Skip to main content
. Author manuscript; available in PMC: 2017 Jul 7.
Published in final edited form as: Phys Med Biol. 2016 Jun 14;61(13):4989–4999. doi: 10.1088/0031-9155/61/13/4989

ALGORITHM 1 Prediction with manifold learning

Step 1: Perform eigen decomposition on kernel matrix and define projection matrix
  • HKH = UΛUT, with U = [α1, α2, …αn] and Λ = diag(λ1, …, λn)

  • Define projection matrix P = [V1, V2, …Vm], for each Vk=i=1nαk,iλkϕ(xi)

Step 2: Project training and testing data onto the constructed sub-manifold
  • i = PTϕ(xi)

Step 3: Calculate VAR coefficient matrix given T covariate-response pairs {(ši, i)|i ∈ [1, T]}, for each sˇi=[xˇi(p1)T,,xˇiT]T and i = i+τ
  • Solve VAR coefficient matrix = YST(SST)−1

Step 4: Estimate testing response given testing covariates š
  • yˇ=B^[1sˇ]
Step 5: Estimate pre-image through fixed-point iterations
  • x^t+1=i=1nγiexp(x^txi2/c)xii=1nγiexp(x^txi2/c),

    Where γi=k=1myˇkαi,kλk, and γi=γi+1n(1j=1nγj)