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Abstract

Autism Spectrum Disorder (ASD) is a group of neurodevelopmental disorders characterized by 

impaired social communication and interactions and by restricted and repetitive behaviors. 

Although ASD is suspected to have a heritable or sporadic genetic basis, its underlying etiology 

and pathogenesis are not well understood. Therefore, viable human neurons and glial cells 

produced using induced pluripotent stem cells (iPSC) to reprogram cells from individuals affected 

with ASD provide an unprecedented opportunity to elucidate the pathophysiology of these 

disorders, providing novel insights regarding ASD and a potential platform to develop and test 

therapeutic compounds. Herein, we discuss the state of art with regards to ASD modeling, 

including limitations of this technology, as well as potential future directions.
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1. Introduction

Autism spectrum disorder (ASD) is a lifelong neurodevelopmental disability with a complex 

etiology, generally diagnosed based on criteria that include deficits in social communication 

and social interaction, as well as restricted, repetitive patterns of behavior, interests, or 

activities. Typical signs and symptoms are usually manifest in the early developmental 

period, although social deficits or behavior are often not apparent until later, when the child 

has difficulty meeting social or educational demands. In the United States, ASD is 

diagnosed in children as young as 53 months (regardless of gender or ethnicity). The 

prevalence is approximately 1:68 children, affecting four times more males than females 

(Wingate et al., 2014). Both early and long-term interventions are recommended; although 

those interventions can reduce symptoms of autism in children, responses are quite variable 

among individuals (Pierce et al., 2011; Warren et al., 2011), suggesting that better diagnostic 

tools are needed. Although the exact etiology of ASD remains unknown, a genetic 

component is likely (Geschwind, 2013; State and Levitt, 2011). Therefore, identifying 

genetic signatures and biological markers could facilitate diagnosis of autism in young 

children (Courchesne et al., 2015).

There are two categories of ASD, namely monogenic autism (due to a mutated gene) and 

complex/multigenic or idiopathic autism (uncertain genetic background). Monogenic forms 

of ASD include the following distinct genetic disorders: Fragile X syndrome, Rett 

syndrome, Timothy syndrome, Tuberous sclerosis, Joubert’s syndrome, Angelman 

syndrome, and Phelan-McDermid syndrome (each accounts for no more than 1% of all ASD 

cases, with the entire group accounting for approximately 10% (Abrahams and Geschwind, 

2008; Freitag et al., 2010; Geschwind, 2008). Therefore, most ASD individuals are 

idiopathic, with evidence of de novo mutations (especially for simplex families or hereditary 

mutations), or inheritance of common polymorphisms contributing to autism risk in 

multiplex families (Abrahams and Geschwind, 2008; Iossifov et al., 2014; Jiang et al., 2013; 

O’Roak et al., 2012). There are many chromosomal loci and genetic alterations implicated in 

ASD pathophysiology, consistent with the inherent heterogeneity of the disease (Geschwind, 

2013). Complex ASD seems to be a combination of several genetic abnormalities that cause 

pathway damage (Geschwind, 2008). Consequently, for the vast majority of ASD cases, 

understanding pathogenetic mechanisms underlying ASD phenotypic behavior remains a 

challenge. Some mutations are related to synapse-associated molecules (Südhof, 2008), 

whereas for some other cases, perhaps there is an imbalance among excitatory/inhibitory 

neuronal circuitry (Mariani et al., 2015; Rubenstein, 2010). Notwithstanding, pathogenic 

mechanisms underlying autistic behavior remain unknown for the majority of ASD 

individuals.

Given the inherent heterogeneity of the genetic background associated with autism, 

modeling this disease using transgenic animals is inherently difficult. Brain samples 

collected postmortem from individuals with ASD have long been used to help clarify an 

autistic phenotype; however, that approach has important limitations, because usually the 

brain represents terminal stage of the disease; brain cells are dead and the tissue is fixed. 

