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Dengue is a major threat for public
health in tropical and subtropical

countries around the world. In the
absence of a licensed vaccine and effective
antiviral therapies, control measures have
been based on education activities and
vector elimination. Current efforts for
developing a vaccine are both promising
and troubling. At the advent of the intro-
duction of a tetravalent dengue vaccine,
molecular surveillance of the circulating
genotypes in different geographical
regions has gained considerable impor-
tance. A growing body of in vitro, pre-
clinical, and clinical phase studies suggest
that vaccine conferred protection in a
geographical area could depends on the
coincidence of the dengue virus geno-
types included in the vaccine and those
circulating. In this review we present the
state-of-the-art in this field, highlighting
the need of deeper knowledge on neutral-
izing immune response for making deci-
sions about future vaccine approval and
the potential need for different vaccine
composition for regional administration.

Introduction

Dengue officially causes 50–100 mil-
lion infections and 22 000 deaths per year
around the world.1 Recent cartographic
approaches have estimated to be around
390 million infections per year becoming
the most important arthropod-borne viral
disease in more than 100 tropical and sub-
tropical countries where 2.5 billion people
live at risk of infection.2

Invasive species of mosquitoes, Aedes
aegypti and Ae. albopictus serve as vectors

leading to rapid worldwide spread of the
disease. The disease is caused by dengue
viruses (DENV), which are members of
the Flavivirus genus (Flaviviridae family)
causing asymptomatic, mild (dengue with
or without warning signs), or severe dis-
ease (severe dengue), sometimes leading to
death.1 The infection in humans starts
when DENV reaches cells of the mononu-
clear phagocyte lineage by interaction
with some of the proposed receptors (DC-
SIGN, heparan sulfate, Hsp70, Hsp90,
etc.) and the viral particle is internalized
by receptor-mediated endocytosis. Subse-
quently, low pH-dependent membrane
fusion and uncoating lead to viral RNA
release, polyprotein translation and proc-
essing, viral RNA synthesis by the repli-
case complex, virus assembly and in the
endoplasmic reticulum and Golgi, matu-
ration in the Golgi, and release of progeny
viruses.3

There are no specific treatments avail-
able for dengue and the development of a
vaccine has been limited by there factors:
first the huge antigenic and genetic diver-
sity of the virus, the lack of cross-protec-
tion immunity among DENV serotypes
and eventually genotypes, and the host
immune interactions that have been asso-
ciated with disease severity.4 Several tetra-
valent vaccine candidates are currently
under development. Though the vaccine
studies have shown some promising out-
come, the overall studies are not encourag-
ing and needs a lot of research.

Because of the existence of enormous
intra-serotype genetic diversity, the possi-
bility of cross-protection after vaccination
is questionable. Hence the vaccine compo-
sition should be based on circulating
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strains of DENV. A more intense DENV
genotype surveillance must be conducted
in those countries where vaccine candi-
dates are planed. The results from such
surveillance should be available in real-
time for helping decision makers about
potentially different vaccine composition
for administration in the different regions,
a novel challenge for vaccine developers
attempting a worldwide coverage.

DENV Genetic Diversity

DENVs are enveloped single-stranded
positive-sense RNA viruses (ssRNAC)
whose genomes encode for a viral RNA-
dependent RNA polymerase lacking
proofreading activity5 that leads to very
high substitution rates, rapid divergence,
and the existence of at least four serotypes
(DENV-1 to -4) with high intra-serotype
genetic diversity.6 Differences in phylog-
eny-based estimations of DENV substitu-
tion rates depending of prior assumptions
(strict or relaxed molecular clock, changes
in the distribution of variable and invari-
able sites across the phylogeny, full-length
genome or gene-based analysis) have been
reported.7 The rates for DENV-1 range
from 4.55 £ 10¡4 to 9.08 £ 10¡4 substi-
tutions per site per year (subs/site/year);
for DENV-2 the rates range from 6.07 £
10¡4 to 9.84 £ 10¡4 subs/site/year; for
DENV-3 the nucleotide substitution rates
range from 9.01 £ 10¡4 to 10.40 £ 10¡4

subs/site/year, and estimations for
DENV-4 range from 6.02 £ 10¡4 to
10.63 £ 10¡4 subs/site/year.6,8 Based on
these rates and the coalescent theory, the
more recent common ancestor (MRCA)
of the 4 DENV serotypes could have
existed more than 1000 y ago.9 DENV-4
was probably the first diverging serotype,
followed by DENV-2 (around 350 y ago)
and finally DENV-1 (125 y ago) and -3
(100 y ago).9

