1duosnuey Joyiny 1duosnuen Joyiny 1duosnuey Joyiny

1duosnuey Joyiny

Author manuscript
Traffic. Author manuscript; available in PMC 2017 April 01.

-, HHS Public Access
«

Published in final edited form as:
Traffic. 2016 April ; 17(4): 369-399. d0i:10.1111/tra.12372.

Nuclear LC3 associates with slowly diffusing complexes that
survey the nucleolus

Lewis J. Kraftl", Pallavi Manral?, Jacob Dowler?, and Anne K. Kenworthy?:2:3:4.*
1Chemical and Physical Biology Program, Vanderbilt University, Nashville, Tennessee, USA

2Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine,
Nashville, Tennessee, USA

3Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee, USA

4Epithelial Biology Program, Vanderbilt University School of Medicine, Nashville, Tennessee, USA

Abstract

MAP1LC3B (LC3) is a key component of the autophagy pathway, contributing to both cargo
selection and autophagosome formation in the cytoplasm. Emerging evidence suggests nuclear
forms of LC3 are also functionally important; however, the mechanisms that facilitate the nuclear
targeting and trafficking of LC3 between the nucleus and cytoplasm under steady state conditions
are poorly understood. In the current study, we examine how residues known to regulate the
interactions between LC3 and other proteins or RNA (F52 L53, R68-R70, and G120) contribute to
its nuclear targeting, nucleocytoplasmic transport, and association with nucleoli and other nuclear
components. We find that residues F52 L53 and R68-70, but not G120, regulate targeting of LC3
to the nucleus, its rates of nucleocytoplasmic transport, and the apparent sizes of LC3-associated
complexes in the nucleus inferred from FRAP measurements. We also show that LC3 is enriched
in nucleoli and its triple arginine motif is especially important for nucleolar targeting. Finally, we
identify a series of candidate nuclear LC3-interacting proteins using mass spectrometry, including
MAP1B, tubulin, and several 40S ribosomal proteins. These findings suggest LC3 is retained in
the nucleus in association with high molecular weight complexes that continuously scan the
nucleolus.
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INTRODUCTION

Microtubule associated protein 1 light chain 3 (LC3), a ubiquitin-like protein that
participates in autophagosome formation and autophagy cargo selection in the cytoplasm, is
one of the most widely utilized markers of autophagy (1, 2). LC3, however, has been
detected in the nucleus in multiple studies (3—10), and several lines of evidence indicate that
LC3’s trafficking into and out of the nucleus is a regulated event, and that the functions of
nuclear LC3 are highly important. But how LC3 is trafficked to the nucleus under steady-
state conditions, and the nature of nuclear LC3’s interactions with nuclear components and
subnuclear bodies (e.g. the nucleolus) is incompletely understood.

LC3 is a member of the ATG8 protein family, which consists of several homologues: LC3
isoforms A, B, B2, and C, GABARAP, GABARAPLL, and GATE 16 (1, 2). In the context of
autophagy, LC3B (hereafter referred to as LC3) is the best-studied ATG8 family member. A
94 % sequence identity is shared between rat Mapllc3 and human MAP1LC3B (11). LC3 is
both soluble (LC3-I), and membrane-associated after conjugation to the lipid
phosphatidylethanolamine (LC3-11) (12). LC3 cycles between its soluble and lipid modified
forms with the help of ubiquitin-like activation, conjugation, and ligation enzymes, ATG7
along with cysteine protease, ATG4B (13).

Work over the past year indicates that nuclear LC3 interacts with the Promyelocytic
leukemia (PML) protein (8) and components of the ERK pathway (5). In addition, in
response to starvation, Huang et al. demonstrated that nuclear LC3 is deacetylated and
subsequently actively trafficked out of the nucleus into the cytoplasm by virtue of its
association with TP53INP2/DOR (9). Remarkably, the nuclear-derived pool of LC3 appears
to be the major source of autophagosome-targeted LC3 in starved cells (9). Very recently,
Dou et al. showed that LC3 interacts directly with lamin B1, associates with
transcriptionally inactive heterochromatin domains known as lamin-associated domains, and
participates in degradation of nuclear lamina in response to oncogenic insults (14).
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In principle, LC3 is small enough to passively cross the nuclear envelope, even when tagged
with GFP. We and others, however, have shown that GFP-LC3 is modestly enriched in the
nucleus relative to the cytoplasm, suggesting it is either selectively targeted to or retained
within this compartment as part of a complex that is too large to cross the nuclear envelope
by passive diffusion (4, 9). LC3 lacks a consensus nuclear localization sequence, and it
contains a sequence with some similarity to nuclear export signals (NES), but inhibition of
active nuclear export with leptomycin B has no effect on the nucleocytoplasmic distribution
of LC3 (4), possibly because this region of the protein is buried in the crystal structure (15).
Nevertheless, we found that GFP-LC3 shuttles between the cytoplasm and nucleus, and
diffuses more slowly than predicted for a monomer in both the cytoplasm and nucleus
suggesting that both cytoplasmic and nuclear LC3 may associate with larger complexes (4).

To better understand the nature of autophagosome independent (LC3-1) LC3-associated
complexes in the cytoplasm, we developed a combination of biophysical approaches to
characterize LC3 complex formation in living cells (16), and we used these approaches to
determine LC3’s size, stoichiometry and organization in live cells and in cytoplasmic
extracts (17). We found that a single soluble (LC3-1) Venus-LC3 molecule associates with a
~500 kDa complex, and that the sizes of LC3-associated complexes are altered by mutation
of residues that are known to be involved in binding to other proteins and RNA (F52 L53
and R70) (17). In contrast, disruption of G120, a residue required for lipidation of LC3
(LC3-I1) (18), had little effect on the size of the complexes (17). Our findings ruled out the
possibility that the slow diffusion of cytoplasmic LC3 is a result of its association with
autophagic vesicles, and also suggests it is not the result of interactions with protein
machinery responsible for lipidation (17).

The current paper aims to extend our previous work by determining if residues on LC3 that
are important for binding of LC3 to other proteins or RNA, or for LC3’s lipidation regulate
(i) LC3’s nuclear localization, (ii) LC3’s trafficking into and out of the nucleus, (iii) LC3’s
association with large complexes in the nucleus, and (iv) LC3’s association with nuclear
bodies (e.g. the nucleolus) and other components of the nucleus. To address these questions,
we employed quantitative live cell fluorescence microscopy methods and biophysical
methods to measure diffusion coefficients and transport Kinetics under nutrient-rich
conditions and after starvation. In addition, protein complexes from subcellular fractions
were immunoprecipitated followed by shotgun proteomics-Multidimensional Protein
Identification Technology (MudPIT) mass spectrometry (19, 20) to identify prospective
nuclear LC3 interacting proteins. We observed that LC3’s triple arginine motif regulates
nuclear LC3’s association with high molecular weight complexes that continuously scan the
nucleolus, and identified MAP1B, tubulin, and ribosomal subunit proteins as possible LC3
interacting partners in the nucleus.

LC3’s triple arginine motif and hydrophobic binding interface, but not its lipidation site
contributes to the enrichment of LC3 in the nucleus

To study the mechanisms that target LC3 to the nucleus, we transiently expressed Venus-
tagged versions of LC3 in HeLa cells. We examined several mutants of LC3 to determine
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regions of the protein that contribute to its nuclear localization. The positions of these
residues in the context of the sequence and three dimensional structure of LC3 are shown in
Figure 1. These included LC3 residues F52, L53, and R68-R70, which are involved in
binding to many different LC3 interacting proteins (21, 22). Residues F52 and L53 make up
part of a hydrophobic binding interface on LC3’s surface that regulates interactions with
proteins containing an LC3 interacting region motif (LIR) with the consensus sequence:
WI/Y/E-X-X-L/I/V (23-25). LC3 residue R70 also forms part of a triple arginine motif
(R68-70) on a surface exposed alpha helix that interacts with RNA, and regulates fibronectin
mRNA translation (Figure 1B) (26, 27), whereas R68 is important for proper C-terminal
cleavage of Atg8 family members (28). Given these reported roles of residues R68-70, we
generated an R68-70A mutant of LC3 for the current study. We verified in control
experiments that Venus-LC3 R68-R70 fails to accumulate on autophagosomes in
chloroquine treated cells (Supplementary Figure 1A). We also examined a G120A mutant of
LC3, which is unable to undergo lipid modification (18). In whole cell extracts of transiently
transfected cells, Venus-LC3 and Venus- LC3 R70A were present predominantly as LC3-11,
Venus-LC3 G120A existed exclusively as LC3-1, and Venus-LC3 R6870A was present as an
approximately 50:50 mixture of LC3-I and LC3-11 (Supplementary Figure 1B).