Alternatively, an interesting strategy to study disorders that affect central nervous system 

(CNS) physiology would be to use developments in the burgeoning field of stem cells to 
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produce target cell types for each disease. Using a pluripotent cell, e.g. embryonic stem cells 

(ESC), it is possible to produce, theoretically, any cell in vitro, including multiple functional 

neural cell types. Producing pluripotent cells from somatic cells (termed induced pluripotent 

stem cells, iPSC) has the potential to generate relevant cell types from genetic disorders. 

Fortunately, recent advances in cellular reprogramming (Takahashi and Yamanaka, 2006; 

Takahashi et al., 2007) have provided a breakthrough in human cellular disease modeling, 

making it possible to recapitulate live brain cells in vitro, while preserving the genetic 

background of individuals. The use of iPSC to generate viable human neurons or other 

neural cells in vitro has provided an outstanding opportunity to study a simplified neuronal 

network from a neurological disease with human genetic disease background preserved, 

which is particularly important for complex or multifactorial diseases like ASD (Beltrão-

Braga et al., 2013; Marchetto et al., 2011; Marchetto et al., 2010; Mitne-Neto et al., 2011). 

Moreover, iPSC facilitates characterization of early developmental time points, giving 

information potentially useful in early diagnosis (including potential biological markers) and 

is particularly advantageous for understanding disease development and progress by IPSC-

derived organoids (Mariani et al., 2015). These developments, in conjunction with exome 

and genome-wide sequencing data, would help to elucidate the neurodevelopmental course 

of autistic phenotypes (Willsey et al., 2013).

This review describes recent efforts related to ASD disease modeling using iPSC as stem 

cell source for in vitro production of neural cells. Based on findings summarized herein, it is 

clear that ASD disease modeling is already contributing to our understanding of disease 

etiology. Furthermore, this technology provides an unprecedented opportunity to manipulate 

ASD neural networks in a controlled environment to test strategies to recover altered neural 

phenotypes. In addition, these findings could also help us to better understand other 

neurodevelopmental diseases.

2. Disease Modeling

Since iPSC were first described, it has been used to model many diseases (Soldner and 

Jaenisch, 2012). For neurological diseases, where the raw material is often difficult to 

access, the use of iPSC to generate neurons (or other neural types) is particularly exciting. 

The first work to generate neural cells from iPSC was done using cells from a patient with 

amyotrophic lateral sclerosis (ALS) (Dimos et al., 2008). Although ALS-iPSC were 

successfully differentiated into motor neurons, cellular phenotype was not described. The 

first comparison between affected and non-affected cells derived from iPSC was a study 

published the following year, from a patient with spinal muscular atrophy (SMA). In this 

study, motor neurons derived from SMA-iPSC patient had low survival compared to motor 

neurons derived from a non-affected family member (Ebert et al., 2009). Nevertheless, since 

this first report, many others have been published, giving insights into unprecedented 

opportunities to study neurological diseases, including novel opportunities to test potential 

drugs to ameliorate or cure the condition.

Although almost any disorder can be modeled by iPSC, the challenge is identification of a 

robust and replicable cellular phenotype that is relevant to the target disease; unfortunately, 

this may be very difficult to achieve (Chailangkarn et al., 2012; Tiscornia et al., 2011). 
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Several, neurodevelopmental disorders are popular targets for disease modeling using iPSCs, 

include Cockayne syndrome and ASD-related disorders, such as Rett syndrome (RTT), 

Fragile X syndrome (FXS) and even complex autism to test rare variants (de Sousa Andrade 

et al., 2012; Griesi-Oliveira et al., 2014; Marchetto et al., 2010; Urbach et al., 2010). 

Regardless, modeling complex autism is of particular interest, as the genetic background of 

each individual is preserved and any route involved in pathophysiology of autism could be 

investigated.

3. Monogenic Autism Disease Modeling

Monogenic autisms are neurodevelopmental disorders, usually with monogenetic causes 

identified, and whose individuals display clear autistic behaviors. It is noteworthy that some 

have already been modelled in vitro using iPSC technology (Amenduni et al., 2011; 

Marchetto et al., 2010; Paşca et al., 2011; Urbach et al., 2010). Below and on table 1 we 

summarize the main findings of these reports.

