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Abstract

In clinical cardiology, both anatomy and physiology are needed to diagnose cardiac pathologies. 

CT imaging and computer simulations provide valuable and complementary data for this purpose. 

However, it remains challenging to gain useful information from the large amount of high-

dimensional diverse data. The current tools are not adequately integrated to visualize anatomic and 

physiologic data from a complete yet focused perspective. We introduce a new computer-aided 

diagnosis framework, which allows for comprehensive modeling and visualization of cardiac 

anatomy and physiology from CT imaging data and computer simulations, with a primary focus 

on ischemic heart disease. The following visual information is presented: (1) Anatomy from CT 

imaging: geometric modeling and visualization of cardiac anatomy, including four heart chambers, 

left and right ventricular outflow tracts, and coronary arteries; (2) Function from CT imaging: 

motion modeling, strain calculation, and visualization of four heart chambers; (3) Physiology from 

CT imaging: quantification and visualization of myocardial perfusion and contextual integration 

with coronary artery anatomy; (4) Physiology from computer simulation: computation and 

visualization of hemodynamics (e.g., coronary blood velocity, pressure, shear stress, and fluid 

forces on the vessel wall). Substantially, feedback from cardiologists have confirmed the practical 

utility of integrating these features for the purpose of computer-aided diagnosis of ischemic heart 

disease.

Index Terms

Cardiac chamber; coronary artery; imaging; anatomy; physiology; perfusion; motion; strain; shear 
stress; Bull’sEye Plot; image analysis; geometric modeling; computational fluid dynamics; 
visualization

1 Introduction

The human heart is a complex organ in terms of both two atria, and two ventricles on the left 

and right side. The left ventricle (LV) pumps blood to the systemic circulation through the 

aorta, and deoxygenated blood returns to the right atrium. The right ventricle closes the loop 

by pumping the blood to the lung for oxygenation, which then flows back to the left atrium. 
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Both ventricles contract to pump the blood during systole and relax to fill with blood during 

diastole. The muscular wall or the myocardium surrounding the LV is thicker compared to 

the right ventricle and achieves a higher pressure that is required to pump the blood to 

supply the systemic circulation. The coronary arteries supply blood to the heart itself. The 

buildup of cholesterol and fatty deposits gradually develop into plaque that resides on the 

inner wall of the coronary arteries, and causes an anatomic narrowing (i.e., stenosis) or 

blockage of the coronary arteries. Coronary artery stenosis becomes hemodynamically 

significant when it severely restricts the blood flow to the myocardial tissue and ultimately 

leads to myocardial infarction if the tissue is permanently damaged [1]. Further still, more 

acute coronary events may be triggered by the rupture or erosion of hemodynamically 

insignificant plaques and coronary thrombosis, which far exceeds the occurrence of flow-

limiting lesions [2]. Subsequently, the development of new approaches to identify both 

ischemic coronary lesions as well as “vulnerable atherosclerotic plaques”, while also 

exploring their relationship with the onset of cardiac events has recently received 

considerable attention [3].

Many diagnostic imaging techniques have been developed to characterize cardiac anatomy 

and function, such as echocardiography, single-photon emission computed tomography, 

positron emission tomography, cardiac magnetic resonance, cardiac computed tomography, 

and invasive coronary angiography. Compared to other modalities, cardiac computed 

tomography (CT) is a noninvasive and fast imaging option [4], which permits acquisition of 

virtually motion-free 3D morphological images of heart chambers, great vessels, and 

coronary arteries at a high spatial resolution (<0.5mm). In particular, CT allows for both the 

identification of anatomically significant luminal stenosis and the assessment of adverse 

plaque characteristics in the arterial wall [5]. CT also provides reasonable temporal 

resolution (<83 milliseconds), thereby enabling the visualization of cardiac structures at 

different phases along with the evaluation of functional abnormalities [6] (e.g., irregular 

motion patterns of the LV). Furthermore, the ability of CT has been extended to evaluate the 

physiologic significance of coronary lesions by measuring myocardial perfusion, which 

reflects the concentration of the contrast-enhanced blood in the myocardial tissue [7]. 

Although the radiation exposure associated with CT is of some concern, the dose is 

continuously decreasing with new acquisition modes, and is currently as low as 1mSv for 

coronary CT angiography [8].