The 4 DENV serotypes were first
defined by their antigenic properties as
members of the DENV serocomplex.10

However, the accumulation of genetic
diversity during the last centuries has led
to inter-serotype genetic distances even
higher than those observed among differ-
ent species within the Flavivirus genus.9

The spread of the DENV serotypes

around the world has also allowed the
accumulation of intra-serotype genetic
variation and the emergence of different
monophyletic groups (genotypes) in the
different geographic regions of the world
(Fig. 1).11 Although genetic diversity has
accumulated along the whole viral genome
in which the structural and non-structural
genes and untranslated regions (UTRs)
are critical in one or more steps of the
virus life cycle,5 the envelope gene has
raised more attention because of the role
of the envelope (E) protein in virus attach-
ment and entry into the cell, as well as
membrane fusion and interaction with the
immune system.5

The Envelope Protein

The E protein of DENV is a mem-
brane-anchored glycoprotein of approxi-
mately 53 kDa that forms homodimers
which are organized into rafts, each con-
taining 3 parallel dimers in the mature
virus.12 The arrangement of these rafts
with the viral membrane (M) proteins and
host-derived lipid membrane leads to for-
mation of the viral coat with icosahedral-
like symmetry. The E protein plays impor-
tant roles in the life cycle of the DENV
and in the stimulation of host protective
immunity. The E protein has a major
region known as the ectodomain (soluble
fragment containing residues 1–394) and a
minor membrane-anchored insoluble
region (residues 395–495).13 The soluble
fragment contains 3 structural domains (I,
II, and III), which have been extensively
characterized.13 Domains I and II function
as a molecular hinge for E protein reorga-
nization at low pH.14 Additionally, domain
II contains the highly conserved fusion
peptide responsible for virus-mediated cell-
membrane fusion.15 Domain III forms an
immunoglobulin-like fold containing puta-
tive receptor-binding motifs involved in
receptor recognition, attachment and virus
entry into the host cell. Several studies sug-
gest that immune sera of DENV-infected
patients contain several antibody popula-
tions which target the different antigenic
epitopes exposed on both, the virion sur-
face (e.g., M and E), and nonstructural
proteins secreted during viral infection
(e.g., viral protein NS1).16

Virus Neutralization and Vaccine
Development

DENV E is the main protein involved
in the immunological response and the
induction of neutralizing antibodies.5 The
antigenic epitopes of the E protein recog-
nized by neutralizing antibodies during
infection in humans have been mapped in
all 3 domains. Antibodies targeting
domain I/II have been correlated with
cross-reactive immunity to the 4 DENV
serotypes and weak neutralization
potency,17 while those targeting domain
III (an epitope localized on the lateral
ridge and other located on the center of
the A strand) have been correlated with a
strong neutralizing activity.18 DENV-
specific antibodies in human immune sera
are mainly cross-reactive and weakly neu-
tralizing with a very low proportion hav-
ing strong neutralizing activity against
only one serotype.19

Several in vitro and in vivo studies sug-
gest important differences in the efficacy
of antibody-mediated neutralization, due
to the inability of certain antibodies to
interact with the epitopes exposed by a
virus belonging to a different genotype
within the same serotype.20-22 Although
several hypotheses are plausible, it is possi-
ble that the low efficacy of a tetravalent
vaccine to protect against DENV-2, dur-
ing a phase 2b clinical trial in Thailand
could be due to the fact that a different
DENV-2 genotype circulated during that
period of time.23