Fragile X syndrome

Fragile X syndrome (FXS) is characterized by a trinucleotide repeat (CGG) expansion (> 

200 times) on the 5′ fragile X mental retardation1 gene (FMR1), which leads to 

hypermethylation and gene silencing (Verkerk et al., 1991). The pathophysiology of FXS 

results in individuals with intellectual disability and a range of behavioral phenotypes 

(varying according to the number of trinucleotide repeats; (Rogers et al., 2001). In the first 

study based on iPSC-FXS modeling, there were epigenetic differences on FMR1 gene 

expression; lines with gene silencing resulted in abnormal neuronal differentiation (Sheridan 

et al., 2011). In the two most recent studies involving iPSC-FXS modeling, there were 

neurons with reduced neurite length, fewer synaptic puncta and protein level and altered 

calcium influxes (Doers et al., 2014; Hagerman and Hagerman, 2013).

Rett and MECP2 duplication syndrome

Rett syndrome (RTT) is a monogenic progressive neurological disorder caused by mutations 

on the X-linked gene methyl CpG-binding protein 2 (MeCP2; Amir et al., 1999). Unlike the 

majority of ASD individuals, RTT individuals are predominantly female, since affected 

males rarely survive or are severely affected (Villard et al., 2000). Symptoms RTT are very 

autism related, especially at the onset of disease, with loss of acquired motor language skills, 

and progressing to autistic behavior with stereotyped hand flaps, seizures, loss of speech and 

eventually leading to microcephaly, hypotonia and ataxia (Chahrour and Zoghbi, 2007; 

Percy, 2011). The MECP2 gene is responsible to both activate and repress transcription 

(Chahrour et al., 2008), including actions in neurons, thereby acting as an important 

regulator with numerous targets (Skene et al., 2010).

In 2010, our group was the first to model RTT; we reported that iPSC-derived RTT neurons 

recapitulated many aspects previously identified in brain tissue recovered postmortem from 

a person with RTT, thereby providing credence to our model. In our study, RTT neurons had 

fewer synapses, reduced spine density, smaller soma size, altered calcium signaling, and 

electrophysiological defects when compared to controls (Marchetto et al., 2010). 
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Interestingly, when modeling MECP2 duplication syndrome, we found neuronal phenotypes 

that go in opposite direction of what was observed in RTT-derived neurons (Nageshappa et 

al., 2015). This observation suggests that MeCP2 levels in human neurons must be tightly 

controlled. Furthermore, in preliminary studies to test the effect of some drugs on rescuing 

synaptic defects, insulin-like growth factor 1 (IGF-1) rescued RTT synaptic defects. In that 

regard, IGF-1 is a known neurotrophic factor (and is currently being used in clinical trials 

for RTT therapy). Furthermore, abnormal astrocytes were recently generated from iPSC-

RTT, implicating them in neuronal abnormalities (Williams et al, 2014). In addition, in that 

study, IGF-1 or GPE (an IGF-1 peptide) partially rescued morphological defects of iPSC-

RTT-astrocytes.

Timothy Syndrome

Timothy Syndrome (TS) is a rare autosomal dominant neurodevelopmental disorder caused 

by a mutation in the CACNA1C gene, which encodes for the voltage dependent calcium 

channel CaV1.2, leading to malfunction of this channel, causing high intracellular calcium 

concentrations (Splawski et al., 2004). Symptoms associated with TS include developmental 

delay, autistic symptoms, and heart malformations (usually accompanied by arrhythmia). In 

a recent study (Paşca et al., 2011), iPSC-TS derived neurons were generated and had defects 

in action potential firing and [Ca+2]i signaling, resulting in ineffective neuronal 

communication. These imbalanced neurons produced an overabundance of tyrosine 

hydroxylase, the enzyme necessary to generate the catecholamines norepinephrine and 

dopamine, two neurotransmissors with a key role in sensorial neurons and social behavior. In 

additon, it was reported that roscovitine blocked the defective calcium channel, reducing 

enzyme acculumlation. That similar effects were not reported in transgenic mice reiterated 

that there are often limitations to animal models of human diseases.