To analyze the nucleocytoplasmic distribution of LC3 and its mutants, we compared its
localization to that of Cerulean—a protein that equilibrates freely between the nucleus and
cytoplasm as the result of passive diffusion across nuclear pores (29). Cells were co-
transfected with Venus-tagged forms of LC3 and Cerulean, and just prior to imaging were
labeled with a nuclear marker, DRAQS5, enabling us to quantify the nucleocytoplasmic ratio
(N/C) using an automated image processing routine (Figure 2A). For this analysis, we only
included the soluble pools of LC3, excluding puncta-associated protein. Because LC3 was
fused to Venus for these studies, an empty Venus construct was chosen as a negative control
for these studies. To our knowledge, like Cerulean, Venus does not contain any nuclear
targeting information or bind to specific nuclear or cytoplasmic components, and is also
small enough to passively cross nuclear pores. Thus, it should be representative of the
distribution of a protein that passively equilibrates between the nucleus and cytoplasm.

All of the LC3 constructs were localized to both the cytoplasm and nucleus under basal
conditions; however, they were enriched in the nucleus to varying degrees (Figure 2B,C).
Consistent with our previous report (4), we found that Venus-LC3 was enriched in the
nucleus relative to the cytoplasm with a N/C ratio of 2.3 £ 0.5, which was ~20% higher than
the Venus control (t-test, p<0.005 N=70). The G120A mutant had an N/C ratio that was
indistinguishable from that of wild-type LC3 (t-test, p>0.005 N=50). This suggests that
LC3’s lipid modification does not play a role in targeting to the nucleus under basal
conditions, in agreement with our previous findings (4), as well as a recent report (9). In
contrast, the F52A L53A, R70A, and R68-70A mutants all showed modest, but significant
decreases in their N/C ratios compared to wild type Venus-LC3 (t-test, p<0.005, N=50 cells
per construct). These results demonstrate that LC3’s nucleocytoplasmic distribution, in
general, is regulated by its interactions with proteins and/or RNA mediated by residues F52
L53, and R68-70, but does not depend on its ability to undergo lipid modification under
basal conditions. Furthermore, similar N/C values were observed when cells were treated
with leptomycin B for 2 h, demonstrating that neither wild type LC3 nor its mutants undergo
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active nuclear export over this timeframe (Supplementary Figure 2). In contrast, when cells
were subjected to amino acid starvation prior to imaging, soluble Venus-LC3 shifted out of
the nucleus into the cytoplasm, equilibrating to a level similar to that of free Venus (Figure
2D, E). Interestingly, most of the Venus-LC3 mutants (G120A, F52A/L53A, and triple
arginine mutants) showed a similar shift in their N/C ratios (Figure 2D, E), while Venus
R70A had an N/C ratio that was statistically even lower than that of Venus-LC3 (p<0.005, t-
test). Thus, the interactions mediated by these residues are not required for LC3 to exit the
nucleus in response to starvation.

Wild type LC3 and LC3 mutants have indistinguishable basal nucleocytoplasmic transport
rate constants

Transport of small proteins can occur via passive diffusion through nuclear pores, but the
rate at which a protein passes through the pores by this mechanism is very sensitive to its
hydrodynamic radius (29-32). In particular, molecules with hydrodynamic radii larger than
about 5 nm are unable to passively diffuse across nuclear pores (30, 31). We previously
showed that GFP-LC3 cycles between the nucleus and cytoplasm under steady state
conditions, but does so more slowly than empty GFP (4). We speculated that the nuclear
enrichment and slow basal nucleocytoplasmic shuttling of LC3 may be regulated by binding
of the protein to larger complexes within the cytoplasm and/or nucleus (4). We, therefore,
next tested whether disruption of residues known to be important for binding of LC3 to other
proteins or RNA influenced the rate of nucleocytoplasmic transport.

To test this idea, we measured the rate of transport of LC3 between the nucleus and
cytoplasm by performing selective photobleaching of the nuclear pool of the protein under
steady state conditions (Figure 3). For these experiments, Venus-tagged forms of wild type
LC3 or its mutants were co-expressed with Cerulean as an internal control in HeLa cells.
The entire nucleus was photobleached, and the recovery of fluorescence in the nucleus was
monitored over time (Figure 3A). The data was well fit by a two component exponential
model (Equation 2). The fast component was consistent with intra-compartmental diffusion,
while the slow component was consistent with nucleocytoplasmic exchange (see Table 1 for
a summary of the best-fit parameters). As a control, we measured the nucleocytoplasmic
transport rate of Venus, and found that it recovered with a rate of 8 + 3 x 1073 571, consistent
with previous measurements for GFP (29). In agreement with our previous results (4),
Venus-LC3 recovered much more slowly than Venus, with a rate of 3 £ 1 x 1073 s71 (t-test,
p<0.005 N=9). Furthermore, all of the LC3 mutants recovered with rates that were
statistically within error of the wild-type protein (t-tests, p>0.005, N>7). In these
experiments, the measured nucleocytoplasmic transport rate constant is the sum of the
individual rate constants of nuclear import and nuclear export. Since the nucleocytoplasmic
transport rate constants for the LC3 mutants are the same as Venus-LC3, but their N/C ratios
are lower than Venus-LC3, this suggests that the rates of nuclear import are slower than the
rates of nuclear export for the mutants as compared to wild-type Venus-LC3. This is most
likely the case because interactions in the nucleus mediated by residues F52 L53, R70,
R68-70, are disrupted.
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To test this idea further, we used FRAP to measure the diffusional mobility of nuclear
Venus-tagged LC3, Venus-LC3 mutants, and Venus alone (Figure 4A). FRAP yields two
parameters that report on the mobility of the molecules of interest. First, it reports on the
mobile fraction of molecules, defined as the fraction of molecules that are able to recover
into the bleached region over the timescale of the experiment. Second, it provides a diffusion
coefficient, D, which measures the mean squared displacement of molecules per unit time. D
can be directly related to the hydrodynamic radius, 7, of the diffusing species for the case of
freely diffusing, spherical molecules. In some cases, FRAP can also be used to detect a
combination of diffusion and binding events (33-37).

The results of the FRAP measurements showed that all of the constructs were well described
by a pure diffusion model (Figure 4B). The mobile fractions were 100% for all of the
constructs (Table 2), indicating that the proteins are mobile, and do not undergo stable
interactions with static components of the nucleus on the timescale of our measurements. D
was fastest for Venus, as expected, given that it is a freely diffusing, inert protein (Figure
4C). Nuclear Venus-LC3 diffused ~3.5 fold more slowly than the Venus control, in
agreement with our previous findings (4, 16). Similar D values were obtained for wild type
LC3, F52A L53A, and G120A (t-tests, p>0.005, N=49, 30 & 20 respectively). In contrast, D
values for R70A and R68-70A were over 2 fold faster than for wild type LC3 (t-tests,
p<0.005, N=30 & 18 respectively). Assuming Dis proportional to MW~1/3, these findings
imply that nuclear Venus-LC3 is incorporated into a complex with an approximate
molecular weight of 1.2 MDa (Table 2). R70A and R68A-70A, on the other hand, associate
with complexes that are significantly smaller in size, approximately 160 and 90 kDa
respectively. These complexes are thus still larger than the predicted size of Venus-LC3 if it
were present as a monomer (~45 kDa). We conclude from these measurements that, under
basal conditions, LC3 likely associates with mobile high molecular weight complexes in the
nucleus. Furthermore, its interactions with these putative complexes depend on its triple
arginine motif, but not its hydrophobic binding interface or lipidation site. Similar results
were observed in cells treated with EBSS prior to FRAP analysis (Figure 4C).

Our finding that the diffusional mobility of LC3 in the nucleus depends on R70, but was less
sensitive to mutations of F52 L53 or G120 was reminiscent of the previously reported
behavior of these mutants in the cytoplasm (17). To directly test the relationship between
cytoplasmic and nuclear forms of LC3, we compared the diffusional mobilities of nuclear
LC3 obtained in the current study with those previously measured for cytoplasmic LC3
under basal conditions (17). Because the triple arginine mutant had not been analyzed in our
previous study, we carried out measurements of its diffusional mobility in the cytoplasm for
comparison. This analysis revealed that D for wild type LC3 and the LC3 mutants in the
cytoplasm and nucleus are correlated (R2=0.82) (Figure 4D), which implies that nuclear and
cytoplasmic LC3 associate with complexes whose hydrodynamic radii depends in a similar
manner on F52 L53, R70, R68-70, and G120.
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LC3 is enriched in the nucleolus

Because LC3 is enriched in the nucleus in slowly diffusing complexes relative to Venus, we
next considered the possibility that LC3 associates with subnuclear bodies in the nucleus,
such as the nucleolus. To test this, we asked whether Venus-LC3 had a similar distribution as
a biologically inert protein, such as GFP. GFP is relatively uniformly distributed throughout
the nucleoplasm, but is partially excluded from the nucleolus (verified by immunostaining
cells for the nucleolar marker fibrillarin) (Supplementary Figure 3). We, therefore, co-
expressed Cerulean and Venus-LC3 and looked for differences in their subnuclear
distribution (Figure 5A).