While CT excels for visualizing cardiac anatomy, diagnosis of ischemia based on CT alone 

is less robust due to the lack of physiologic information [9]. For example, miscalculation of 

the severity of coronary stenosis is often observed because CT does not provide any direct 

measurement of coronary flow or pressure [10]. Other hemodynamic factors are also 

missing (e.g., shear stress and total traction force on the vessel wall), which have been 

shown to play an important role in the formation and progression of atherosclerotic plaque 

[11]. Fortunately, computer simulations using computational fluid dynamics (CFD) have 

been applied to image-based blood flow modeling, which now allows for non-invasive 

calculations of coronary pressure, flow, and shear stress using patient-specific geometry 

constructed from imaging data [12, 13]. Although several assumptions and estimations (i.e., 

inflow and outflow boundary conditions, rigid walls, etc.) are usually made when utilizing 
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flow computation according to CFD, it has nevertheless been proven to improve the 

diagnostic performance of coronary ischemia than CT alone [14–16].

While CT imaging and computer simulations equip cardiologists with a wealth of anatomic 

and physiologic information of the heart, accurate diagnosis by traditional 2D slice-based 

visualization techniques (e.g., on orthogonal or oblique planes) proves challenging when 

faced with overwhelming amounts of imaging and simulation data. To this end, automated 

image segmentation and quantification algorithms greatly facilitate quantitative image 

analysis, visualization, and decision making. Although systems that visualize either image-

based cardiac anatomy and physiology, or processed and simulated data exist, it still remains 

a challenge for current visualization systems to integrate all disparate data together, as they 

are primarily designed to target single sources of information. Additionally, there are clinical 

standards and conventions that the graphical presentation of data should follow. For 

example, CT myocardial perfusion data is preferably displayed on an American Heart 

Association (AHA) 17-segment model [17]. The coronary arteries are commonly examined 

in a straightened view along the centerlines and another cross sectional view perpendicular 

to the centerlines. Moreover, user interaction is an important element to visualization, 

primarily for better adapting diagnostic tasks to the location and severity of the disease, and 

to improve the fidelity of the results by automated algorithms.

In this paper, we aim to develop a computer-aided diagnosis framework, which allows for 

comprehensive modeling and visualization of cardiac anatomy and physiology from CT 

imaging data and computer simulations, with a primary focus on ischemic heart disease. The 

CT imaging data are derived from anatomical coronary CT angiography and functional 4D 

CT, while the simulation process is based on CFD. Our approach supports the following 

visual information:

1. Anatomy from CT imaging: Geometric modeling and visualization of cardiac 

anatomy, including 4 heart chambers, left and right ventricular outflow tracts, 

and coronary arteries.

2. Function from CT imaging: Motion modeling, strain calculation, and 

visualization of 4 heart chambers.

3. Physiology from CT imaging: Quantification and visualization of myocardial 

perfusion and contextual integration with coronary artery anatomy.

4. Physiology from computer simulation: Computation and visualization of 

hemodynamics (i.e., coronary blood velocity, pressure, shear stress, and fluid 

forces on the vessel wall), with adjacent imaging features.

2 Related Work

Diagnosis of heart diseases is ideally based on the complete picture of anatomy and 

physiology due to the significant variations among individuals. Unfortunately, the current 

generations of medical imaging workstations do not provide sufficient intuitive visual 

support and are often overly tedious for use in clinical practice. Additionally, the opportunity 

to display simulation data is not yet supported, although clinical trials have consistently 
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reported that simulated coronary flow improves diagnostic performance of identifying 

hemodynamically significant lesions when added to the approach of using imaging alone 

[16]. In light of this, there have been considerable efforts to address some of these 

limitations. Our review will focus on prior research regarding the visualization and modeling 

techniques. Specifically, we refer readers to the details of CT imaging outlined in [4], and 

CFD simulation techniques in [12, 13].

Oeltze et al. [18] presented an integrated visualization of coronary morphology from CT 

angiography and myocardial perfusion from magnetic resonance imaging (MRI). The 

perfusion information was displayed in the 2D Bull’s-Eye Plot (BEP) according to the AHA 

17-segment model and correlated with coronary tree segmented from CT data. However, 

perfusion was not shown in the 3D myocardium and consequently, it was difficult to 

associate the perfusion defects with the affecting coronary lesion. They also integrated the 

perfusion and contractility information to detect non-viable myocardial tissue [19]. Kühnel 

et al. [20] proposed several visualization techniques to display a map of abnormal tissue 

with perfusion defects or scar from MRI data on the 3D myocardial surface to relate 

coronary stenoses visualized by CT that were candidates to cause the abnormalities. 