Angelman and Prader-Willi syndromes

Angelman and Prader-Willi syndromes (AS and PWS) are nerodevelopmental disorders 

associated with genomic imprinting, both caused by the same chromosomal deletion, on 

chromosomal region 15q11-13 (Knoll et al., 1989). Although AS and PWS have discrete 

phenotypes, they share neurological symptoms such as cognitive, social, and speech 

disabilities (Thibert et al., 2013; Whittington and Holland, 2010). In AS, deletion occurs on 

a maternal allele, reducing expression of ubiquitin-protein ligase E3A gene (UBE3A). In 

PWS, deletion occurs on the paternal allele, resulting in loss or reduction of expression of 

seven genes (Bittel and Butler, 2005). Although IPSC generated from both AS and PWS 

preserved DNA imprinting after reprogramming, unfortunately there were no apparent 

phenotypic differences among neurons derived from iPSC-AS, iPSC-PWS, and control 

neurons (Chamberlain et al., 2010).

Phelan-McDermid syndrome

Phelan-McDermid syndrome (PMDS) is a neurodevelopmental disorder caused by a deletion 

in the 22q13.3 region (Phelan and McDermid, 2012; Wilson et al., 2003), resulting in loss of 

genes, such as SHANK3, a protein in excitatory synapses that have been associated with 

autism (Durand et al., 2007). Symptoms include absent or delayed speech, intellectual 

disability, mental retardation, and autism. The iPSC-PMDS derived neurons had altered 
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excitatory electrophysiology and fewer synapses. In addition, since these neurons had a 

deficit in SHANK3 gene, these neuronal defects could be rescued either by using lentivirus 

to express SHANK3 or by exogenous IGF-1 (Shcheglovitov et al., 2013).

4. Complex/Multigenic Autism Disease Modeling

To investigate complex ASD, our laboratory generated an iPSC from individuals with 

classical autism, where syndromic forms of autism were excluded by genome sequencing. In 

several cases, the genetic analyses of their genome revealed one or more potentially 

causative mutations. As a proof-of-principle that iPSC modeling can be used to determine 

the contribution of individual genetic alteration, we choose one ASD subject carrying a de 
novo balanced translocation disrupting the TRPC6 gene (Griesi-Oliveira et al., 2014), which 

encodes for the protein channel Transient Receptor Potential Canonical 6, a voltage-

independent, Ca2+- permeable cation channel. This gene has been implicated in neuronal 

processes known to be affected in ASD but was never implicated in ASD directly (Leuner et 

al., 2013; Zhou et al., 2008; Li et al., 2005). Furthermore, TRPC6 activates important neural 

development pathways, including the BDNF, CAMKIV, Akt and CREB signaling pathways 

(Li et al., 2005; Tai et al., 2008). Using iPSC, we investigated the functional consequences 

of this TRPC6 haploinsufficiency. Neurons derived from TRPC6-mut iPSC had neuronal 

morphological and functional alterations compared to control neurons, such as altered 

morphology, including reduced total length and dendritic arborization. Key neuronal 

functions were also affected, including fewer dendritic spines and synapses, and impaired 

calcium dynamics (Griesi-Oliveira et al., 2014). It was noteworthy that some of these 

phenotypes were validated in mice. Neuronal phenotypes were rescued using candidate 

drugs, such as hyperforin and IGF-1. Hyperforin, a specific activator of TRPC6 channels, 

increased TRPC6 signaling. As mentioned previously, IGF-1 rescued neuronal defects in 

RTT-iPSC neurons (Marchetto et al., 2010). While it seems clear that this patient has other 

important genetic alterations, the investigation was able to show the relevant contribution of 

TRPC6 loss of function to ASD.

Interestingly, we also observed that MeCP2 could control TRPC6 expression. RTT-derived 

neurons have altered expression of TRPC6 and the MeCP2 protein occupies the TRPC6 
gene promoter, determined by chromatin immunoprecipitation. This apparent interaction 

reveals possible common pathways affected in syndromic and complex ASD. The study 

improved our understanding of ASD, as we demonstrated that an iPSC model of complex 

ASD had striking neuronal phenotypes, providing the basis for a potential drug-screening 

platform using human neurons as readouts.

