrosine hydroxylase (TH) antibody. Scale bar = 40 µm. 
Left panel: total number of TH-positive cells in the control and diabetic mice at 12 weeks post-diabetes. A significant reduction in the total 
number of TH-positive cells was observed in the diabetic group in comparison to the age-matched control animals. Data are represented 
as mean ± standard error of the mean (SEM; n = 6 for the control group and n = 5 for the diabetic mice group). B: Dopamine (DA) and 
3,4-dihydroxyphenylacetic acid (DOPAC) levels, and the DOPAC/DA ratio in wild-type and diabetic mice at 12 weeks post-diabetes and 
at two different Zeitgeber time (ZT) points (ZT2 and ZT14; n = 7 for control and n = 8 for diabetic mice for each ZT point). The post-hoc 
Newman-Keuls test shows a significant difference in the DA level at ZT2 between the control and diabetic groups, whereas no significant 
difference was observed at ZT14. The DOPAC content and the DOPAC/DA ratio are similar between the two groups at the two ZTs. Data 
are represented as mean ± SEM, * p≤0.05.
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among clock cells/layers is not uniform throughout the retina 
[40]. In the SCN, in contrast, the oscillators are strongly 
coupled [41]. Intercellular coupling confers robustness against 
mutations in the SCN circadian clock network, and this may 
confer robustness of the SCN clock versus the retinal clock 
against clock gene mutations [42] or pathological conditions.

Clock gene response to light is altered in the retina during 
diabetes: Light entrains the circadian clock in the retina and 
the SCN and induces c-fos, Per1, and Per2 expression [32,43-
45]. Photic entrainment of the mammalian SCN requires 
cones, rods, and ipRGCs [2-6], but their role in entrainment 
of the retinal clock is under debate. Two recent studies by 
the same group suggested that none of these photorecep-
tors are necessary for light entrainment of the retinal clock 
[46]. However, melanopsin has previously been shown to be 
involved [47-51]. In particular, ipRGCs provide excitatory 
sustained light responses to dopaminergic neurons with 
peak sensitivity near 480 nm, the maximum sensitivity of 
melanopsin [50]. In the absence of melanopsin, this sustained 
melanopsin-driven response is eliminated [51], and 480 nm 
light fails to induce Per1 and Per2 mRNA expression in the 
retinal photoreceptor layer [32].

We found that c-fos and Per1 were induced with a 480 
nm light pulse only in the control group at 12 weeks post-
induction of diabetes, whereas this photic induction was 
abolished in the STZ-diabetic animals. The Per2 gene was 
not induced by light in either group. This suggests a deficit 
in light-induced neuronal activation in the retina. Several 
studies have shown that ipRGCs are altered in diabetes 
[52-54]. Diabetes induced with STZ treatment gives rise to 
late neural cell death in the retina [55,56]. We also found in 
the STZ-diabetic mice an atrophy of ipRGCs associated with 
decreased photic signaling to the SCN at 12 weeks post-onset 
of diabetes [24]. Because the diminished light input in the 
retina of the STZ-diabetic mice was not likely due to the 
development of cataract or changes in opsin levels [24], our 
results suggest that the altered photic response of the retinal 
clock may result from impaired ipRGCs during diabetes.

Diabetes induced a reduction in TH-positive cells and retinal 
dopamine level: DA, synthesized and released by a sparse 
population of amacrine cells [57,58], is implicated in many 
aspects of retinal neuromodulation and plays a central role in 
the adaptation to light and clock gene regulation [28-30,43]. 
In the present study, we demonstrated a reduction in the DA 
content at ZT2 in mice at 12 weeks post-diabetes compared 
to controls, whereas no significant difference was observed 
at ZT14. The DOPAC/DA ratio, which is an indicator of the 
DA metabolism, was similar between the control and diabetic 
animals at both ZT times. This result is in accordance with 

previous studies that show a dysfunction of the dopaminergic 
system in the early or late stages of development of diabetes in 
mouse and rat models [25,27,52,59,60]. However, the under-
lying mechanisms are unclear. The decline in DA content 
may be related to a reduced number of retinal dopaminergic 
neurons, low levels of DA synthesis, or an impairment of DA 
release from the cells. In the present study, we reported a 
56% reduction in the total number of TH-positive cells in 
STZ-diabetic mice compared to age-matched controls with 
no difference in DA metabolism that may account for the 
reduced DA level.

In addition, the retinal DA content and metabolism are 
not circadian in C57BL/6 mice, and DA release is strictly 
light-driven [61,62]. The reduction of the DA content only 
at ZT2 may also be induced by the decrease in light induc-
tion of the c-fos and Per1 genes in the STZ-diabetic retina. 
According to the anatomic and functional relations between 
ipRGCs and DAergic amacrine cells [50,51,63], ipRGCs may 
be involved as we have shown that light induction of TH 
mRNA, DA, and clock genes requires melanopsin [32]. In 
addition, in dystrophic retinas with degenerated rod and cone 
photoreceptors, light is still capable of increasing retinal DA 
release [64,65].

In conclusion, the effect of STZ-induced diabetes differs 
between the SCN and the retina and leads to a dysregula-
tion of the retinal clock organization and, in particular, the 
response to light. In addition, disturbances in the dopami-
nergic system, the main output of the retinal clock, have 
been observed expressed as a decrease in the number of 
TH-positive amacrine cells and DA content.
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