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Abstract

Introduction—Bronchiolitis is a major public health problem worldwide. However, no effective 

treatment strategies are available, other than supportive care.

Areas Covered—Although bronchiolitis has been considered a single disease diagnosed based 

on clinical characteristics, emerging evidence supports both clinical and pathobiological 

heterogeneity. The characterization of this heterogeneity supports the concept that bronchiolitis 

consists of multiple phenotypes or consistent grouping of characteristics.

Expert Commentary—Using unbiased statistical approaches, multidimentional clinical 

characteristics will derive bronchiolitis phenotypes. Furthermore, molecular and systems biology 

approaches will, by linking pathobiology to phenotype, identify endotypes. Large cohort studies of 

bronchiolitis with comprehensive clinical characterization and system-wide profiling of the “-

omics” data (e.g., host genome, transcriptome, epigenome, viral genome, microbiome, 

metabolome) should enhance our ability to molecularly understand these phenotypes and lead to 

more targeted and personalized approaches to bronchiolitis treatment.
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1. INTRODUCTION

Bronchiolitis is the most common lower respiratory infection in young children [1]. 

Although “bronchiolitis” refers to inflammation of the bronchioles, this inflammation is 

inferred in young children who have respiratory distress with signs of an acute, viral, lower 
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respiratory infection. Consequently, bronchiolitis remains a clinical diagnosis without an 

international consensus [2–4]. In the 2014 American Academy of Pediatrics (AAP) 

guidelines, bronchiolitis was defined as a constellation of clinical signs and symptoms 

occuring in children yougner than 2 years of age, including a viral upper respiratory tract 

prodrome followed by increased respiratory effort and wheezing [2]. By contrast, most non-

U.S. clinicians and bronchiolitis researchers believe that the AAP definition is too broad 

because the distinction between bronchiolitis and viral-induced recurrent wheeze becomes 

increasingly difficult, if not impossible, as the child ages [1].

The classification system of human diseases – i.e. the “diagnostic labels” we also apply to 

bronchiolitis – was established by Sir William Osler in the 19th century, on the basis of the 

principal organ in which signs and symptoms manifest with some anatomical, physiological, 

and pathological correlates [5]. However, there is a growing concern that this “Oslerian 

paradigm” may overgeneralize disease phenotypes and cannot individualize diagnosis or 

management according to their molecular pathway [5,6]. Current diagnosis and management 

guidelines of bronchiolitis [2–4] are based on this paradigm and do not consider novel 

molecular information, which are now available with the advent of technology.

A growing body of evidence, including our own research, now suggests that “bronchiolitis” 

likely represents a continuum of different diseases that may share biological mechanisms 

(endotypes) and present with similar clinical features (phenotypes) that may require 

individualized treatment. To develop phenotype-specific treatment strategies, integration of 

clinical and molecular information (e.g., genomic information) is needed to achieve 

comprehensive understanding of the pathobiological mechanisms that underlie bronchiolitis 

phenotypes. The objective of this review is to provide an overview of the evidence 

supporting the heterogeneity of bronchiolitis, to highlight recent insights into different 

mechanisms of bronchiolitis pathogenesis, and to allude to systems biology approaches, 

some borrowed from other fields (e.g., childhood asthma), that might enable identification of 

bronchiolitis endotypes.

2. EPIDEMIOLOGY OF BRONCHIOLITIS

Bronchiolitis is a major public health problem in the U.S. and worldwide [7–11]. Almost all 

children are exposed to respiratory syncytial virus (RSV) and other causative pathogens of 

bronchiolitis (e.g., rhinovirus) during the first two years of life [2]. Of these, approximately 

40% of children develop clinical bronchiolitis [12,13]. Most children with bronchiolitis have 

mild illness; however, some children present to the emergency department (ED), and others 

require hospitalization (severe bronchiolitis) [1]. In the U.S., bronchiolitis is the second 

leading cause of ED visits among infants, accounting for 15% of all infant ED visits [8,10]. 