Recently, another group (Mariani et al., 2015) used iPSC strategy to investigate 

neurodevelopmental alterations, specifically using three-dimensional neural cultures 

organoids derived from complex ASD-iPSC patients. Although genomic-wide investigation 

did not provide insights regarding the ASD phenotypic profile, based on transcriptome 

analyses, genes related to cell proliferation and neuronal differentiation were widely 

expressed. Interestingly, iPSC and neuro-progenitor cells (NPC) derived from ASD 

individuals did not have a higher cell proliferation rate than controls, but when more mature 

organoids were investigated in terms of proliferating cells, ASD organoids did not have 
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decreased cell-cycle length. Moreover, synaptic assemble was also upregulated. 

Quantification of inhibitory VGAT (vesicular GABA transporter) by puncta counting 

revealed a significant increase when compared to excitatory VGLUT1 (vesicular glutamate 

transporter 1), suggesting an imbalance between inhibitory and excitatory synapses in 

neurons derived from ASD-iPSC. Also, GABAergic progenitor cells and neurotransmitter 

GABA were increased in organoids derived from ASD-iPSC. Transcriptome analyses of 

ASD-organoids revealed that FOXG1 could be responsible for overproduction of 

GABAergic neuronal lineage, and thus be a precursor for ASD (Mariani et al., 2015). In 

addition, as ASD individuals used in this study had macrocephaly, authors suggested that 

FOXG1 could be related to modulation of brain size, since patients with loss of function 

mutation in FOXG1 in patients with atypical Rett syndrome consistently had a small brain 

(Ariani et al., 2008; Bahi-Buisson et al., 2010; Mencarelli et al., 2010). Despite using only a 

small cohort of ASD individuals in this study, it was suggested that FOXG1 could be used as 

a biomarker for ASD severity, since macrocephaly is correlated with an adverse outcome. 

Finally, interference in FOXG1 expression restored normal density of GABAergic neurons 

(Mariani et al., 2015).

Although these data made important contributions to the elucidation of complex ASD, the 

number of ASD individuals studied was very limited, reinforcing the need for more lines 

from complex ASD individuals to generated and used to to validate common phenotypes and 

affected pathways, and to create robust diagnostic tools.

5. Future directions and take home message

The iPSC-disease modeling strategy, generating mini-brains (Lancaster and Knoblich, 2014; 

Lancaster et al., 2013) of individuals with neurological disorders, represents a novel and 

complementary strategy in ASD research and treatment (Mariani et al., 2015) (Nageshappa 

et al., 2015). However, current iPSC strategy has several important considerations and 

limitations, including clonal variability inherent in experimental methods, the use of 

appropriate controls and validation of specific cellular and molecular phenotypes in relation 

to the relevance of the ASD. Thus, many more iPSC models of complex autism are 

necessary to identify phenotypes and molecular pathways common to ASD. Ideally, 

clustering ASD individuals based on well-defined clinical parameters will be valuable 

during the validation process. However, to reach statistical significance, it may be necessary 

to work with hundreds of ASD individuals. In this direction, we have started working with 

several outreach programs to facilitate community engagement and sample collection, such 

as the Tooth Fairy Project. The latter, initiated in 2009, currently includes a website, a 

Facebook page and e-mail communications that connects to families and instructs them to 

send baby teeth from autistic individuals to our labs, from which dental pulp cells can be 

extracted and iPSC generated. Finally, we contend that comprehensive molecular and 

functional characterization of these iPSC-derived will be essential for reliable discovery of 

relevant ASD phenotypes that are driving ASD etiology. It is noteworthy that these 

molecular pathways should be targeted in future clinical trials.
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Highlights

• A new human model to study autism spectrum disorders

• Advances on modeling monogenetic autisms

• Efforts on modeling rare variants related to autism

• The use of induced pluripotent stem cells derived neurons for drug screening
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