DENV envelope gene has genetic vari-
ation large enough even to allow perform-
ing genotype discrimination and
phylogeographic studies. It is therefore
expected that the naturally accumulated
variation allow DENV to escape a previ-
ously acquired immunity to a certain
DENV genotype especially when a
DENV strain with different genotype was
used for the first challenge. In vitro, it is
possible to obtain neutralization escape
mutants of DENV through selection dur-
ing serial passages of a wild type virus in
the presence of low doses of monoclonal
neutralizing antibodies.24 Because accu-
mulation of mutations could lead to anti-
genic drift, the potential escape of a
particular DENV genotype from vaccine-
elicited antibodies may contribute to
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disease severity, which occurs by the
broadly accepted mechanism of antibody-
dependent enhancement (ADE).4

Antibody-Dependent
Enhancement

ADE has been postulated as the best
explanation for severe outcomes of den-
gue. This hypothesis is based on evidence
in vitro and in vivo suggesting that
DENV infection is enhanced by the
administration of DENV-immune sera or
monoclonal antibodies in cell cultures and
monkeys.25-27 Additional evidence arises
from epidemiological observations that
infection in humans with one DENV
serotype confers long-term protection
against that serotype, but not against any
other serotype. Cross-reactive antibodies
can recognize and attach the virus belong-
ing to a heterologous serotype in a non-
neutralizing way. This cross-reaction
could enhance the virus uptake by Fc
receptor-bearing cells where they can
quickly replicate,28 invade the lymph

nodes and cause higher viremia that have
been correlated with disease severity.29

In case the administered vaccine does
not confer protection, another major con-
cern emerges from the fact that the ADE
could lead to a severe outcome of the dis-
ease.14 We are therefore encouraged to
define the extent of protection against the
different serotypes and genotypes and the
geographic distribution and continuous
surveillance before vaccine approval and
subsequent vaccine composition.

Global Distribution of the
Different DENV Genotypes

The intra-serotype genetic variation of
DENV in the form of genotypes deter-
mined by sequencing was first reported in
the early 1990s for DENV-1 and -2.30

Sequence availability during the last 2 dec-
ades allowed the high-resolution genotyp-
ing which were named according to their
distribution.11 In spite of intense micro-
evolution of DENV, the worldwide distri-
bution of the DENV genotypes has been

stable through the time (Fig. 2) with only
few important changes. Although viruses
belonging to a specific genotype may be
reported in places, which are distant from
each other, these are frequently considered
imported cases and several factors limit
these from becoming established.31

The Native American genotype of
DENV-2 co-circulated in several Latin-
American countries, and was finally
replaced by the Asian/American genotype
during 1990s.32 Also, despite the circula-
tion of DENV-3 genotype III in the
Americas for a long period, the co/circula-
tion with DENV-3 genotype I was
recently reported for a short period of
time in Brazil, Colombia, and
Ecuador.31,33,34

Although genotype co-circulation and
replacement are not very common phe-
nomena in the Americas, these are fre-
quently observed in several countries in
Southeast Asia and South Pacific.35,36

Because of globalization, commercial rela-
tionships, and tourism, no country is
exempt of importing and establishing
novel DENV strains of any genotype. It is

Figure 1. Phylogenetic tree of the 4 DENV serotypes based on the complete (1479–1485 nt) envelope gene of 289 viral isolates worldwide. The intra-
serotype genetic diversity has allowed the designation of genotypes within each DENV serotype.37-40
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therefore important to maintain active
genotype surveillance in all the endemic
countries where the DENV is transmitted
and vaccination is planed in the near
future.

Conclusion

Major efforts in DENV research are
currently focused on designing/producing
and licensing a tetravalent vaccine. It is
therefore important to understand the role
of DENV genetic variability in vaccine
efficacy. If the results of vaccine candidates
in clinical trials continue showing low effi-
cacy, future vaccine approaches should
consider the design of vaccines for
regional administration whose antigenic
and genetic composition are based on
genotype surveillance.
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