Furthermore, bronchiolitis is the leading cause of hospitalizations, accounting for 18% of all 

infant hospitalizations (approximately 130,000 hospitalizations annually), with a direct cost 

of $550 million annually [9]. Severe bronchiolitis has a peak incidence between two and six 

months of age. Risk factors for severe bronchiolitis include younger age (<12 weeks), 

prematurity, environmental factors (such as passive smoking, crowded household, high 

altitude), and comorbidities (such as congenital defects of the airways, chronic lung disease, 

congenital heart disease, immunodeficiency, neurologic disease) [1].
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3. HETEROGENEITY OF BRONCHIOLITIS

Despite the large public health burden, no effective treatment strategies are available, other 

than supportive care, in young children with bronchiolitis [2–4]. Current evidence is largely 

based on clinical trials of specific interventions (e.g., bronchodilators, corticosteroids) with 

mixed results, and an underlying assumption that bronchiolitis is a single disease entity with 

similar clinical characteristics, causes, and mechanisms [1]. As the inferences were based on 

the group mean data from populations that might include different subgroups [14,15], even 

after excluding large numbers of children with physician-diagnosed bronchiolitis (e.g., 

children with non-RSV bronchiolitis, history of prior breathing problems, age older than 1 

year), the current evidence might have failed to encompass differences in efficacy and safety 

profiles.

Indeed, there is emerging evidence to suggest that bronchiolitis is not homogeneous. For 

example, most children with bronchiolitis have a mild-to-moderate disease course while 

approximately one in ten of these children require hospitalization [1] and 2% of whom 

undergo mechanical ventilation [9]. Furthermore, there is a wide range of time to recovery 

[16] and variable risk of relapse [17]. Epidemiologic research also has documented that the 

susceptibility and severity vary widely by clinical characteristic, such as chronologic age, 

racial/ethnicity, and coexisting conditions (e.g., prematurity, chronic lung disease of 

prematurity, congenital heat disease, immunodeficiency, and neurologic disease) [1]. 

Additionally, the disease severity also varies by environmental factors, such as nutrition and 

passive smoking [1,18]. Furthermore, several studies have documented a diverse group of 

respiratory viruses involved in bronchiolitis, as a sole pathogen or co-infecting pathogen, 

and their contribution to varied clinical outcomes [1,19,20] – e.g., associations between sole 

rhinovirus infection and a shorter hospital length-of-stay [19,21,22] and between RSV/

rhinovirus coinfection and a longer hospital length-of-stay [19] when compared to sole RSV 

infection. Viral load adds further complexity; studies have demonstrated a wide range of 

RSV viral load and its relation with bronchiolitis severity [23]. Finally, studies have reported 

a variability in treatment response among subgroups [24]. For example, although a meta-

analysis of systemic corticosteroids based on the group mean data from populations with 

bronchiolitis did not show superior efficacy over placebo [15], a recent trial of infants with 

eczema or a family history of asthma in a first-degree relative demonstrated that 

dexamethasone reduces the time to readiness for discharge in severe bronchiolitis [24].

These studies collectively indicate that bronchiolitis is a heterogeneous condition. The term 

bronchiolitis, similar to “asthma” [25], is an umbrella-like term that equates to a definition 

of grouped host, microbial, clinical, and physiological characteristics (Figure 1). In poorly 

understood ways, grouped features contribute to severity, which also becomes part of the 

definition. We believe that these characteristics can identify multiple subgroups or 

phenotypes – the observable properties of an individual that are produced by the interactions 

of the host genetic predisposition and the environment, and that identifying these phenotypes 

is of critical importance in order to develop effective treatment and preventive interventions 

[25].
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4. PHENOTYPING BRONCHIOLITIS

Previous studies examining subgroups of children with bronchiolitis generally classify 

individuals according to a single dimension (e.g., RSV status) or to a limited number of 

characteristics (e.g., RSV status and history of prior breathing problems) – a “biased” 

approach. However, given the complex, high-dimensional interactions between host, 

environment, and microbial factors in bronchiolitis, we believe that “unbiased” (or 

“hypothesis-free”) statistical approaches would be useful to address disease heterogeneity, 

through identifying more homogeneous subgroups of children sharing similar characteristics 

of the disease. Compared to the biased approaches, the benefits of unbiased 

multidimensional approaches in addressing different phenotypes have been demonstrated for 

other respiratory disorders, such as childhood asthma [25–28]. An example of the unbiased 

statistical approach is latent class analysis. This method statistically identifies distinct 

groups of subjects (latent classes) sharing similar characteristics, although the clinical 

features that go into the model are biased by a priori knowledge of the disease. To the best of 

our knowledge, there are no published research using unbiased approaches to children with 