Similarly, Kirişli et al. [21] proposed and evaluated several model-based techniques to 

visualize the coronary tree with absolute diameter measures from CT and perfusion territory 

maps from MRI on 2D BEP and 3D surface renderings. In other work, Kirişli and colleagues 

[22] also evaluated their system to fuse coronary anatomy from CT and myocardial 

perfusion from single-photon emission computed tomography, and documented that the 

fused interpretation led to a more accurate diagnosis. To allow for assessment of 

transmurality (e.g., changes through the myocardial wall), Teemeer et al. [23] presented a 

visualization system for diagnosis of coronary artery disease using multiple types of MRI 

scans by extending the BEP into 3D to better discriminate scar from healthy tissue on the 

volumetric BEP, and then overlaying the coronary centerlines to add anatomical context. In 

subsequent work, they [24] also simulated blood flow in coronary arteries using lumped 

resistor models, as well as myocardial perfusion using a diffusion and absorption model. 

While perfusion was visualized on both 2D BEP and 3D surfaces, it was unable to compute 

and visualize detailed coronary blood flow using the simplified model. Besides these 

cardiac-specific visualization tools, general purpose tools, such as medInria [25], 3D Slicer 

[26], and SCIRun [27], have been applied to cardiac imaging.

Modeling techniques play a crucial role in the visualization of cardiac anatomy and 

physiology. Two major approaches have been proposed to model and segment heart 

chambers and great vessels. One approach is model-based, in which a template mesh model 

is first transformed to the proximity of the target heart in the new image and then the model 

is adjusted to fit the boundary. Lorenz and Berg [28] proposed a comprehensive heart model 

including four chambers and trunks of the attached vessels, that were constructed semi-

automatically by landmark-driven model initialization and energy-minimizing surface 

adaption. Ecabert et al. [29] introduced a method for whole heart segmentation, in which the 

generalized Hough transform was used to localize the heart. Parametric and deformable 

adaptations were then performed to match the heart boundary. Zheng et al. [30] presented a 

learning-based four-chamber heart segmentation method. Supervised learning was used to 

search the similarity transform to locate the heart and delineate the boundary. Another 
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approach of heart segmentation is atlas-based, in which manual labels of segmented atlas 

images are propagated into the new image-by-image registration and the final segmentation 

is obtained by a voting procedure at each voxel. In one study [31], Isgum et al. isolated 

whole heart regions from chest CT scans using multiple atlases and the local votes were 

derived from local assessment of registration performance. In a second study [32], Kirişli et 
al. evaluated a multi-atlas heart and chamber segmentation method on a large number of 

patients. In comparison, automated segmentation of coronary arteries is more challenging 

and thus less robust. The first step is centerline detection, mostly starting with heuristics-

based [33, 34] or learning-based [35] vessel enhancement filtering, and then followed by 

data-driven centerline tracing [36] or assisted with a prior shape model [37]. With the 

detected centerline, coronary lumen are then segmented by level sets [38], graph cuts [39], 

supervised regression [39], or supervised classification [40]. Vessel wall segmentation and 

plaque type (i.e., calcified, non-calcified, or mixed) classification is much less mature, and 

are primarily performed by global or adaptive thresholding [41].

3 Overview of Our Approach

Despite the extensive research in the area of heart visualization from imaging data, systems 

that can closely integrate both imaging and simulation data have been lacking. In this paper, 

we propose a new framework including a number of modeling and visualization techniques, 

which provide a comprehensive evaluation of the anatomy and physiology for ischemic heart 

disease using CT imaging and CFD simulation. By employing smooth and concise surface 

representations and parameterized mapping between different models, our approach also 

enables interactive and synchronized exploration.

To provide anatomic context, we modeled the four chambers, as well as the aorta and 

pulmonary arteries attached to the heart as subdivision surfaces, and segmented them 

automatically from CT angiography images. To model coronary arteries, we first detected 

the centerline automatically from the CT angiography images. The lumen and vessel wall 

were modeled by sweeping through a series of two concentric cross-sectional contours and 

each cross-sectional contour was represented by a loop of radial points with distances from 

the centroid on the centerline. The lumen and vessel wall were segmented semi-

automatically with the guidance of the centerline.

Using the models, the heart was visualized in four chambers, with the thickness of the LV 

wall delineated by inner, mid, and outer contours. The LV was further flattened on the 2D 

and 3D BEP for rendering of perfusion data. Several geometric and imaging characteristics 

were displayed on the coronary artery model, allowing for the assessment of coronary 

stenosis and atherosclerosis plaque in 3D. We also supported simultaneous rendering of the 

heart and the coronary arteries in both 2D and 3D for the purpose of evaluating the 

relationship of correlative abnormalities between them. Although simultaneous rendering of 

the heart and coronary arteries is not novel, it should be noted that our primary goal is to 

allow for such integration to be obtained through the use of a single modality only.