We observed some nuclear puncta enriched in Venus-LC3, in agreement with recent reports
(5, 7), although these puncta were not studied further here. Interestingly, however, this
analysis revealed that Venus-LC3 was enriched in nucleoli—regions where Cerulean was
excluded, and where fibrillarin is present (Figure 5A, Supplementary Figure 3).

To quantify the extent of enrichment of Venus-LC3 in the nucleolus, we used the images of
Cerulean to define the nucleolar regions, and then measured the ratio of Venus-LC3 in the
nucleoli versus the surrounding nucleoplasm. We found that Venus-LC3 was nearly equally
distributed inside and outside of nucleoli with a nucleolar ratio (NoR) of 0.94 £ 0.06, which
was 22% higher than the Venus control (Bonferonni corrected t-test, p<0.005 N=66) (Figure
5D). This finding is especially remarkable given the apparent size of nuclear Venus-LC3 is
much larger than that of Venus itself. Thus, Venus-LC3 is selectively enriched in the
nucleolus compared to an inert reporter protein under basal conditions. Similar results were
obtained in cells treated with EBSS prior to imaging (Figure 5D).

Multiple residues contribute to LC3’s nucleolar enrichment

Next, we considered the possibility that LC3 is specifically targeted to the nucleolus. The
signals that regulate nucleolar localization (NoLS) are not fully defined, but are thought to
include charged arginine and lysine residues (38). We used a published program (39, 40) to
test for the presence of nucleolar signals in human and rat LC3B. By this analysis, LC3B
does not contain a predicted NoLS. Nucleolar signals are, however, poorly defined and it is
believed that nucleolar localization is the result of direct and indirect interactions with
nucleolar building blocks, which may be nucleic acids or proteins (41). It is thus possible
that either protein-protein interactions or protein-RNA interactions, or both, may help target
LC3 to nucleoli.

We addressed these possibilities by examining the sub-nuclear distribution of the LC3
mutants (Figure 5B-D). The F52A L53A mutant had a modest, but significant decrease in its
NoR compared to wild type LC3 (t-test, p<0.005 N=66), the R70A mutant had a more
noticeable ~10% decrease in its NoR (t-test p<0.005 N=62), and the R68-70A mutant
showed the most dramatic (~20%) decrease in its NoR (t-test, p<0.005 N=37); in fact, fully
disrupting LC3’s triple arginine motif completely abolished LC3’s nucleolar localization to
levels observed for Venus alone (t-test, p>0.005 N=37). In contrast, the NoR for G120A was
identical to that of wild type LC3 (t-test, p>0.005, N=65). These trends were similar in cells
examined under basal conditions (Figure 5B, D) or following starvation (Figure 5C, D).
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Taken together, these findings suggest that LC3’s interactions with proteins and/or RNA
within the nucleolus, especially those mediated via its triple arginine motif, are largely
responsible for regulating its nucleolar localization.

LC3 cycles rapidly in and out of the nucleolus

The finding that Venus-LC3 is present at similar levels in the nucleolus and nucleoplasm
implies that it only weakly associates with nucleolar components, rather than being
immobilized there. We thus used FRAP to measure nucleolar transport and asked whether
Venus-LC3 cycles in and out of the nucleolus. For these studies, we photobleached a region
within the nucleolus that was slightly smaller than the average size of most nucleoli (Figure
6A), and for comparison we bleached an identically sized region in the nucleoplasm (Figure
B). Recovery of fluorescence within nucleoli occurred within ~ 1 s for Venus, wild type
Venus-LC3, and the mutant forms of the protein in both the nucleoplasm and nucleolus
(Figure 6C). Thus, Venus-LC3 and its mutants are able to rapidly exchange in and out of the
nucleolus.

The recovery of Venus-LC3 into the nucleolus could potentially reflect a combination of
diffusional exchange of proteins between the nucleoplasm and the nucleolus, binding to
nucleolar components, and diffusion within the nucleolus. Despite this complexity, however,
we found that the FRAP curves could be well fit using a single component free diffusion
model, and thus for simplicity used this model for our analysis. For Venus, similar D values
were obtained inside and outside of the nucleolus (t-test, p>0.008) (Figure 6D). In contrast,
while the D values within the nucleolus and nucleoplasm were strongly correlated for the
Venus-LC3 constructs, in all cases, D was significantly slower in the nucleolus than
nucleoplasm (t-tests, p<0.008) (Figure 6D). Taken together, these data suggest that LC3-
associated complexes rapidly traffic between the nucleoplasm and nucleolus, but are slightly
enriched in the nucleolus relative to an inert protein as a result of weak binding to nucleolar
components, such as nucleolar RNA or nucleolar-associated proteins.

Identification of candidate LC3 interacting proteins in the nucleus

According to our FRAP data, LC3 forms large complexes in nucleus and cytoplasm and also
appears to interact weakly with components of the nucleolus. Therefore we wanted to
identify candidate proteins that specifically interact with LC3 in the nucleus and cytoplasm.
To this end, HeLa cells transiently transfected with Venus and wild type Venus-LC3 were
fractionated into nuclear and cytoplasmic extracts. Next, Venus and Venus-LC3 complexes
were co-immunoprecipitated from these extracts using anti-GFP binding resin and partially
resolved by electrophoresis. The identification of proteins in these complexes was then
performed using MudPIT (Figure 7A). We also probed the blots for tubulin and HDAC?2 to
assess the purity of the cytoplasmic and nuclear fractions, respectively (Figure 7B).

Using MudPIT, a total of 1176 proteins were identified in eluted nuclear protein complexes,
out of which 497 proteins had higher spectral counts in the nuclear-LC3 fraction compared
to the nuclear-Venus fraction (Supplementary Table 1). We thresholded this list, and
prepared a table for the high confidence interacting proteins (Table 3). After cross-
referencing these proteins against a recently reported database of the nuclear vertebrate
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proteome (42), we found the vast majority was previously identified there, thus providing
independent confirmation that they represent bona fide nuclear-localized proteins.

Following similar exclusion and inclusion criteria for the cytoplasmic co-
immunoprecipitated complexes, we found that 105 proteins had higher spectral counts in the
cytoplasmic Venus-LC3 fraction compared to cytoplasmic Venus fraction (Supplementary
Table 1). By applying a similar set of thresholds as for the nuclear proteins, we identified
high confidence interacting proteins that were enriched in the cytoplasmic LC3 co-
immunoprecipitated complexes (Table 4).

Previous studies have identified SQSTM1 and MAP1B as two of the major LC3 interacting
proteins (22, 43, 44). Consistent with this, as listed in Tables 3 and 4, MudPIT identified
MAP1B and SQSTM1 as major Venus-LC3 interacting proteins. Both proteins were
detected in the nuclear and cytoplasmic fractions. Immunoblotting with SQSTM1 and anti-
MAP1B antibodies confirmed co-immunoprecipitation of endogenous SQSTM1 and
MAP1B with Venus-LC3 (Figure 7D). Our current study also detected proteins reported as
LC3 interacting in a previous proteomics analysis of human autophagy system from whole
cell extracts (22), as indicated in Tables 3 and 4.

A number of additional proteins in the immunoprecipitated complexes were identified in
addition to MAP1B and SQSTMZ1. Of the proteins identified in nuclear protein complexes of
Venus-LC3 (Table 3), approximately 48% proteins are involved in regulation of gene
expression; 46% in cellular response to stress including starvation, hypoxia, oxidative stress
or unfolded protein response; 44% form oligomers, protein complexes or are involved in
homophilic interactions; and 29% have transporter function including intracellular, ion or
nuclear-cytoplasmic transport. Specific interacting proteins identified in the Venus-LC3
nuclear co-immunoprecipitated complexes include tubulin; 40S ribosomal proteins S27, S20,
S5, and S18; proteasomal activator complex subunit 2 (PSME2/PA28p); NEDDS8
conjugating enzyme Ubc12; and splicing factor proline and glutamine rich (SFPQ) (Table
3). Additional Venus-LC3 interacting proteins identified in the cytoplasmic fraction included
ATG4B, ATG7, cysteine-rich protein 2, and glucose-6-phosphate 1-dehydrogenase (Table 4).
As indicated in Table 4, most of these LC3 interacting proteins have been identified
previously by mass spectrometry (22).