bronchiolitis other than preliminary data from a multicenter cohort of 2,207 U.S. children 

with severe bronchiolitis which demonstrated four distinct clinical profiles [29]. Profile A 

was characterized by history of wheezing and eczema, wheezing at the ED presentation and 

rhinovirus infection. Profile B included children with wheezing at the ED presentation, but, 

in contrast to profile A, most did not have history of wheezing or eczema; this profile had 

the largest probability of RSV-infection. Profile C was the most severely ill group, with 

longer hospital stay and moderate-to-severe retractions. Profile D had the least severe illness, 

including non-wheezing children with shorter length-of-stay. We recently validated these 

results in a similar, but entirely separate, cohort of 408 Finnish children with severe 

bronchiolitis (unpublished data). The concept of bronchiolitis heterogeneity is now evolving 

from one that focuses on a limited number of clinical characteristics (e.g., RSV 

bronchiolitis) to one that phenotypes bronchiolitis using a comprehensive multidimensional 

approach.

5. ENDOTYPING BRONCHIOLITIS

To develop phenotype-specific treatment strategies, the concept of phenotype should be 

further evolved to that of the “endotype” – i.e., specific pathobiological mechanisms that 

underlie the observable properties of a phenotype [25]. This approach is being applied by 

many different groups to approach other airway inflammatory diseases, such as asthma [30–

35]. The identification of endotypes necessitates an integration of phenotypic information 

and molecular data, which the increasing availability of high-throughput “-omics” 

technologies has enabled us to characterize – e.g., host genome, transcriptome, epigenome, 

viral genome, microbiome, and metabolome (Table 1).

5.1. Host Genome

Compared to other airway diseases, there are very few genetic studies of bronchiolitis. 

However, the limited literature suggests a relationship of host genetics with susceptibility 

and severity of bronchiolitis [36]. For example, a Danish twin study documented that genetic 
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factors account for 16% of the individual susceptibility to develop severe RSV bronchiolitis 

[37]. Although no genome-wide association study (GWAS) has examined bronchiolitis, 

candidate gene association studies have provided evidence for genes that increase the 

severity of RSV infection along many biological pathways, such as innate immunity, 

adaptive immunity, chemotaxis, airway epithelial response, and known allergic asthma genes 

[36,38,39]. For example, Janssen et al., by examining 384 single-nucleotide polymorphisms 

from 220 genes involved in immune responses, found that genes from innate immune 

pathway are important in RSV infection severity [40]. Additionally, Wu et al., by examining 

374 term infants enrolled in the Tennessee Children’s Respiratory Initiative (TCRI) study, 

found an association of β2-adrenergic receptor gene polymorphisms with bronchiolitis 

severity score in African American infants [41]. These studies not only provide a potential 

mechanism to explain the variable response to bronchodilator in children with bronchiolitis 

but also indicate the multiplicity of underlying mechanisms, such as innate and adaptive 

immunity, that might explain the heterogeneity of the disease.

5.2. Transcriptome

Transcriptomics is the systematic and unbiased characterization of RNA transcripts across 

the genome [42]. A disease-relevant tissue (e.g., airway epithelium) is sampled, and then 

oligonucleotide microarrays or RNA sequencing are used to profile the tissue-specific RNA 

transcripts. Transcriptomics offers a complementary approach to genome studies to examine 

diseases because RNA transcripts present the more dynamic process in the tissue involved in 

the disease pathogenesis.

Several studies have applied these transcriptome approaches to children with bronchiolitis. 

By investigating whole blood [43–46] and upper airway gene expression profiles [47], 

researchers demonstrated overexpression of interferon-related pathway in children with 

severe RSV infection compared to healthy controls or mild RSV infection. Furthermore, 

Mejias et al., by examining whole blood transcriptome from children with severe 

bronchiolitis either by RSV, rhinovirus, or influenza in the U.S. and Finnish cohorts, 

observed pathogen-specific transcriptional signatures [43]. Specifically, children with RSV 

infection had overexpression of neutrophil-related genes and suppression of B cell, T cell, 

lymphoid lineage, and antimicrobial response genes while those with rhinovirus infection 

had a higher expression of cytotoxic/natural killer (NK) cell genes. These transcriptomic 

findings suggest that mechanisms underlying bronchiolitis pathogenesis differ, at least, by 

causative virus. Additionally, compared to mild-to-moderate infection, severe RSV infection 

was associated with an overexpression of neutrophil and inflammation genes as well as an 

under-expression of T cell, cytotoxic and plasma cell genes, indicating the important 

contribution of host immune response to the clinical course [43].