To characterize heart function from 4D (3D and time) CT images, our framework allows for 

visualizing the motion of chamber surface models. After segmenting one of the phases using 
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the four-chamber model, a spatiotemporal model was constructed by propagating model 

boundaries to the other phases using an image registration algorithm. In addition to standard 

measurements of ejection fraction and cardiac output, the strain of the myocardial tissues 

were computed using a selected reference phase and displayed with overlays on deformed 

models.

In addition, our framework also allows for the quantification and visualization of perfusion 

information from standard coronary CT angiography scans as an indicator for myocardial 

blood flow. Based on the LV segmentation, we divided the LV myocardium using the AHA 

17-segment model. The myocardial perfusion was computed in each segment as the 

normalized perfusion intensity and transmural perfusion ratio. The perfusion was displayed 

in both 3D surface models and 2D BEPs, and both were overlaid with the coronary 

geometry, intended for the association of a perfusion defect with possibly causative coronary 

artery stenoses.

Finally, our framework allows for visualizing the patient-specific simulation of coronary 

hemodynamics by applying CFD to CT angiography images. The simulated coronary blood 

velocity, and pressure, as well as shear stress and total traction forces on the vessel wall was 

displayed with both the anatomic context of segmented heart models and the physiologic 

context of myocardial perfusion.

For intended use, our framework is directed at cardiologists or radiologists, whose primary 

tasks are to diagnose ischemic heart disease from CT imaging. In their current work flow, 

the diagnosis is mainly performed by unassisted manual identification of coronary artery 

stenosis on multiplanar reformatted or curved planar reformatted images with optionally 

maximum- or minimum- intensity projections. The goal of our framework is to provide 

computer-aided diagnosis with automated modeling and integrated visualization for 

anatomic (i.e., heart and coronary arteries), functional (i.e., cardiac motion), and physiologic 

information (i.e., myocardial perfusion and coronary hemodynamics) that is clinically 

relevant, which may extend and improve their current work flow over unassisted procedures.

4 Heart and Coronary Artery Modeling

Generation of patient-specific models from the imaging data is a prerequisite for the entire 

visualization pipeline. We introduce the representation of our heart and coronary artery 

models, which supports both interactive editing and automated modeling.

4.1 Heart Model

Linear triangle meshes have been predominantly used in heart modeling [29, 30]. Although 

they are effective to delineate chamber boundaries obtained by segmentation algorithms, a 

large number of triangles are required to achieve a satisfactory level of smoothness for 

visualization. In addition, it is difficult to edit a surface comprised of dense triangles because 

the problem of nodal distortion and self-intersection may easily arise. Furthermore, both the 

endocardial (inner) and epicardial (outer) LV surfaces should be modeled in order to 

measure the thickness and quantify the myocardial perfusion within the LV wall from CT. 
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The common choice to use a separate mesh for each surface is a redundant representation 

and cannot ensure that the endocardial mesh is always enclosed by the epicardial mesh.

We propose to model the boundaries of the heart chambers and attached large vessels by 

subdivision surfaces using fewer control vertices, whereby the chamber wall is explicitly 

represented by the thicknesses associated with every vertex, as displayed in Fig. 1(a). More 

specifically, a loop subdivision scheme [42] is employed to model the mid-surface of a thick 

wall. Thickness of the wall is defined by interpolating the thickness using the same 

subdivision weights incorporated by the vertex coordinate calculation for the mid-surface. 

The inner and outer surfaces are implicitly defined by warping the mid-surface to half 

thickness inwards and outwards along the normal direction. The thickness is set to zero 

when it cannot be detected in the imaging data and when the 3 surfaces coincide. Compared 

to previous models based on dense triangular meshes, our heart model has three unique 

features: (1) smooth: The surface is C2 continuous everywhere except C1 continuous at a 

few extraordinary vertices; (2) concise: the inner and outer surfaces are dependently 

modeled as warped from mid-surfaces; (3) ease of interaction: The shape of both surfaces 

can be edited by moving any vertex in the base mesh of subdivision surfaces or modifying 

the thickness associated with each vertex. It should be noted that Loop subdivision is an 

approximating scheme (i.e., the vertices of the base mesh are generally not on the surface it 

defines). Alternative interpolating schemes (e.g., Butterfly [43]), may be used, of which the 

smoothness becomes C1 continuous. It is noted that certain cardiac structures (e.g., valves) 

are not modeled in our approach, but can be extended if necessary.

Automated delineation of heart chambers and attached vessels are achieved by image 

segmentation based on supervised machine learning (e.g., Fig. 1[b]), developed and 

evaluated in our previous work [44]. Briefly, a classifier is trained using annotated data to 

automatically determine the optimal location and thickness associated with every vertex of 

the heart model. The heart model is first initialized by transforming a template model using 

key anatomic landmarks detected automatically. The classifier then searches the best in all 

possible modifications to the location and thickness in the normal direction for each vertex. 