Given that LC3 was weakly enriched in nucleoli, we wondered whether it may interact with
nucleolar proteins. To determine which of the Venus-LC3 interacting proteins are associated
with nucleoli, we cross-referenced the list of nuclear proteins against several published
databases of nucleolar proteins (45-48). We also tested for the presence of NoLS signals in
all of the proteins identified in Tables 3 and 4 using published software (39, 40). As
summarized in Tables 5 and 6, the results of this analysis showed that multiple proteins
identified as putative LC3-interacting proteins are either known to be part of the nucleolar
proteome or are predicted to associate with nucleoli (e.g. MAP1B, 40S ribosomal subunit
proteins, etc.). Thus, protein-protein interactions could potentially help regulate LC3’s
trafficking in and out of the nucleolus.

Traffic. Author manuscript; available in PMC 2017 April 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Kraft et al. Page 10

DISCUSSION

Despite growing evidence that LC3 is enriched in the nucleus and that nuclear LC3 plays
critical roles in autophagy, the mechanisms by which LC3 is targeted to the nucleus and the
nuclear components with which it interacts are poorly understood. In the current study, we
investigated how LC3’s nuclear localization, trafficking into and out of the nucleus, intra-
nuclear dynamics, and binding to nuclear components are regulated by residues on LC3 that
are required for binding to proteins and RNA, and lipidation under nutrient rich conditions,
and after nutrient starvation.

To carry out these studies, we used fluorescence microscopy to examine wild type LC3 and
several well-studied mutants of LC3. These include (i) a double mutant (F52A L53A),
which disrupts LC3’s hydrophobic binding interface that mediates binding to LIR-
containing proteins; (ii) R70A and R68-70A mutants, which disrupt LC3’s triple arginine
motif—a region of LC3 that is important for protein-protein interactions (22), LC3’s
interactions with RNA (26, 27), and its C-terminal cleavage by Atg4 family members (28);
and (iii) G120A, which disrupts LC3’s lipid modification. We focused primarily on the
diffusely distributed population of LC3 in the nucleus, which presumably corresponds to
LC3-I, although LC3-I1 has also been detected in the nucleus (3, 5, 9). We found that wild
type Venus-LC3 was localized to both the nucleus and cytoplasm when transiently expressed
in HeLa cells under nutrient rich conditions, placing LC3 within the ~17% of vertebrate
proteins that partition approximately equally between the cytoplasm and nucleus, as opposed
to being found predominantly in either the cytoplasm or nucleus (42). We consistently,
however, found that the levels of nuclear Venus-LC3 were systematically higher than those
found diffusely distributed in the cytoplasm. Disrupting LC3’s hydrophobic binding
interface or LC3’s triple arginine motif, but not its lipidation site modestly decreased LC3’s
nuclear enrichment, and we found that the overall nucleocytoplasmic transport rate
constants, under basal conditions, for all of the Venus-LC3 mutants were indistinguishable
from that of wild type Venus-LC3. Given that the overall nucleocytoplasmic transport rate
constant is the sum of nuclear import and export rate constants, this suggests that the
mutants with lower N/C ratios (e.g. R70A, and R68-70A) have slightly slower nuclear
import rates relative to nuclear export rates as compared to wild-type Venus-LC3—an
observation that is consistent with our conclusion that LC3’s triple arginine motif and
hydrophaobic binding interface, but not its lipidation site contributes to its steady-state
nuclear enrichment.

Our previous work showed that LC3 diffuses as if it is part of a ~500 kDa complex in the
cytoplasm, and its association with these complexes is disrupted by mutations to its triple
arginine motif and hydrophobic binding interface, but not its lipidation site (17). Here, we
hypothesized that nuclear LC3 associates with large complexes in the nucleus that may also
depend on these residues. To test this hypothesis, we estimated the sizes of LC3 and LC3
mutants in the nucleus using a quantitative FRAP assay to measure D, a parameter that can
be directly related to the size of the diffusing species. Under nutrient rich conditions, we
found that D for nuclear G120A and F52A L53A mutants was similar to wild type Venus-
LC3, suggesting that they all form similar sized complexes (Table 1), and hence are
independent of its lipidation and canonical role in autophagosome formation. On the other
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hand, the diffusional mobility of nuclear Venus-LC3 substantially increased upon mutation
of R70 or R68-R70, implying disrupting LC3’s triple arginine motif prevents LC3 from
associating with large complexes in the nucleus. Interestingly, the diffusional mobility of the
Venus-LC3 constructs in the nucleus was highly correlated with their diffusion in the
cytoplasm. Thus we conclude that nuclear LC3 associates with slowly diffusing complexes
whose apparent size depends strongly on R70 and R68-70 but not on F52 L53 or G120, and
that the basis for LC3’s interaction with these complexes is similar in both the cytoplasm
and nucleus.

We previously postulated the incorporation of GFP-LC3 into complexes in both the
cytoplasm and nucleus that are too large to freely diffuse through nuclear pores may
function as a mechanism that prevents LC3 from freely trafficking between the two
compartments (4), and one of the objectives of this study was to test this hypothesis. A
similar mechanism was recently proposed to maintain the nuclear and cytoplasmic
proteomes (42). Based on our experiments examining the N/C ratios, N/C transport rate
constants, and diffusion coefficients for the LC3 mutants in this study, we conclude that
under steady-state conditions, LC3’s association with large complexes in the nucleus and
cytoplasm is a mechanism that prevents its passive equilibration between the two
compartments, and contributes to its nuclear enrichment under steady-state conditions.
Interestingly, LC3 was recently shown to interact with transcriptionally inactive
heterochromatin domains (14). This interaction could potentially contribute to the
enrichment of LC3 in the nucleus observed in our studies.

The second objective of this study was to further investigate the nature of LC3’s interactions
with nuclear bodies and other components of the nucleus. Thus we closely examined LC3’s
sub-nuclear localization and found that LC3 is, in fact, present in the nucleolus. The
nucleolus is a subnuclear body that self-assembles around actively transcribed ribosomal
genes (49). Targeting of molecules to the nucleolus is thought to be a consequence of direct
or indirect interactions with nucleolar building blocks (49). Thus, an inert reporter, such as
GFP, is expected to be excluded from the nucleolus compared to the surrounding
nucleoplasm, which was briefly noted in other studies (50-53), and was confirmed here. In
contrast to Venus, we found that Venus-LC3 was uniformly distributed between the
nucleoplasm and nucleoli suggesting that LC3 interacts specifically with nucleolar
components, enabling it to gain access to this compartment. LC3’s association with the
nucleolus, however, is relatively weak, explaining why it may have previously been
overlooked in studies of GFP-tagged forms of LC3B. Although a number of protein
components of nucleoli have been cataloged (46-48, 54), to our knowledge, LC3 has not yet
been identified as a component of the nucleolar proteome, and was also not identified as a
protein associated with nuclear bodies in a recent screen (55). These negative findings likely
reflect the low degree of enrichment of LC3 in the nucleolus. Despite these previous
negative findings, during the revision of this paper, another study showed that endogenous
LC3B can be detected in the nucleolus using immunofluorescence (56). Thus, two
complementary lines of evidence now suggest that the nucleolus is a nuclear body through
which LC3 normally traffics, and potentially functions as well.
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In addition to its interactions with components of the nucleolus, LC3 may also weakly bind
to other nuclear structures. We noted, for example, that LC3 was also enriched in a small
number of nuclear puncta. Although we did not further investigate the nature of these puncta
in the current study, recent work suggests that such nuclear puncta do not represent
autophagosomes (7). Rather, it is possible that they correspond to PML bodies, as suggested
by recent findings that showed LC3 interacts with PML (8). Nuclear LC3 has also been
shown to co-localize with phosphor-ERK in nuclear puncta (5).

In this study, we identified several residues that contribute to the nucleolar targeting of LC3.
LC3 was partially excluded from the nucleolus upon mutation of LC3’s hydrophobic
binding interface, suggesting interactions with other proteins within the nucleolus may help
partition LC3 into the nucleolus. Mutation of R70 led to a more dramatic loss of nucleolar
targeting of LC3. This residue has been implicated in LC3’s interaction with a number of
proteins (22), and R70 is also part of a triple arginine motif in LC3. The primary sequence of
LC3 in the region of its triple arginine motif shares similarities with nucleolar detention
sequences that are rich in arginine residues (57, 58). This region of LC3 was previously
identified as an RNA binding motif (26, 27), and it is thought that proteins with a general
affinity for RNA will partition into the nucleolus due to interactions with the large amount of
ribosomal RNA in this compartment (41). Consistent with the notion that LC3’s triple
arginine motif plays an important role in LC3’s nucleolar localization, we found that the
localization of LC3 to the nucleolus was completely disrupted by mutation of LC3’s triple
arginine RNA binding motif. Thus, it is possible that LC3 may preferentially bind to RNA
components of the nucleolus, such as ribosomal RNA. This is especially interesting
considering that the RNA component of ribosomes has been reported to stimulate ATG12-
ATG5 conjugation, a process required for LC3 to be conjugated to
phosphatidylethanolamine (59). We conclude that LC3 associates with large complexes—via
its triple arginine motif—that continuously survey the nucleolus.