5.3. Epigenome

Alteration in gene expression can occur without direct change in the DNA sequence. The 

study of such epigenetic change (e.g., DNA methylation, histone modification, and 

microRNAs [miRNAs]) characterizes DNA sequence-independent modification that 

contributes to transcriptomic variations and downstream phenotypes [42]. In particular, 

miRNAs – a class of noncoding single-stranded RNA molecules approximately 18–25 
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nucleotides in length – have emerged as important gene expression regulators. By affecting 

post-transcriptional expression, miRNAs regulate the expression of at least 30% of human 

protein-encoding genes and play a modulatory role in host immune response [48]. Indeed, 

emerging evidence has shown that miRNAs participate in the maintenance of the airway 

epithelial barrier and are also implicated in the modulation of antiviral defense in epithelial 

cells. For example, Leahy et al., by investigating miRNA expressions in NK cells in children 

with severe bronchiolitis and healthy controls, reported that miRNA profile is distinct in 

bronchiolitis and that the targets of deregulated miRNAs include NFκB on the IL-15 

signaling pathway [49]. Additionally, studies using experimental models have demonstrated 

that respiratory viruses (e.g., RSV, rhinovirus, and influenza virus) induce distinct miRNA 

profiles that have different target genes and functions [48,50–54]. These data suggest that 

epigenetic regulation pathways of host defense against respiratory infections differ by 

causative virus.

5.4. Viral Genotype

As with host genetic variations, viral genetic differences play a role in disease pathogenesis. 

Across virus families, studies have reported that relatively minor changes in viral genome 

have a large impact on pathogenesis – for example, the virulence of the 1918 influenza 

hinges on a few amino acids [55]. Similarly, emerging evidence indicates that genotypes of 

RSV and rhinovirus – the two most common causative viruses of bronchiolitis [1] – have an 

impact on both the pathogenesis and severity of bronchiolitis [56].

RSV, a member of the Paramyxoviridae family of RNA viruses, has one serotype, within 

which there are two antigenic subgroups, A and B. Within these subgroups, RSV strains can 

be further classified into clades (GA1-GA7, GB1-GB4) based on the sequence of a 

hypervariable region of the G gene [56]. Studies reported that antigenic subgroup A, 

especially clade GA3, is associated with a greater clinical severity of RSV infection [57,58]. 

In experimental models using well-differentiated pediatric bronchial cells, GA5 isolate 

causes high degree of epithelial sloughing and goblet cell hyperplasia [59]. In addition, the 

molecular determinants of RSV strain-specific virulence are an active field of research. 

Several studies suggested that strain variations in the RSV fusion (F) protein sequence lead 

to a range of fusion activity, cytopathology, neutrophil responses, TH2 immune responses, 

and epithelial injury [56].

Rhinoviruses, members of the Picornaviridae family, have long been thought as the major 

cause of upper respiratory infection. However, recent studies have demonstrated that 

rhinoviruses also cause asymptomatic infections and lower respiratory infections, including 

bronchiolitis in children [1,60,61]. Rhinoviruses are highly genetically and antigenically 

diverse. Indeed, among the three species groups (A, B, and C), sequencing the rhinovirus 

capsid genes revealed >150 types [56]. Although some studies reported no significant 

between-species difference in bronchiolitis severity [61], emerging evidence suggests that 

the rhinovirus C species are most clinically significant. For example, the rhinovirus C 

species are the most common rhinovirus group associated with lower respiratory infections 

[62–64] in the ED and inpatient settings. Additionally, Lee et al. reported, in the Childhood 

Origins of ASThma (COAST) cohort in the U.S., that rhinovirus A and C species are more 
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likely to cause severe respiratory infection in infants, compared to rhinovirus B species, in 

the outpatient setting [65]. This study also reported a within-species difference in virulence – 

e.g., some C types being more virulent than the other C types, suggesting that rhinovirus 

genotype-specific pathogenesis extends beyond the species-level to the type-level [65].