After being standardized by a statistical model, the modifications are applied to the 

initialized model.

4.2 Coronary Artery Model

Centerlines are widely used to represent the path and connectivity of blood vessels including 

coronary arteries [45]. In order to characterize the geometry of the lumen boundary, 

diameters or cross sectional areas are combined with centerlines for the detection of whether 

any narrowing or stenosis is present. On the other hand, unstructured meshes (e.g., Fig. 2[a]) 

are also used to model vessel surfaces, especially for detailed modeling of vascular shape 

and for generating the fluid domain for computer simulations. Both approaches have 

limitations considering the tubular and complex shape of blood vessels. Centerlines with 

diameter information are inadequate to model vessels with asymmetric or noncircular cross 

sections. Although unstructured meshes are excellent for representation of complex surface 

details, it is challenging to handle queries for global topology and connectivity.
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By combining both representations, we propose to model coronary arteries by linking 

centerlines with structured surface meshes, as shown in Fig. 2(b). Our hybrid approach is not 

only capable of capturing complex vascular geometry with asymmetric or noncircular cross 

sections but is also able to support queries for each individual vessel and the connecting 

branches. By resampling a given centerline (twice of the CT spatial resolution), a list of 

uniformly distributed nodes is generated as centerline nodes, c1,···, cl, and a smoother 

centerline is obtained by finding a spline curve interpolating them. We define a local 

coordinate frame [t,u,v] at each node c using a rotation minimization technique, where t is 

along the tangent direction of the centerline and [u,v] spans a 2D plane on the cross-section. 

The lumen surface is modeled as a structured mesh by sweeping through the contours on the 

2D planes. Each contour is implicitly defined using a list of lumen distances, d1,···dk, from c 
to the intersections on the lumen surface along k radial vectors sampled uniformly on the 

circumference. The diameter of a lumen contour is computed as the average of the lumen 

distances. Note the diameter is only longitudinally-varying, whereas lumen distances are 

both longitudinally-varying and circumferentially-varying. Besides the lumen, the outer wall 

of the coronary arteries may be defined similarly using a list of wall thicknesses, w1,···wk by 

extending the radial vectors and intersecting with the outer wall. To make the surfaces of the 

lumen and outer wall smooth, two types of interpolation-based refinements are used. The 

first is in the longitudinal direction by refining the centerline nodes and calculating 

corresponding lumen distances and wall thicknesses for the new nodes. The second is in the 

circumferential direction by refining the lumen distances and wall thicknesses.

The centerline is detected automatically by thinning and tracing in the enhanced image by 

modified vesselness filtering [46, 47]. If the detected centerline misses any branch or 

severely diseased vessel, the user can add new vessel segments to the centerline by manually 

selecting distal ends and automatically tracing to the detected centerline using the Dijkstra 

algorithm [48]. Our coronary artery model is suited for both interactive editing and 

automated modeling. To edit the model, the user may simply move any centerline node or 

drag the lumen and wall contours (Fig. 3) by modifying the lumen distances for lumen 

segmentation or wall thicknesses for wall (and plaque) segmentation. In the latter case, the 

centerline node should be re-centered as it may deviate from the true center of the lumen. 

Similar to the heart model, we have trained a classifier to generate a coronary model 

automatically. Briefly, the classifier searches for the optimal lumen distances and wall 

thicknesses (see Fig. 2[c]). As in the interactive editing, the centerline node should be re-

centered after updating the lumen distances and wall thicknesses. If the centerline 

considerably deviates from the true lumen center, the steps of updating and recentering 

should iterate a few times until convergence is achieved. For vessels with complex patterns 

of plaques or significant levels of noise when the automated method generates unsatisfactory 

segmentation, the user can further revise the model using interactive editing. A detailed 

evaluation for the automated modeling of the coronary lumen and wall is currently under 

peer review with another journal.
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5 Visualization of the Heart and Coronary Artery Anatomy

Given the representation of our heart and coronary artery models, we introduce the 

techniques to visualize the heart and coronary artery anatomy from CT imaging both 

independently and simultaneously.