To gain more insight into the possible composition of the LC3-associated complexes in the
nucleus, we carried out subcellular fractionation. This was then followed by identification of
Venus-LC3 interacting proteins from both cytoplasmic and nuclear extracts using shotgun
proteomics and MudPIT. A state-of-the-art method for identification of protein-protein
interactions in immunoprecipitated complex samples by mass spectrometry involving large
scale high throughput data analysis, MudPIT is a very powerful strategy for large scale
identification of protein complexes in subcellular compartments and to promote our
understanding of /7 vivo processes involving these complexes (19) (20). Among the
prospective nuclear LC3 interacting proteins are several known LC3 interacting proteins,
including MAP1B and SQSTM1 (43, 44, 60), and tubulin (44, 61). Strikingly, tubulin beta 3
chain was one of the most abundant LC3 interacting proteins in the nucleus detected in our
experiments. This was surprising given that tubulins are best known for their role in
microtubule formation in the cytoplasm of interphase cells. Multiple studies, however, have
also reported the presence of tubulin in the nucleus of cultured cells (62-66). It is thus
possible that LC3, MAP1B, and tubulin form a complex that principally resides in the
nucleus. LC3 interacts with tubulin via electrostatic interactions between LC3’s N-terminal
sub-domain (rich in basic amino acids) and acidic residues in the C-terminus of a- and f3-
tubulin (61). LC3’s triple arginine motif and the N-terminal subdomain previously
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implicated in tubulin binding are, however, on opposite sides of the LC3 crystal structure,
but the basicity of the triple arginine motif could partially contribute to electrostatic
interactions with tubulin. MAP1B and SQSTM1 were also identified in cytoplasmic extracts
of our MudPIT study and their interaction with LC3 in cytoplasm and role in autophagy is
already reported (43, 67). Additionally, Gao et al. showed degradation of LC3 by 20S
proteasomes is negatively regulated by SQSTM1 binding to the N- terminus domain of LC3
(68). Hence, SQSTML and possibly tubulin binding to the N-teminus of LC3 might prevent
proteasomal degradation of nuclear LC3 in addition to facilitating nucleocytoplasmic
shuttling of LC3 complexes.

We also identified several possible nuclear LC3 interacting proteins that were previously
linked to autophagy. For example, heterogeneous nuclear ribonucleoprotein (nnRNP) Al has
been reported to form a complex with a microRNA that is degraded by autophagy (69).
hnRNPs are RNA binding proteins and undergo nucleo-cytoplasmic shuttling in association
with mRNA (70). In addition to their role in telomere biogenesis, hnRNP Al is also involved
in mRNA splicing and export while hnRNP DO reportedly plays a role in mRNA stability
and recombination (71). Hence, as a plausible interactor of these proteins, nuclear LC3 may
function in nucleocytoplasmic shuttling of RNA.

Previous work demonstrates LC3 binds to fibronectin RNA and associates with the 60S
ribosomal subunit in the cytoplasm (26, 72). Our current results show that nuclear LC3
associates with nuclear complexes that specifically localize to the nucleolus—a region rich
with ribosomal RNA and ribosomal subunit proteins. The results of our MudPIT analysis on
nuclear LC3 interacting proteins revealed at least 4 different 40S ribosomal subunit proteins
(Table 3) and multiple 60S ribosomal subunit proteins (Supplementary Table 1) are part of
the prospective nuclear LC3 interactome. All four 40S ribosomal proteins are crucial during
either nucleolar initiation or later processing stages of 40S ribosome assembly in cytoplasm
(73). It has already been reported that ribosomal proteins are synthesized in excess for
ribosomal biogenesis, shuttle between nucleolus and nucleoplasm, and associate with slow
moving complexes in the nucleoplasm (74). Hence the 40S ribosomal subunit proteins S27,
S5, S18 and S20 identified in our MudPIT study could potentially be constituents of the
slowly diffusing transient LC3 complexes observed in our FRAP study, serving as a
mechanism to prevent their proteasomal degradation and channeling them for ribosomal
biogenesis in the nucleolus. Furthermore, 40S ribosomal proteins have been reported to
interact with the Mdm2-p53 regulatory axis and cause p53 activation resulting in cell cycle
arrest and apoptosis in response to nucleolar stress (75, 76). The possible interaction of LC3
with these proteins under basal conditions might therefore serve as a mechanism to segregate
ribosomal proteins from binding to Mdmz2, thereby precluding p53 activation and
downstream cell cycle disruption under basal steady state. We also identified Ltv1, a protein
involved in 40S subunit biogenesis and export in yeast (77).

We found that a number of other nuclear LC3 interacting proteins identified in our current
study are either known to be part of the nucleolar proteome or contain putative nucleolar
localization signals (Table 5, 6). These included SFPQ, a nuclear protein with reported
interactions with gene promoters, DNA repair proteins and long non-coding RNAs (78), and
PSME2/PA28p, a regulator of 20S proteasome’s catalytic activity with a reported nucleolar
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localization in HeLa cells (79). Strikingly, ATG4B, SQSTM1 and MAP1B were among
those proteins identified as containing putative NoLS motifs (Table 5, 6). Thus, both known
and previously unidentified LC3 protein-protein interactions may play a role in building the
LC3 associated complexes that regulate the nuclear enrichment and nucleolar trafficking of
LC3. Given these findings, it will be important to more deeply investigate the mechanisms
and functional consequences of RNA binding activity and ribosomal associations of LC3 in
future studies.

Very recent evidence now indicates that LC3 interacts with lamin B1 and transcriptionally
inactive heterochromatin domains referred to as lamin-associated domains (14).
Interestingly, we also detected lamin B1 as a nuclear LC3 interacting protein by MudPIT
(Supplementary Table 1). Prelamin-A/C and Lamina-associated polypeptide 2 isoform alpha
were also identified as candidate nuclear LC3 interacting proteins (Supplementary Table 1).
Clearly, much remains to be learned about the mechanisms that target LC3 to various
regions of the nucleus, as well as the functions of each population of the protein.

In addition to LC3, a growing number of autophagy-related proteins are now recognized to
localize to the nucleus. DOR cycles in and out of the nucleus (80), and is transported out of
the nucleus in response to starvation (9, 81, 82). Recent work highlighted the importance of
this mechanism for trafficking LC3 out of the nucleus, as nuclear, rather than cytoplasmic,
LC3 appears to be targeted to autophagosomes in starved cells (9). SQSTM1, a well-studied
selective autophagy receptor in the autophagy pathway, also shuttles in and out of the
nucleus (83). Unlike LC3, however, SQSTML1 contains two nuclear localization signals as
well as an NES, and nucleocytoplasmic shuttling of SQSTML1 is regulated in a CRM1-
dependent manner (83, 84). Other examples of autophagy-related proteins that localize to the
nucleus include Beclin-1 (85), ATG5 (86), Raptor (87), Alfy (88), ATG7, ATG5-ATG12,
ATG16, ATG4B, and ULK1 (5). Finally, we note that although LC3 has consistently been
associated with autophagy over recent years, the very first studies of LC3 proteins did not
link them to autophagy (2). In addition to better understanding LC3’s role in autophagy,
there is thus a need to study autophagy-independent functions of LC3. The LC3 interacting
partners we identified here should represent a useful resource to generate and test new
hypotheses regarding the functions of nuclear LC3 in future studies.