5.5. Microbiome

Although bronchiolitis is typically caused by a viral infection, emerging evidence indicates 

that microbes inhabiting the human body (the microbiota) play an important role in 

bronchiolitis pathogenesis. Over the past decade, the use of 16S rRNA gene and 

metagenomic sequencing of aggregate microbial genomes (the microbiome) made it possible 

to profile the collective microbial community, and revealed more microbiota and 

phylogenetic relationships than previously detectable [66].

Although few studies have specifically investigated infants with bronchiolitis [67–69], 

emerging evidence shows that airway microbiome may influence immune responses in the 

airway [66,70–74], suggesting a role of airway microbiome in the development and 

morbidity of acute respiratory infections [75–80]. For example, Kloepfer et al., by applying 

quantitative polymerase chain reaction technique to nasal samples of 308 U.S. children in 

the RhinoGen cohort, found that Moraxella catarrhalis and Streptococcus pneumoniae 
together with rhinovirus infection contributes to a higher severity [77]. By applying a 

culture-dependent technique to 265 infants from the Copenhagen Prospective Studies on 

Asthma in Childhood2000 (COPSAC2000) cohort, Vissing et al. found that 1-month-old 

infants with colonization of M. catarrhalis or Haemophilus influenzae in hypopharynx had 

an increased risk of subsequent development of bronchiolitis [79]. Similarly, Teo et al., by 

using 16S rRNA gene sequencing in 234 Australian infants from the Childhood Asthma 

Study cohort, demonstrated that Haemophilus-dominant nasopharyngeal microbiota was 

associated with a higher incidence of acute respiratory infection and higher severity in 

infants with high risk of atopy [75].

Recently, we applied 16S rRNA gene sequencing technique to nasopharyngeal samples in 

the Infant Susceptibility to Pulmonary Infections and Asthma Following RSV Exposure 

(INSPIRE) study, a population-based birth cohort of 1,952 healthy infants, and found 

marked differences in microbiota diversity and richness between healthy infants and those 

with acute RSV infection. For instance, the more abundant genera during acute RSV 

infection were Corynebacterium, Haemophilus, Moraxella, and Streptococcus [81]. 

Additionally, in the 35th Multicenter Airway Research Collaboration (MARC-35) study, a 

multicenter cohort of approximately 1,000 U.S. infants hospitalized for bronchiolitis, we 

found viral-microbial relationships in the airway. For example, infants with RSV infection 

had a high abundance of Streptococcus and a low abundance of Haemophilus and Moraxella 
genera while infants with rhinovirus infection had the opposite pattern [68]. Furthermore, in 

unpublished work, we applied an unbiased clustering approach and identified four distinct 

microbiota profiles – three profiles were dominated by either Haemophilus, Moraxella, or 

Streptococcus genus, while the fourth profile had highest bacterial richness. The rate of 

intensive care use was highest in infants with Haemophilus-dominant profile and lowest in 

those with Moraxella-dominant profile. These findings were externally validated in a similar, 
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but entirely separate, cohort of 307 U.S. children hospitalized for bronchiolitis (unpublished 

data).

Although these findings suggest a complex interplay between viral pathogen, airway 

microbiome, and bronchiolitis pathogenesis, the nature of this microbial association requires 

clarification. It is possible that there is a causal relationship – i.e., a specific microbiome 

profile (e.g., Haemophilus-dominant microbiome) in the infant’s airway alters immune 

responses to increase the severity of bronchiolitis. Alternatively, Haemophilus-dominant 

microbiome may be simply a marker of an infant who is prone to develop more-severe 

bronchiolitis. Additionally, reverse causation – i.e., more-severe illness results in a rapid 

overgrowth of specific bacteria– is also possible. These possibilities are not mutually 

exclusive. Notwithstanding the complexity, these data indicate the heterogeneity of airway 

microbiome profiles and its potential contribution to the pathobiology of bronchiolitis.

5.6. Metabolome

Metabolomics systematically identify and quantify the collection of metabolites in 

biological specimens by using nuclear magnetic resonance or liquid chromatography mass 

spectrometry. Metabolomics profiling provides a snapshot of dynamic physiology and has 

been used as a tool of biomarker discovery [42]. To date, no study has applied a 

metabolomic approach specifically to children with bronchiolitis. However, within the 

limited literature about metabolome in infants, Herberth et al. performed a metabolome 

analysis in sera of 495 healthy newborns in Germany, and found a relationship between high 

hexose levels, increased expression of NLRP3 inflammasome and effector cytokine IL-1β, 

and an increase risk of parent-reported wheezing illness by age 2 years [82]. In other disease 

conditions, such as asthma, metabolome studies using exhaled breath condensate, serum, 

and urine specimens have identified phenotype-specific metabolic profiles, such as 

eosinophilic and neutrophilic asthma [42].

