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Abstract
Sister chromatids are tethered together from the time they are formed in
S-phase until they separate at anaphase. A protein complex called cohesin is
responsible for holding the sister chromatids together and serves important
roles in chromosome condensation, gene regulation, and the repair of DNA
damage. Cohesin contains an open central pore and becomes topologically
engaged with its DNA substrates. Entrapped DNA can be released either by
the opening of a gate in the cohesin ring or by proteolytic cleavage of a
component of the ring. This review summarizes recent research that provides
important new insights into how DNA enters and exits the cohesin ring and how
the rings behave on entrapped DNA molecules to provide functional cohesion.
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Introduction
Cohesin is a multi-subunit protein complex that tethers sister 
chromatids together each cell cycle, from S-phase until anaphase  
(Figure 1). Cohesin allows the newly formed sister chromatids to 
attach to the mitotic spindle as a unit. By joining the spindle as 
a fixed pair, the sisters are able to form microtubule attachments 
that will ultimately pull them to opposite poles. The orderly and  
synchronous separation of the chromatids at anaphase is accom-
plished by the coordinated removal of cohesin from the chromatids.

Although cohesin was initially discovered in budding yeast, the 
subunits and the structure of the complex are highly conserved. 
Cohesin is composed of four structural components. Smc1 and 
Smc3 are members of the SMC family of proteins, which are 
involved in DNA organization in all organisms. These proteins fold 
over on themselves to form long, anti-parallel, coiled-coils. The 
“hinges” at one end of the proteins interact with each other, as do 
the head domains at the opposite end (Figure 1). The head domains 
of each protein contain complementary partial ATPase domains 
that form two complete intermolecular ATPases when the heads  
interact. In mitotically growing cells, head domains are spanned by 
a subunit variously referred to as Mcd1, Scc1, or Rad21. The fourth 

subunit, Scc3, associates with Mcd1 but may also interact with the  
Smc1-Smc3 hinge domains1,2. Additional proteins regulate the 
behavior of cohesin: Wapl and Pds5 mediate both cohesion  
establishment and cohesin release, and in certain higher eukary-
otes Sororin promotes the stable association of cohesin with the  
chromosomes (reviewed in 1–3). The release of cohesin from  
chromosomes is inhibited by acetylation of Smc3 by members of 
the Eco1 family of acetyltransferases4–7.

Purified and reconstituted cohesin complexes can form a ring  
with a diameter of about 40 nm when observed by electron  
microscopy8–10, but whether this open form reflects its in vivo  
conformation is an important question. Cohesin holds sister chro-
matids together, at least in part, by topological entrapment of the 
DNA11,12. This leads to the question of how DNA enters and exits 
the cohesin pore. To determine which gates are the points of DNA 
entry into or exit from the ring, investigators have employed engi-
neered versions of the cohesin proteins that form rings with gates 
that either are eliminated, by fusions of adjacent subunits, or can 
be artificially locked13,14. Collectively, these experiments suggest 
that chromatin can be tethered by cohesin when the Smc1-Mcd1 
or Mcd1-Smc3 junctions are sealed, but not when the hinge-hinge 
junction is closed. But what triggers the junctions to open to allow 
chromatin entry or to open again when it is appropriate to release 
cohesin? The past two years have provided significant new insights 
into how the cohesin ring might be opening to allow the passage 
of DNA and how the ring might behave once it is topologically 
bound to chromatin. Here we briefly survey some of these exciting 
observations.

Reversible loading and unloading of DNA into the 
cohesin ring
The synchronous separation of chromatids at anaphase is accom-
plished by cleavage of the Mcd1 subunit, but cohesin is also released 
from chromatin through a non-proteolytic process throughout the 
cell cycle and, in animal cells in particular, much of the cohesin is 
released from chromosomes in mitotic prophase. Structural stud-
ies have shown that the N-terminal end of Mcd1 interacts with the 
head proximal coiled-coil domain of Smc315. Prior studies sug-
gested that this interface acts as the chromatin exit gate; now this 
has been shown more directly16. The authors used a system in which 
they could monitor the association of the N-terminal end of Mcd1 
with Smc3 in living cells, using imaging and cross-linking studies. 
Elimination of WaplRad61, or the presence of other mutations known 
to stabilize cohesin on chromosomes, had the effect of stabilizing 
the association of the Mcd1 N-terminus and Smc3. What triggers 
the release of the Mcd1-Smc3 interaction in vivo? A number of 
recent papers have focused on this question and provide compelling 
evidence that release requires ATP hydrolysis at the Smc1-Smc3  
interface16–19. Most of these studies used genetic schemes that 
exploited the inviability of eco1 mutants in budding yeast to iden-
tify mutations that stabilize cohesin (or reduce its release), thus 
restoring viability. These experiments revealed that mutations of 
the ATPase active site closest to the site at which Eco1 acetylates 