In summary, under nutrient-rich conditions, soluble nuclear LC3—regulated by LC3’s triple
arginine motif, and to a lesser extent by its hydrophobic binding interface—associates with
high-molecular weight complexes that are enriched in the nucleus and continuously survey
the nucleolus. Dissociation of LC3 from these large complexes could potentially represent
the rate-limiting step for the protein to traffic between the cytoplasm and nucleus.
Prospective components of LC3 associated complexes in the nucleus and nucleolus include
MAP1B, tubulin, and ribosomal subunit proteins, among others. Determining which of the
candidate binding partners of nuclear LC3 are the most important regulators of its steady
state localization, as well as the functional consequences of these interactions, will be an
important goal for future studies.
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MATERIALS AND METHODS

Cells and constructs

Imaging

HeLa cells (American Type Culture Collection; CCL-2) were cultured in RPMI media (Life
Technologies; 11875) containing 10% FBS (Life Technologies, 10437-028), 1% PenStrep
and phenol red at 37°C and 5% CO». Two days before experiments, the cells were plated in
glass bottom dishes (Ashland, P35G-1.5-10-C). Fugene 6 (Promega Corp.; E2691) reagent
was used to transfect the cells according to the manufacturer’s recommended protocol.
Cerulean, Venus, Venus-LC3, and Venus-LC3 mutants were as recently described (17).
Venus-LC3R68-70A was created using a site-directed mutagenesis kit (Agilent #200523).
The forward primer was
TGATCACGTGAATATGAGCGAACTCATCAAGATAATTGCAGCGGCCCTGCAGCTC
AATGCTAAC and the reverse primer was
GTTAGCATTGAGCTGCAGGGCCGCTGCAATTATCTTGATGAGTTCGCTCATATTCA
CGTGATCA The NES-Venus-LC3 construct was generated by PCR with forward primer
AATTAACCGGTATGCTACCACCGCTTGAGAGACTTACTCTTGTGAGCAAGGGC and
reverse primer TTAATTGTACAGCTCGTCCATGCCGAGAGTGATCCCGG. Subsequently,
the amplified DNA was inserted into the Venus-C1 vector by digestion with BsrGl and Agel
in the standard fashion.

Microscopy experiments were carried out using a Zeiss LSM 510 confocal microscope using
a Zeiss 40X 1.3 NA NeoFluar oil immersion objective or 10X Plan-neofluar 0.3 NA
objective and an Argon/2 30mW laser (458, 488, 514 nm) and HeNe 633 laser (Carl Zeiss
Microscopy, Inc.; Thornwood, NY). Just prior to imaging, for most experiments the media
on the cells was exchanged with DMEM without phenol red, containing 50 mM HEPES.
Live cell experiments were carried out on a temperature controlled microscope stage set to
37°C.

Starvation and drug treatments

One day after transfection, HeL a cells were rinsed three times with 1X DPBS (Gibco,
14190-144) and subsequently incubated in either starvation media or complete growth media
for 1 h, 37 °C, in a 5% CO,, incubator. Starvation media was prepared by diluting 10 X stock
of Earle’s Balanced Salt Solution (EBSS) (Sigma, E7510) in 1X PBS and supplemented
with 25 mM HEPES (Corning, 25-060 CI). After 1 h, nuclei were labeled with 5 mM
DRAQ5 (Cell Signaling, 4084L) as per the manufacturer’s protocol. The cells were then
imaged in phenol red free DMEM (Gibco, 21063-029) supplemented with 10% fetal bovine
serum. Thus, cells were beginning to recover from starvation during imaging.

Where indicated, cells were incubated with 40 nM Leptomycin B (Sigma-Aldrich, L2913)
for two hours prior to imaging. Cells were maintained in media containing LMB during
imaging.

For chloroquine treatment assays, 100 mM stock of chloroquine (Sigma, C6228) in water
was added to cells at a final concentration of 100 uM. Equivolume of water (vehicle) was
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added for the control treatment. The dishes were incubated for 2 h at 37 °C prior to imaging
in the continuous presence of chloroquine or vehicle. After imaging, dishes were rinsed with
1X DPBS and incubated on ice with 125 pl Cell Lytic M buffer (Sigma, C2978) containing
protease inhibitor (Roche, 04693132001) and phosphatase inhibitor cocktail (Roche,
04906845001), for 15 minutes. Following lysis, cells were scraped and freeze-thawed two
times. Further, they were spun at 12,000 g, 10 min at 4 °C and supernatants collected. Equal
amounts of protein for each lysate were loaded for SDS-Western blot analysis.

Image-based analysis of nucleocytoplasmic ratios

The nucleocytoplasmic ratio for a given construct of interest was determined by quantitative
analysis of confocal images of live cells. Cerulean was co-expressed as an inert marker of
both cytoplasm and nucleus. In addition, the cells were labeled with a far red DRAQ5
nuclear label according to the manufacturer’s directions. Confocal images (1 Airy unit
pinhole) were acquired for the CFP, YFP, and far red channels. Masks for the cell and
nucleus were generated using a manually defined threshold intensity in either the YFP or the
far red channel respectively. Masks for the puncta were generated by first subtracting uneven
diffuse cellular signal using a median filtering approach. A cytoplasmic mask was created by
subtracting the nuclear and puncta masks from the whole cell mask. The nucleocytoplasmic
ratio was then defined as the mean intensity of the puncta independent nucleus region
divided by the mean intensity of the puncta independent cytoplasm region. All signals were
background subtracted by the inverse of the cell mask. Our automated MATLAB image
analysis routine to determine nucleocytoplasmic ratios is freely available online at: https://
github.com/kraftlj/LocalizeLC3.

Confocal FRAP

To measure the diffusion coefficient of nuclear LC3, confocal FRAP measurements (1 Airy
unit pinhole) were performed using a 40X objective as previously described (17) with the
following modifications: As illustrated in Figure 4A, we selected a rectangular ROI
encompassing a portion of the nucleus. We then photobleached a circular region of interest
(10 iterations at 100% power) with a nominal radius (r,,) of 1 um within the nucleus and
monitored the recovery over time (20 pre-bleach images, 600 post-bleach images, collected
at 41.8 fps, no line-averaging). We fit the recovery profile for the first postbleach image to
determine an effective bleach radius, 7, Using r,, we fit the first 150 data points of the
recovery curves from the bleaching ROI to determine the diffusion coefficient, D, and
mobile fraction, MFfaccording to a published equation for two dimensional diffusion (89):

nLiQO _Kmrg
ml[r24+m(8Dt+r2)]

m=0

I(t)=I, ( ) M f+(1—M £)1(0)

Equation 1

Before fitting, the FRAP data were corrected for photofading as previously described (16).
Additional details about the data analysis can be found online at http:www.fraptoolbox.com,
including our freely available software tool for FRAP data analysis.
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Nucleocytoplasmic FRAP was performed using a 10X Plan-neofluar 0.3 NA objective with
the pinhole open. After collecting 5 prebleach images, we photobleached the entire nucleus
using a user defined bleaching ROI for 80 bleach iterations, then monitored the recovery by
collecting 90 post-bleach images with a 10.4 s interval between images. Prebleach and
postbleach images were collected using 4X line averaging using a digital zoom of 8X for
256x256 pixel 12-bit images (pixel size =0.44 um). The intensity inside the bleach ROI was
normalized by the intensity of the whole cell. In these experiments, multiple cells were often
bleached and monitored simultaneously, as is shown in Figure 3. Nucleocytoplasmic FRAP
curves were fit using a two component exponential model:

I(t)=a—bexp (—kfastt) —cexp (—ksiowt)  Equation 2

The fast component was consistent with diffusion within the compartment, and the slow
component was consistent with slower exchange between the nucleus and cytoplasm. For
visual simplicity the nucleocytoplasmic transport data is transformed in the figure according
to:

(1(0) =T (1)
: (I(OO) —1(0)> Equation 3

The 95% confidence intervals presented in the nucleocytoplasmic transport plots are
calculated using the asymptotic standard errors on the estimated parameters.

Nucleolar confocal FRAP experiments (1 Airy unit pinhole) were performed in cells co-
transfected with Cerulean (as a marker for the nucleolus) and the indicated Venus-tagged
constructs. A rectangular imaging region was selected as shown in Figure 6. FRAP
experiments were performed as described above except that a 0.77 pm radius bleach ROI
was selected and placed at the center of the nucleolus for nucleolar FRAP measurements.
Control experiments were performed using a bleach region placed outside of the nucleolus
(but still within the nuclear region) using a similar 0.77 um radius bleach ROI. The FRAP
curves were fit using the diffusion model described above.

Mobile fractions that are corrected for the loss of fluorescence in a compartment were
calculated, after complete recovery, by difference between the mean fluorescence in the
bleaching ROI, and an adjacent ROI outside of the bleach region.

Estimates of molecular weight of Venus-LC3 associated complexes

Diffusion coefficients were used to calculate effective molecular weights assuming a
spherical geometry using the Stokes-Einstein equation:

kT
6rmnR  Equation 4
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where kg is Boltzmann’s constant, 7 is temperature, ris the Stokes radius, and 7 is viscosity.
The diffusion coefficient of an empty Venus control (27 kDa) was used to estimate the
viscosity term.

Nucleolar ratio measurements

To quantify the nucleolar ratios, cells were co-transfected with Cerulean (to identify
nucleoli) and the indicated Venus-tagged construct. Using ImageJ, ROIs were drawn
manually around each nucleolus for a particular cell and the mean intensity was measured.
The mean intensity of the nucleoplasm pool, outside of nucleoli, was likewise measured
manually. The mean intensity values for both regions were background subtracted before
calculating the ratio of nucleolus to nucleoplasm.