6. SYSTEMS BIOLOGY APPROACH

Data generated through host genome, transcriptome, epigenome, viral genome, microbiome, 

and metabolome studies have advanced our understanding of the various mechanisms that 

underlie bronchiolitis pathogenesis. However, as a heterogeneous disease, it is unlikely that a 

single molecular profiling modality can capture the interdependent dynamics of the 

molecular networks involved in bronchiolitis (Figure 1). We believe that integrating these 

multiscale data with phenotypic information is a necessary step to better understand 

bronchiolitis. Systems biology approach is attractive as it has the potential to model the 

multidimensional interactions between these factors that ultimately lead to diverse disease 

phenotypes and treatment responses across individuals [42].

Although no study to date has utilized a systems biology approach to identify bronchiolitis 

endotypes, a few studies have applied this approach to childhood asthma [30,31]. For 

instance, by using multi-step decision tree method to integrate clinical, physiological, 

immunological, and transcriptomic data, George et al. identified several endotypes (e.g., 

atopic, mixed eosinophilic and neutrophilic, and TH2-low/metabolic syndrome-related 

endotypes) in 192 U.S. children with asthma [30]. In addition, probabilistic causal network 
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method, another systems biology approach, has been applied to several other diseases, such 

as obesity [42] and provided mechanistic understanding. This approach infers causal 

relationships between molecular interactions by constructing a consensus model that best fits 

the data and identifies directionality of relationships between the tens of thousands of 

molecular variables [83]. The implementation of such systems biology approaches in 

bronchiolitis is our next challenge.

The success of “-omics” and systems biology approaches depends on our ability to manage 

and interpret large-scale multi-dimensional data. To obtain meaningful results, processing 

and integrating high-dimensional data require multiple steps, such as data transfer and 

management, access control, data format standardization, and appropriate modeling of 

biological systems via data integration. Robust bioinformatics and computational 

infrastructures are also warranted for each of these steps. Additionally, other potential 

problems, such as bias (selection, measurement, confounding) and reproducibility issue, 

should be minimized by careful control, planning of the experiments, and validation, as is 

typically done in high-quality epidemiological research.

7. EXPERT COMMENTARY

With the advent of high-throughput molecular techniques, our understanding of bronchiolitis 

pathogenesis has greatly improved. A growing number of studies challenge the conventional 

wisdom that bronchiolitis is a homogeneous condition and the traditional term 

“bronchiolitis” appears increasingly out-of-date. With continued advances, it may become 

possible to create more detailed clinically and molecularly focused definitions of this 

condition. Using unbiased statistical approaches, multidimentional clinical characteristics 

will derive bronchiolitis phenotypes. Furthermore, molecular and systems biology 

approaches will, by linking pathobiology to phenotype, identify endotypes. These effort will 

not only enhance our ability to molecularly understand these phenotypes but also lead to 

identification of biomarkers and more personalized approaches to bronchiolitis treatment.

8. FIVE-YEAR VIEW

The use of a multidimensional approach to phenotype children of bronchiolitis has only just 

started [29]. Furthermore, there is no published study that tries to identify bronchiolitis 

endotypes by linking multiscale molecular information to phenotypic information. These 

knowledge gaps provide many opportunities for investigation. In this context, two ongoing, 

NIH-funded cohort studies – 1) the INSPIRE study, and 2) the MARC-35 study – are 

collaborating to identify phenotypes and endotypes in infants with bronchiolitis. INSPIRE 

(U19 AI-095227; Hartert) is a population-based birth cohort of 1,952 healthy infants [84]. 