5.1 Heart Visualization

With accurate segmentation, the heart model can be used to examine the size and shape of 

cardiac structures using 3D surface rendering. Thanks to the labeling of different structures, 

it allows for hiding, making transparent, or applying different colors to certain structures 

(see Fig. 1[a]). The model is also used to generate contours, which delineate the boundaries 

of chambers and the attached large vessels on multiplanar reformatted images with standard 

short-axis, two-chamber long-axis, and four-chamber long-axis views (see Fig. 1[b]). The 

left ventricle is the most muscular chamber. To distinguish the LV endocardium and 

epicardium, three contours are used to delineate the endocardial, mid-myocardial, and 

epicardial borders. To this end, the endocardium and epicardium can be recognized by the 

region between endocardial and mid-myocardial borders, and between epicardial and mid-

myocardial borders, respectively (see Fig. 1 [b]).

Using the LV segmentation, CT intensity information (as measured in Hounsfield units) 

within the LV region can be directly displayed by 3D volume (Fig. 4[a]) or surface rendering 

(Fig. 4[d]). Our framework also supports unfolding the 3D LV wall into a 2D flattened disk. 

The previous approaches to use cylindrical mapping and flat cutting of the 3D surfaces are 

unable to completely cover either the most basal region where the boundary is not flat, or the 

apical region where the surface becomes too flat to cut through [23]. In this work, we 

develop a new parameterization technique to flatten our heart model based on subdivision 

surfaces. We first manually assign unique u,v coordinates (along longitudinal and 

circumferential directions) to every control vertices in the base mesh. The coordinates for 

other newly generated vertices in the subdivision process are computed by a linear 

combination of the assigned u,v coordinates using the same weights to compute their 3D 

spatial coordinates. The mapping between the 3D coordinates to 2D u,v coordinates unfolds 

the 3D LV wall into a 2D disk. The LV unfolding allows for the construction of either 3D 

BEPs and volumetric rendering of the thick slab of image intensities on the polar map. The 

height of the slab may be reformatted to have a uniform (Fig. 4[b]) or absolute myocardial 

thickness (Fig. 4[c]). It also supports aggregating the image intensities to generate 2D BEP 

by averaging through the thickness as shown, for example, in Fig. 4 (e) and (f).

5.2 Coronary Artery Visualization

The coronary model is used to directly visualize coronary arteries. As shown in Fig. 5, the 

model supports rendering the 3D geometry of coronary arteries using different color coding: 

1) circular cross-sections with diameter, colored by diameter; 2) noncircular cross-sections 

with lumen distance, colored by lumen distance; and 3) noncircular cross-sections overlaid 

with a transparent vessel wall, colored by wall thickness. The model also supports rendering 

properties related to image intensities on the 3D geometry. One example application is to 

reveal the image intensities within the lumen area, as an indication of transluminal 
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attenuation gradient [49], which is defined as the attenuation of luminal contrast following 

the course of the artery and has been shown to be associated with stenosis severity. The 

average of image intensities in every cross-section within the lumen area is computed and 

shown in Fig. 6(b), from which the trend of attenuation manifested as the average intensity 

in the distal small vessels is lower than that in the proximal large vessels. Another example 

is to detect and distinguish calcified and non-calcified plaques in the vessel wall. The 

average of intensities in each radial direction within the lumen thickness is computed. 

Rendered on the 3D coronary geometry in Fig. 6(c), the spatial distribution of image 

intensities may provide visual cues in the localization and discrimination of plaque types.

Curved reformatting is the standard way to visualize the morphology of tortuous coronary 

arteries [50]. Upon selection of a particular vessel segment, our coronary model supports 

rendering the borders of the lumen and vessel wall as two separate curves in both 

straightened and cross-sectional views. To help assess plaque burden (plaque extent and 

volume) and identify possible vulnerable plaques (i.e., unstable plaques, which are prone to 

produce major cardiac events) in the vessel wall, the cross-sections are classified as diseased 

if wall thickness is over 1/5 of the diameter [51]. In all diseased cross-sections, the vessel 

walls are further divided to be composed of necrotic core, fibrous fat, fibrosis, and 

calcification using predefined thresholds of <30, 30–130, 131–350, and >350 CT Hounsfield 

units [52], respectively, and assigned to different colors: yellow, orange, red, and white, 

accordingly (Fig. 7[a]). Considering these recommended thresholds may not be ideal for all 

imaging parameters [53], the user is allowed to overwrite them as necessary. We also 

provide plots of geometric and image intensity variations along the coronary centerline on 

the straightened views of the curved reformatting. One example in Fig. 7(a) shows the 

tapering of the lumen area, while the other example in Fig. 7(b) shows the mean intensity 

over cross-sections, as commonly known as the transluminal attenuation gradient [49]. 

While curved reformatting simplifies examination of the lumen and vessel wall by 

unraveling coronary arteries in 2D, their appearance in 3D is missing. Therefore, we provide 

an alternative means to visualize the coronary arteries by directly reformatting the image 

intensities in the neighborhood onto a 3D curved surface along the centerline, which is 

referred to as 3D curved reformatting as illustrated in Fig. 7(c). Synchronized with 2D 

curved formatting, the curved surface is scrolled around the centerline in different angles. 