Figure 1. The cohesin complex. The four-subunit complex 
contains two SMC proteins, each of which forms long antiparallel 
coiled-coils. The SMC proteins interact in two places: where they 
fold back on themselves (hinge domains) and at head domains 
formed by interaction of their N and C termini. The interactions of 
the Smc1 and Smc3 head domains together form two intermolecular 
ATPases. ATP is indicated by yellow diamonds. Note that the Smc1 
and 3 subunits, when interacting at both the hinge and the ATPase 
domains, would form a structure with an internal pore. The Mcd1 
subunit (blue) interacts with both SMC head domains. Because the 
ATPase domains interact, a second pore may exist between Mcd1 
and the Smc proteins. Separation of the Smc ATPase domains by 
ATP hydrolysis would create a single pore surrounded by Mcd1, 
Smc3, and Smc1. The Scc3 subunit, shown in grey, is not thought to 
form part of the ring.
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Smc3 could stabilize cohesin on DNA/chromatin, in vitro or in vivo,  
suggesting that cohesin release is promoted by this ATPase  
activity16–19. Interestingly, analogous mutations at the second  
ATPase site on the head domain could not stabilize cohesin17,18.

What is the relationship between the cohesin ATPases and the  
cohesion-destabilizing protein Wapl? Consistent with its role 
in cohesin removal, Wapl affects the ATPase-mediated release 
mechanism. Although Wapl does not stimulate the ATPase in an  
in vitro system, it does promote increased dissociation of DNA 
from the cohesin complex through release of the N-terminus of 
Mcd1 in an ATP-dependent manner19. Indeed, fusion of Smc3 to the  
N-terminal end of Mcd1 renders cohesin removal from chromo-
somes Wapl resistant20, and ectopic induction of Wapl expression 
in vivo triggers the dissociation of Smc3 and the N-terminus of 
Mcd116.

Initial studies of the role of Wapl in chromosome cohesion 
revealed its cohesin unloading activity, but it was recently found 
to also promote the loading of cohesin onto DNA substrates  
in vitro, also through the Mcd1-Smc3 gate19. The concept of DNA 
entering the cohesin ring through the Mcd1-Smc3 gate stands 
in contrast to previous work that suggested that opening of the  
Smc1-Smc3 hinge interface was critical for cohesin loading  
in vivo. This model was supported by experiments demonstrating 
that locking the hinge-hinge interface of engineered Smc1 and  
Smc3 proteins blocked cohesin loading13,14. Could Wapl pro-
mote cohesin loading through the Mcd1-Smc3 gate in vivo? This 
model is consistent with the observation that Wapl mutants show 
reduced overall cohesin loading21 and is appealing for its simplic-
ity in putting the regulation of entry/exit at a single portal. But in 
an apparent contradiction of this model, Wapl is not essential for 
sister chromatid cohesion in budding yeast4,21. Thus, if Wapl can 
indeed promote DNA entry, then there must be another way for 
chromatin to load (e.g. through the hinge interface). Alternatively, 
perhaps DNA entry can still occur through the Mcd1-Smc3 gate in 
Wapl mutants. This entry might be inefficient, or incomplete, but in 
a way that is still sufficient to promote cohesion. For example, DNA 
may be caught between Mcd1 and the Smc1-Smc3 heads, never 
entering the main pore. Additional studies of the way in which the 
cohesin ring interacts with and loads onto the DNA will be required 
to assess the precise role of Wapl in cohesion establishment.