MARC-35 (U01 AI-87881; Camargo) is a multicenter prospective cohort of 1,016 infants 

with severe bronchiolitis that is run by the Emergency Medicine Network (EMNet; 

www.emnet-usa.org). In both cohorts, investigators collected extensive clinical data and 

upper airway biospecimens at the acute respiratory illness visits (INSPIRE) and at the 

bronchiolitis hospitalization (MARC-35). Collaboration of the INSPIRE and MARC-35 

cohorts has created the one of the largest bronchiolitis consortiums in the world, with a full 

spectrum of acute severity – from a population-based cohort of infants with bronchiolitis that 
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only required outpatient visit to hundreds of infants with bronchiolitis requiring mechanical 

ventilation. Importantly, the INSPIRE cohort also includes infants with RSV infection who 

developed and did not develop bronchiolitis, important comparator groups to understand 

endotypes of disease and resiliency. Based on the comprehensive clinical and virology data, 

we will identify acute phenotypes by using a multidimensional approach. Furthermore, we 

will also define bronchiolitis endotypes through integration of clinical phenotypic and 

molecular data (e.g., transcriptome, microbiome) by using a systems-biology approach 

[30,31]. This collaborative effort will not only help us discover new molecular networks 

involved in bronchiolitis pathogenesis, but also will lead to generation of more refined 

hypotheses for further investigation. Discovered molecular targets will need to be 

mechanistically evaluated in experimental model systems (e.g., animal, cell-culture) to 

further define their functions, associated pathways, and relationship to specific phenotypes. 

The ultimate test of a phenotype will be investigations of the efficacy of a molecular-targeted 

intervention [25]. We believe that these combined discovery and hypothesis-driven 

approaches will support the development of new and effective phenotype/endotype-specific 

therapies for bronchiolitis.
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9. KEY ISSUES

• Despite the large public health burden of bronchiolitis, no effective 

treatment strategies are available, other than supportive care.

• Current evidence on bronchiolitis treatment is largely based on clinical 

trials with the major assumption that bronchiolitis is a single disease 

entity with similar disease characteristics and mechanisms.

• Recent studies collectively indicate that bronchiolitis is a 

heterogeneous condition. The term bronchiolitis, similar to “asthma”, 

equates to a definition of grouped clinical, physiological, and microbial 

characteristics, which could identify multiple phenotypes.

• Previous studies examining subgroups of children with bronchiolitis 

generally classify individuals according to a single dimension (e.g., 

RSV status). However, given the high-dimensional interactions 

between host, environmental, and microbial factors in bronchiolitis, 

multidimensional statistical approaches would be useful to address 

disease heterogeneity.

• Increasing availability of high-throughput “-omics” technologies has 

identified multiple mechanisms that underlie bronchiolitis 

pathogenesis.

• Transcriptomic approaches have discovered virus-specific 

transcriptomic profile in children with bronchiolitis.

• Recent microbiome analyses have found heterogeneity of upper airway 

microbiome profiles, patterns associated with acute viral infection, and 

its relationship with bronchiolitis susceptibility and severity.

• Integrating multiscale “-omics” data with phenotypic information, 

through a systems biology approach, is a necessary step to identify 

endotypes and to develop targeted therapies for bronchiolitis.
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Figure 1. Schematic representation of the umbrella term “bronchiolitis”
The term “bronchiolitis” likely represents a continuum of different diseases that may present 

with similar clinical features (phenotypes) and share biological mechanisms (endotypes) 

involving host genome, transcriptome, epigenome, virus genome, microbiome, and 

metabolome. These phenotypes and endotypes remain under investigation.
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Table 1

Glossary

16S rRNA gene sequence Sequencing DNA within the hyper-variable regions of the 16S ribosomal RNA (16s rRNA) gene that enables 
identification of bacteria and archaea.

Genome The complete set of genomic information for an organism including genes and non-coding sequences.

Epigenome The collection of DNA modifications that affect gene expression and occur without direct alteration of the DNA 
sequence (e.g., DNA methylation, histone modification, and microRNAs).

Microbiome The collection of commensal, symbiotic, and pathogenic microbes (e.g., bacteria, archaea, fungi, viruses) and their 
genomes in the human body.

Microbiota All microbes that are found in a particular niche or region.

Metabolomics High-throughput characterization of metabolites in body fluids (e.g., plasma, serum, exhaled breath condensate, 
and urine).

Metagenomic sequencing Sequencing the total DNA of the ecosystem, with the advantage of providing information on the presence of 
bacteria, archaea, DNA viruses, eukarya, and their functionality.

Transcriptome The complete set of RNA molecules produced in one cell or a population of cells.

Systems biology An approach, by modeling diverse types of high-dimensional interactions, to developing a more comprehensive 
understanding of biology at multiple scales (molecular, cellular, tissue, organ, organism, and community).
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