The border curves and color-coded plaque composition are rendered on the curved surface.

5.3 Simultaneous Visualization of the Heart and Coronary Arteries

To illustrate the anatomic and functional relationship between the heart muscle and coronary 

arteries, we combine the aforementioned techniques and provide two simultaneous 

visualization modes. They are intended for conveying the complete picture of cardiac 

anatomy and physiology in a comprehensive manner.

In 3D mode, the model of coronary arteries is overlaid on the surface of the four-chamber 

heart model (Fig. 8[a]) or LV model alone (Fig. 8[b] and [c]). The overlay permits the 

evaluation of spatial and geometric features for coronary arteries with reference to the 

myocardium (e.g., unique anatomy and distribution), the presence and location of focal or 

diffuse disease in any coronary artery, and the coronary dominance, or the correlation of 
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coronary and myocardial diseases. In particular, the myocardium may be divided into three 

regions according to blood flow supply from the vessel segments belonging to left anterior 

descending (LAD), left circumflex (LCX), or right coronary (RCA) arteries by projecting 

the centerlines on the myocardial surface and partitioning the surface by Voronoi diagram 

using centerline nodes as seeds (Fig. 8[d] and [e]). As a first order approximation, our 

assumption of using a Voronoi diagram is that each artery subtends the closest regional 

myocardial bed.

In 2D mode, the coronary arteries are displayed on top of BEP. Given the projected 

centerlines on the myocardial surface, all centerline nodes obtain u,v coordinates from the 

heart model and are mapped to the corresponding positions in BEP. In this process, the 

properties associated with the coronary models (e.g., diameters), are maintained in order to 

reconstruct the 2D coronary model flattened on the BEP. Similar to the 3D mode, many 

combinations of color-coded properties are possible. One example is to display the lumen 

distances on the 2D coronary model and the myocardial thickness on the BEP to identify the 

potential cause of myocardial wall thinning by high-grade stenosis.

6 Visualization of Heart Function

Much information of heart function can be inferred from myocardial motion. Several 

algorithms proposed [30, 54, 55] have been successfully applied to construct spatiotemporal 

heart models and extract global function parameters (e.g., stroke volume, ejection fraction) 

from 4D CT imaging data. However, the approach to how we should visualize such complex 

motion has received less attention. The most common way in clinical practice is to 

qualitatively animate the 2D border contours or 3D surface models with multiplanar 

reformatted image slices, which does not quantify regional wall motion and thickening of 

the myocardium. However, it has been shown that the complex and fast changes in regional 

myocardial deformation cannot be reliably assessed qualitatively and visually [56].

The quantitative measurement of regional deformation and motion is an alternative, as it was 

confirmed that the segmental deformation is closely linked to contractility for normal 

myocardium, and the regional changes in deformation can be induced by ischemia [57]. 

Using our heart model and 4D image registration, we propose a new method to compute and 

visualize quantitative measures of local deformation, particularly strain. Recall that our heart 

model is represented with a mid-surface and implicitly defined thickness. Inspired by shell 

theory in mechanics [58, 59], kinematic quantities (e.g., displacement) and strain are well 

defined without resort to the full 3D continuum mechanics. The geometry in one frame of 

the 4D data is selected as the reference configuration and those of all other frames are 

treated as deformed configurations. In the reference frame, the position vector of a point in 

the shell is:

(1)

where ξ1 and ξ2 are local parameterizations of the mid-surface in the reference 

configuration. ζ ∈ [−1,1] is a parameter defining the relative deviation from the center point 
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Ψ on the mid-surface along the thickness H. G is the director vector, which is normal to the 

mid-surface and ||G|| = 1. From Eq. (1), a local curvilinear coordinate system is defined by 

the base vectors as:

(2)

The position vector in a deformed frame is:

(3)

where the variables are defined similarly as in the reference configuration, with the 

exception that lower cases reflect the deformed configuration. Notice g will generally not be 

normal to the mid-surface, although ||g|| = 1. The base vectors is then:

(4)

The Green–Lagrange strain can be then computed as:

(5)

With respect to the global Cartesian coordinate system with orthogonal basis vectors, ê1, ê2 

and ê3 = G, satisfying ê1 ⊥ ê2, ê1 × ê2 = ê3 the strain Êij can be computed by rotating gi and 

Gj using the transformation matrix, whose columns are the coordinates of the curvilinear 

base vectors expressed in the Cartesian coordinate system. In Fig. 9, Êij are computed from a 

4D CT dataset, which consists of 10 frames. The strain tensors are shown as ellipsoids of 

semi-axis lengths scaled by the eigenvalues and oriented by the eigenvectors. The ellipsoids 

are color-coded by the max eigenvalues. It should be noted that the number of frames 

represents the typical temporal resolution of CT. Under this frame rate, myocardial motion is 

more reliable in diastolic phases than in the systolic phases because there are higher noises 

and motion artifacts in the latter.