What prevents the cohesin ring from disengaging from  
chromosomes prematurely once it is loaded? Acetylation of the 
Smc3 subunit of cohesin by Eco1 promotes cohesion and is thought 
to antagonize the releasing activity of Wapl. This is based on the 
observation that inviability caused by ECO1 mutations can be  
suppressed by inactivation of Wapl5,6,21. Consistent with this genetic 
observation, new in vitro studies indicate that Eco1 can block 
ATPase-dependent opening of the Mcd1-Smc3 gate19. Interac-
tion of cohesin with DNA stimulates ATPase activity, as if DNA 
alone might promote opening of the cohesin ring1,18,19. Acetylation 
of Smc3 by Eco1 reduces this ATPase activity and thus stabilizes 
cohesin on DNA. These results have led to the model that direct 
interaction of DNA with Smc3 near the targets of acetylation acti-
vates the ATPase. Subsequent acetylation of Smc3 would then block 

interaction of Smc3 with the DNA, thereby preventing cohesin 
removal (Figure 2). In fact, earlier work has shown that acetylation- 
mimicking mutations of Smc3 reduce in vitro interactions of 
cohesin with DNA and reduce loading of cohesin on chromosomes 
in vivo22.

How is this DNA-dependent ATPase reaction entrained in vivo? 
Interaction of the cohesin loader complex, Scc2/4, with cohesin may 
function by stimulating a structural rearrangement of the cohesin 
ring, exposing the DNA binding region to promote loading and 
ATP hydrolysis1. Future studies exploring the DNA-cohesin inter-
action and the ways in which Wapl, Pds5, and the loader complex  
affect ring conformations will be needed to further explore this 
model.

Chromatid tethering by cohesin
Once associated with chromosomes, how does cohesin tether sis-
ter chromatids together? The embrace model in its simplest form 
suggests that DNA from both sister chromatids become encir-
cled by single cohesin rings coincident with their replication  
(Figure 3)23. In some models, this was suggested to occur by pas-
sage of the replication fork through the cohesin rings24. Other 
models suggest that chromatids are encircled by separate cohesin 
rings (sometimes called handcuff models), which then oligomer-
ize to tether the sisters together. None of these models are mutu-
ally exclusive, and cohesin might organize DNA through more than 
one mechanism. The question of how cohesin and chromatids are 
organized has been particularly difficult to study, as it has not yet 
been possible to visualize cohesin-DNA interactions in a native 
context. Biochemical isolation of cohesin has not provided evi-
dence for high levels of oligomerization, but these approaches are 
challenged by the need to solubilize chromatin in order to purify 
the cohesin25.

Recently, an indirect approach was used to provide evidence that 
cohesin rings might act as oligomers to mediate normal levels of 
cohesion26. One prediction of an oligomerization model is that 
since multiple cohesin rings are acting together, in cells where each 
cohesin ring always has one of two different structural defects, 
rings with two different defects might be able to compensate for, or 
complement, one another by virtue of their combined contributions 
to a common oligomer (Figure 3). Conversely, if the rings act inde-
pendently, each could not supply what the other is missing. In this 
study, the investigators screened for the survival of cells when two 
different mutant forms of the same gene (MCD1 or SMC3) were 
expressed in the same cell. Remarkably, they identified pairs of 
mutant alleles that exhibited strong inter-allelic complementation. 
That is, the expression of either mutant allele alone in the cell led 
to loss of cohesion and inviability, while co-expression led to cohe-
sion and viability. An oligomerization model is also supported by 
the finding that inactivation of Pds5 during mitosis leads to loss of 
cohesion, though cohesin proteins remain associated with the sister 
chromatids27,28.

Though indirect, the simplest explanation of these data is that 
cohesin rings can work together to fulfill their essential function. 
It may be that cohesin rings work either alone or as oligomers in  
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Figure 2. Model for DNA unloading through the Smc3-Mcd1 gate. DNA is loaded into the cohesin ring, which is closed in part through 
interaction of the Smc1 and Smc3 head domains (A). Once loaded into the cohesin ring, interaction of DNA (lavender line) with the head 
domain of Smc3 can stimulate ATPase activity at the Smc3-Smc1 interface, resulting in partial opening of the cohesin ring (B). This allows 
Wapl to open the Smc3-Rad21 interface, fully releasing the DNA (C)19. In contrast, acetylation of the Smc3 head domain, indicated by the 
black star, would prevent close interaction of the DNA with the head domains, preventing ATP hydrolysis (D) and thus preventing ring opening 
(E). In this model, acetylation of the Smc3 head domain might prevent both entry and exit of DNA.

wild-type cells, and in the examples of intra-allelic complementa-
tion, it is the ability of the rings to act as oligomers that allows 
the rescue of cohesion. The authors suggest revised models for 
ways in which oligomerization of rings could be part of the cohe-
sion process and point out the flexibility that such oligomerization 
mechanisms might provide to cohesins in mediating long-range 
chromosomal interactions or responding to signals that require 
alterations in chromosome domain organization in order to facilitate  
appropriate gene expression.