Immunostaining for nucleolar marker

HeLa cells expressing Cerulean were fixed in 2% PFA for 15 minutes at RT, blocked for 15
min at RT, and labeled with mouse anti-fibrillarin (Abcam, ab4566) for 30 min at 1:100
dilution in blocking solution. They were then rinsed several times in PBS, labeled with a
Cy5 secondary antibody for 30 min at RT, and rinsed again. They were then fixed in 4%
PFA for 15 minutes at RT and rinsed prior to mounting in ProLong (Thermo-Fisher
Scientific).

Nuclear-Cytoplasmic fractionation

HeLa cells plated in 10 cm dish (Corning, 353003) at 50-70 % confluency were transfected
with either Venus or Venus-LC3 as described above. The next day, cells were washed with
1X DPBS (Gibco, 14190-144) and trypsinized (Gibco, 25200056) for 2 min at 37 °C. After
neutralizing trypsin with complete growth media, cells from two 10 cm dishes transfected
with the same construct were pooled and pelleted by centrifugation (500 RCF, 10 min, 4 °C).
Cell pellets were washed with 1X DPBS buffer twice (500 RCF, 5 min, 4 °C). All
subsequent steps were carried out in the cold.

Nuclear and cytoplasmic fractions for each construct were isolated using a modification of a
published procedure (90). Cell pellets were re-suspended in 100 ul CLB buffer (10 mM
HEPES, 10 mM NaCl, 1mM KH5POy4, 5 mM NaHCO3, 5 mM EDTA, 1mM CaCly, 0.5 mM
MgCls,, phosphatase inhibitor and protease inhibitor cocktail) and incubated for 5 min. After
homogenizing the cells with a 27 G % needle (BD, 305109), 10 ul of 2.5 M sucrose was
added followed by spinning at 6300 RCF for 5 min. The supernatant represents the
cytoplasmic extract and was transferred to a fresh tube. The pellet was homogenized in 100
ul CLB-2.5 M sucrose and the supernatant obtained following centrifugation was pooled
with previous cytoplasmic extract. The pellet was washed with 150 pl TSE (10 mM Tris, 300
mM sucrose, 1 mM EDTA, 0.1 % NP-40, pH 7.5) 3 times and supernatants were stored after
centrifugation (4000 RCF, 5 min). The pellets represent purified nuclei and were re-
suspended in 100 pl NEB (200 mM NaCl, 7 mM NayHPO,4, 3 MM NaH,POy, pH 7.4) and
incubated for 30 min, RT with brief vortexing every 5 min. Finally, the re-suspended nuclei
pellet and cytoplasmic extract were centrifuged (14,000 RCF, 30 min) and supernatants
representing clarified nuclear and cytoplasmic fraction were removed and stored in fresh
tubes for immunoprecipitation.

Traffic. Author manuscript; available in PMC 2017 April 01.



1duosnuen Joyiny 1duosnuey Joyiny 1duosnuen Joyiny

1duosnuep Joyiny

Kraft et al.

Page 19

As a quality control check, aliquots containing equal protein amounts from all nuclear and
cytoplasmic fractions were blotted for positive nuclear (HDAC2, Thermo Scientific,
PA1-861) and cytoplasmic (§ Tubulin, DSHB, E7) markers.

Immunoprecipitation

Nuclear and cytoplasmic fractions for each construct were isolated and pooled separately. A
total of 200 pug of protein (SM; starting material) was used for each IP. Lysates were cleared
using centrifugation (10,000 RCF, 10 min, 4 °C) and supernatants were subjected to
immunoprecipitation with 40 pl of GFP binding Sepharose (Vanderbilt Antibody and Protein
Resource, VAPR) resin (50 % slurry) for 2 h at 4 °C with gentle inversion. After removing
the unbound fraction, the resin containing the protein complexes was washed 4 times with
200 pl of ice cold 1X PBS and washouts (WO) were stored for SDS-western blot analysis.
Protein complexes bound to the resin were eluted by incubating the resin in sample buffer
containing 1X LDS (Novex, NP0007) and 1X reducing agent (Novex, NP0009) for 30 min
at RT followed by a 10 min incubation at 70 °C. Clear supernatant (elutions) were collected
by centrifugation at 1000 RCF for 10 min at RT. All centrifugations for IP were performed
at 1000 RCF for 2 min as per the manufacturer’s recommended protocol. A fraction of input,
unbound fraction, washes and elutions were analyzed by SDS-PAGE followed by Western
blotting. LC-MS/MS and MudPIT were carried out using the rest of the eluted samples.

Antibodies and dilutions for Western blotting

A combination of rabbit polyclonal anti-MAP1LC3B (Novus, NB100-2220) at 1:5000 and
mouse monoclonal anti-p-Tubulin (DSHB, E7) at 1:2000 dilution was used for Western
blotting of chloroquine treated cell lysates.

A combination of rabbit polyclonal anti-HDAC2 (Thermo Scientific, PA1-861) at 1:3000
and mouse monoclonal anti-B-Tubulin (DSHB, E7) at 1:2000 was used as positive controls
for the nuclear and cytoplasmic fractions, respectively. A combination of mouse monoclonal
anti-GFP (Clontech, 632381) at 1:2000 and rabbit polyclonal anti-MAP1LC3B (Novus,
NB100-2220) at 1:5000 was used to analyze the IP fractions. For validation of the MudPIT
results, Western blots were probed with either mouse monoclonal anti-SQSTM1 (BD,
610832) at 1:2000 dilution or goat polyclonal anti-MAP1B (Santa Cruz, sc-8970) at 1:100
dilution in combination with rabbit polyclonal anti-MAP1LC3B (Novus, NB100-2220) at
1:5000.

Secondary antibodies used for Western blotting included goat anti-rabbit IRDye-800CW
(LI-COR, 926-32211), goat anti mouse IRDye 680 LT (LI-COR, 926-68020), donkey anti-
goat IRDye-800CW (926-32214), donkey anti-rabbit IRDye 680 LT (926-68023).

Mass Spectrometry

Eluted IP fractions for nuclear and cytoplasmic Venus and Venus-LC3 were partly resolved
by SDS electrophoresis on a 10 % Bis-tris gel (Novex, NW00100BOX) up to ~ 1.5 cm
followed by Colloidal Coomassie staining (Life Technologies). Lanes containing protein
bands were excised and digested with trypsin (Promega Gold) to yield peptides. The
resulting peptides were analyzed via multi-dimensional protein identification technology
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(MudPIT) as described elsewhere (91). Briefly, digested peptides were loaded onto a
biphasic pre-column consisting of 4 cm of C-18 reversed phase (RP) resin (Jupiter;
Phenomenex) followed by 4 cm of strong cation exchange resin (Luna SCX; Phenomenex).
Once loaded, this column was placed in line with a 100 um X 20 cm C-18 RP analytical
column (3 pm, 300A, Jupiter C18, Phenomenex) packed into a nanospray emitter tip directly
coupled to an LTQ linear ion trap mass spectrometer (Thermo Scientific, San Jose). A subset
of peptides was eluted from the SCX material onto the RP analytical via a pulse of
ammonium acetate in 0.1 % formic acid. Those peptides were separated by a 105 minute RP
gradient (2—40 % acetonitrile gradient) run at 500 nl/minute, and then ionized and further
separated according their m/z in the mass spectrometer. This proceeded for a total of eight
salt elution steps over the course of approximately 16 hours of data acquisition. Both the
intact masses (MS) and fragmentation spectra (MS/MS) of the peptides were collected and
the peptide MS/MS spectral data searched against the human protein database to which
common contaminating proteins had been appended using Sequest (92). A reversed version
of each of the protein was also added to the database to allow for estimates of false
discovery rate (FDR). Resulting identifications were collated and filtered using IDPicker3
(93) and Scaffold (http://www.proteomesoftware.com).

Identification of nucleolar localization sequences

Statistics

Nucleolar localization sequences were identified using open access software (40).