Observing interactions of cohesin with DNA
Several cohesion models predict that the cohesin complex should 
be able to slide along the DNA and, based on the size of the central 
pore in vivo, suggest that cohesin should be able to pass over  
obstacles along the chromatin. In particular, passage of the repli-
some through the cohesin ring could explain how pairs of sister 
chromatids become encircled by single cohesin molecules. An 
elegant study has recently addressed properties of cohesin on  
chromatin29. Using single molecule analysis, Stigler et al. assessed 

A

B

C

D

E

Page 5 of 8

F1000Research 2016, 5(F1000 Faculty Rev):1909 Last updated: 03 AUG 2016



Figure 3. Different models for functional interaction of cohesin 
with sister chromatids. In the most basic “embrace” model (A), both 
sister chromatids are entrapped together within individual cohesin 
rings, which are loaded either before or during DNA replication. 
The finding that two different non-functional alleles of individual 
cohesin subunits are able to promote cohesion when expressed in 
the same cell is consistent with the notion that higher order cohesin 
interactions can promote sister chromatid tethering26. Examples 
include the handcuff (B) and stacked cohesin (C) models.

the binding and mobility of purified cohesin on defined DNA cur-
tains (linear arrays of ordered DNA molecules of defined sequence) 
using total internal reflection fluorescence microscopy (Figure 4). 
First, they showed that although cohesin alone has the intrinsic 
ability to interact with DNA, the loader complex is required for 
the efficient generation of very stably bound, salt-resistant com-
plexes. This population presumably represents the topologically 
engaged cohesin, and it can be seen to translocate along the DNA 
molecules at a rate approaching the theoretical free diffusion rate, 
consistent with the idea of topological engagement around an open 
pore. Consistent with this model, the authors also showed that sta-
bly bound cohesin could slide off DNA molecules at non-tethered 
ends, much like a curtain ring sliding off a free curtain rod. They 
further showed that the cohesin complex could be pushed along 
DNA strands by motor proteins. Finally, they tested the pore size of 
the cohesin ring by determining the size limit of the obstacles that 
the ring can bypass during translocation. This was accomplished 
by engineering different sized obstacles to engage in a site-specific 
manner on the DNA curtain. They conclude that the pore size is 
in fact far smaller than that predicted based on electron micros-
copy studies and can accommodate obstacles of only ~11 nm, 
the approximate size of a nucleosome. Based on these analyses, 

Figure 4. Single molecule analysis of cohesin’s interaction with 
DNA. Purified cohesin incubated with tethered and extended DNA 
molecules shows the behaviors illustrated29. The presence of the 
loader complex (not shown) results in the highly stable interaction 
of cohesin with DNA. Once loaded, cohesin appears to move freely 
along the length of the DNA, unless there is an obstacle of greater 
than ~11 nm in size. Cohesin is released from the untethered end 
of the DNA molecule (shown at left) and stops when it reaches the 
tethered end (right).

the intrinsically crowded nature of most chromatin is predicted 
to greatly reduce, though not block, the diffusion of cohesin over 
distances of several kilobases in biologically relevant time frames. 
These findings fit well with the model that cohesin rings can be 
pushed to the ends of open reading frames by the transcriptional 
apparatus30,31 but raise questions as to whether the replisome, which 
is estimated to be closer to 20 nm32, can pass through the cohesin 
ring.

Summary
It remains to be seen how the physical properties of loaded cohesin, 
as revealed by this recent collection of groundbreaking experi-
ments, are entrained to result in the tethering of sister chromatids 
in a robust manner. Does some small fraction of cohesin entrap two 
DNA molecules in much the same manner as seen in the single  
molecule analyses? Or do higher order interactions between cohesin 
complexes ensure inter-sister tethering, as suggested by the genetic 
studies? Whatever the answers, we are certainly much closer to 
understanding the nature of the interaction between chromosomes 
and cohesin than we were before these papers provided new, key 
insights into the nature of cohesin-DNA interactions.
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