Values reported throughout the text are the mean + 95% confidence intervals. Statistical
comparisons were made using Bonferonni corrected t-tests where appropriate.
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Refer to Web version on PubMed Central for supplementary material.
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Synopsis

A key component of the autophagy pathway, LC3 contributes to both autophagosome
formation and cargo selection. LC3 is also present in the nucleus under basal conditions,
but the mechanisms that facilitate the nuclear targeting and trafficking of LC3 between
the nucleus and cytoplasm are poorly understood. Here, we show that LC3 is retained in
the nucleus in association with high molecular weight complexes, and also accesses the
nucleolus. In addition, we identify a series of candidate nuclear LC3 interacting proteins.
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Hydrophobic  Triple arginine Lipidation
binding interface Motif site
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Hydrophobic binding

. o interface
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Figure 1. Models highlighting the regions of LC3 studied in this work
(A) Schematic depiction of the regions of LC3 investigated in this study. (B) LC3 structure,

PDB: 1UGM. The backbone is represented as a black ribbon. (Green) Residues F52 and L53
—LC3’s hydrophobic binding interface—are important for interactions with proteins
containing an LIR motif. (Red) Residues R68-70—LC3’s triple arginine motif—interact
with RNA, and are also important for interactions with other proteins in the autophagy
pathway.
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Figure 2. LC3’s nucleocytoplasmic distribution is reduced by disrupting its hydrophobic binding
interface or triple arginine motif
(A) To analyze the nucleocytoplasmic distribution of LC3, live HelLa cells expressing Venus-

LC3 or the indicated LC3 mutants, were co-transfected with Cerulean and labeled with
DRAQS to facilitate image analysis. An automated image analysis routine was used to
quantify the nucleocytoplasmic distribution of Venus-LC3 by creating masks for cytoplasm
(green) using the Cerulean channel, nucleus (blue) using the DRAQS5 channel, and puncta
(red) using the Venus channel. (B) Confocal images of Venus-LC3 and the indicated Venus-
LC3 mutants under basal conditions. Empty Venus was included as a negative control. Scale
bar, 10 um. (C) Quantification of the N/C ratio for indicated constructs under basal
conditions. Light gray bars show the values for the Venus-tagged constructs and the dark
gray bars are for Cerulean in the same cells. Error bars are 95% confidence intervals. N = 80
cells for LC3; 50 for F52A L53A, G120A, and R70A; 40 for R68-70A, and 70 for Venus.
One way ANOVA p<1x10~4. Bonferonni corrected t-tests for the N/C ratio of each construct
compared to Venus-LC3. ns p>0.05; * p<0.05; ** p<0.01; *** p<0.001. (D) As in B, except
cells were subjected to EBSS treatment for 1 h prior to imaging. (E) As in C except

quantification of N/C ratio was performed in EBSS-treated cells.
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Figure 3. The nucleocytoplasmic transport rate constants for wild type Venus-LC3, G120, F52
L53, R70, and R68-70 are identical
(A) Representative images from a quantitative FRAP assay used to measure the rate of

nucleocytoplasmic transport for Venus (top row) or Venus-LC3 (bottom row). The entire
nuclear region was selectively photobleached using a user defined ROI, and the fluorescence
intensity of the whole cell was used for normalization. Scale bar is 10 um. (B) Average
FRAP curves from cells expressing the indicated constructs following photobleaching of the
nucleus. The data were fit using a two component exponential model (see Table 2 for
parameters). The fast component was consistent with intracompartmental diffusion, while
the slow component is consistent with nucleocytoplasmic transport. For graphical
comparison, the FRAP data were transformed as described in Materials and Methods. The
solid gray lines are the 95% confidence intervals for the fit to Venus, and the solid black
lines are the 95% confidence intervals for the fit to Venus-LC3. Parameters from the fits to
the data are summarized in Table 1.
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Figure 4. The diffusional mobility of LC3 in the nucleus is increased by disrupting its
interactions with proteins and RNA mediated by residues F52 L53, R70, and R68-70, but is
unaffected by disrupting G120

(A) Representative example of bleach regions used to measure the diffusion of soluble LC3
in the nucleus of HeLa cells by FRAP. The imaging ROI is indicated by the dashed
rectangle, and the bleaching ROI (1 pm radius) is indicated by the dashed circle. Scale bar is
10 pm. (B) Representative datasets showing the average of 10 FRAP curves from cells
expressing either Venus (gray circles) or Venus-LC3 (white circles). The FRAP curves were
fit using a single component diffusion model (data for G120A, F52A L53A, R70A, and
R68-70A were similarly well fit by this model), and normalized between 0 and 1 for
graphical comparison. Residuals for the fits to the data are also shown. (C) Mean diffusion
coefficients from FRAP experiments of the indicated constructs in the nucleus under basal
conditions (gray bars) and in EBSS-treated cells (black bars). N values are reported in Table
2. (D) LC3’s effective size in the cytoplasm and nucleus are correlated. Predicted molecular
weights were calculated using the diffusion coefficients from FRAP measurements under
basal conditions in the nucleus from the current study (panel C) or from previously reported
diffusion coefficients measured in the cytoplasm by FRAP (17). Data for R68-70A in the
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cytoplasm were collected in the current study. Data are shown for both wild type and mutant
forms of LC3. The data were fit by linear regression, R2=0.82.
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Figure 5. Venus-LC3 is enriched within the nucleolus via a mechanism that depends on its triple
arginine motif

(A) HelLa cells were co-transfected with either Venus and Cerulean (top row) or Venus-LC3
and Cerulean (bottom row). Cerulean was used as an inverse marker for the nucleolar
compartment (dashed circles). Scale bar, 10 um. (B) Confocal images of the nuclear region
of live HeLa cells co-expressing Cerulean and the indicated Venus-tagged constructs under
basal conditions. (C) Confocal images of the nuclear region of live HeLa cells co-expressing
Cerulean and the indicated Venus-tagged constructs following 000 h of EBSS treatment. (D)
Quantification of the ratio of the indicated constructs in the nucleolus versus the surrounding
nucleoplasm under basal conditions (gray bars) and in EBSS-treated cells (black bars). Error
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bars are 95% confidence intervals. For basal conditions, N = 120 for LC3; 65 for G120A; 66
for F52A L53A and Venus; 62 for R70A; and 37 for R68-70A. N = 20 for all constructs
during EBSS treatment. One way ANOVA p<1x10~4. Bonferroni corrected t-tests for the
nucleolar ratios of each construct compared to Venus-LC3..

Traffic. Author manuscript; available in PMC 2017 April 01.



1duosnuepy Joyiny 1duosnuely Joyiny 1duosnuey Joyiny

1duosnue Joyiny

Kraft et al.

pre-bleach =

e e o
~ ) o
: : :

Fluorescence Intensity

o©
o

pre-bleach

Nucleoplasm
Nucleolus

(o)

Residuals

S
N

Page 34

1 Nucleus I Nucleolus

Figure 6. LC3 cycles rapidly in and out of the nucleolus under basal conditions
(A) Representative images for a FRAP experiment in the nucleoplasm. Bar, 10 um. (B)

Representative images for a FRAP experiment in the nucleolus. Bar, 10 um. (C) Normalized
FRAP curves for Venus-LC3 in the nucleoplasm (gray circels) or nucleolus (white circles).
Curves represent the mean values for 20 cells. The FRAP curves were fit using a single
component diffusion model (black lines) and normalized between 0 and 1 for graphical
comparison. Residuals for the fits to the data are also shown. (D) Bar graph of the mean
diffusion coefficients from FRAP data collected in either the nucleoplasm (gray bars) or
nucleolus (black bars). Bars are 95% confidence intervals; N=20 cells. Bonferonni corrected
t-tests for the D values of each construct in the nucleoplasm compared to the nucleolus.
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Figure 7. Strategy for identification of proteins interacting with LC3 in the nucleus and

cytoplasm

(%\) F;chematic of experiment workflow. HeLa cells were transiently transfected with \Venus
or Venus-LC3 prior to subcellular fractionation. Nuclear or cytoplasmic extracts containing
Venus or Venus-LC3 were incubated with GBP-Sepharose resin for 2h at 4° C in order to
immunoprecipitate Venus or Venus-LC3 protein complexes (/P). IP fractions were washed 4
times (WQO) and then eluted from the beads (elution). The input, unbound, wash, and eluted
fractions were then analyzed by immunoblotting (C,D). Protein complexes obtained in
elutions were partially resolved by SDS-PAGE followed by protein identification via
MudPIT. Further validation of two of the proteins identified by MudPIT (MAP1B and
SQSTM1) was performed by immunoblotting of IP fractions with anti-MAP1B and anti-
SQSTM1 antibodies (C,D). (B) For quality control of subcellular fractionation, nuclear (N)
and cytoplasmic (C) extracts of Venus or Venus-LC3 transfected HeLa cells were resolved
by SDS-PAGE and western blotted with anti-HDAC?2 (positive nuclear control) and -
Tubulin (positive cytoplasmic control) antibodies. IP fractions from (C) Nuclear and (D)
Cytoplasmic HelLa extracts were electrophoretically resolved by SDS PAGE and
immunoblotted with (i) anti-MAP1B, (ii) anti-SQSTML, or (iii) anti-GFP antibodies. M,
molecular weight markers.
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