7 Visualization of Myocardial Perfusion

Beyond evaluation of cardiac anatomy and function, CT imaging has recently been 

demonstrated as a promising tool to provide valuable physiologic information to assess 

myocardial blood flow or perfusion [60–62]. Typical CT perfusion imaging involves both 

resting and induced stress states [63]. Surprisingly, we have discovered that even perfusion 

measurements using CT attenuation from standard acquired coronary CTA images has 

reasonable ability to predict severe coronary stenosis as confirmed by invasive angiography 
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[44]. Therefore, CT holds great promise to become a “one-stop-shop” modality to allow for 

visualization of myocardial perfusion, cardiac function, and coronary anatomy, without the 

need for additional imaging sessions or medications. It also enables a two-way confirmative 

diagnosis of cardiac ischemia by identifying which coronary stenosis causes a particular 

perfusion defect or motion abnormality, as well as checking whether a coronary stenosis 

leads to any perfusion defect or motion abnormality.

Using the close relationship between CT attenuation and concentration of contrast agents, 

our heart model and LV unfolding technique allow for computing the myocardial perfusion 

as well as displaying them using a color-coded map in both 3D surface view and 2D BEP 

(Fig. 10). The visualization of myocardial perfusion is combined with the ability to 

simultaneously visualize color-coded coronary luminal geometry and vessel wall 

composition. One advantage of our framework is that all data used for visualization are 

extracted directly from CT so that no fusion with other modality is necessary. In addition, 

because our framework is currently targeted for extracting perfusion information from 

standard acquired coronary CTA, registration between CTA with other CT perfusion images 

are not necessary. Although rendering of color-coded perfusion on 3D surface and 2D BEP 

is useful, there are two limitations that should be emphasized. First, it only allows for 

qualitative analysis, as CT attenuation is an indirect and relative measure of perfusion. 

Second, it may mislead diagnosis because absolute perfusion inherently varies among 

territories of the myocardium, particularly when considering the differences in metabolic 

demand and disease states. We have proposed a probabilistic approach to compute the 

likelihood of perfusion within a myocardial segment being deficient, by comparing it with 

the value corresponding to the same segment in a database of normal subjects [44]. Note that 

we performed a segment-by-segment comparison instead of using a global cutoff as we, 

along with others, previously observed a large variation between the segments in healthy 

individuals [44, 65]. Mathematically, the likelihood is defined as the proportion of subjects 

who have higher perfusion in the same segment. We plot the computed likelihoods of all 17 

segments in 2D BEP and report the perfusion value and its location in the distribution of 

normal perfusion upon a particular segment that has been selected.

8 Visualization of Simulated Coronary Hemodynamics

Computer simulations by applying CFD to CT angiography images have proven to be 

valuable for characterizing realistic hemodynamics of 3D patient-specific coronary vascular 

beds [66]. From simulation, the user can not only obtain blood pressure and velocity as 

primary solution variables, but also can derive other useful hemodynamic factors (e.g., 

stresses). It fills the gap of lacking vessel-specific physiologic assessment in currently 

available noninvasive imaging techniques. Due to immense simulation data generated by 

computer simulations, effective visual exploration is important to obtain conceivable insights 

from the simulated coronary hemodynamics. In order to take full advantage of computer 

simulations in the diagnosis and potential risk prediction of coronary artery disease, it is also 

critical to target the visualization tasks and contents into relevant clinical applications. In 

this paper, we consider three scenarios: (1) assessment of the physiologic significance of 

coronary stenosis by combing pressure-derived fractional flow reserve and image-based 

myocardial perfusion; (2) evaluation of the blood flow patterns in the vicinity of coronary 
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stenoses; and (3) quantification of the shear stress and total traction applied on the wall by 

the blood flow.

8.1 Simultaneous Visualization of Fractional Flow Reserve and Myocardial Perfusion

Fractional flow reserve (FFR) is recognized as a gold standard to diagnose myocardial 

ischemia [67]. It is a physiologic measure and calculated as the pressure distal to a lesion in 

the coronary artery, divided by the aortic pressure. Although FFR is typically measured 

invasively by inserting pressure sensors in the target artery, it can be derived from computer 

simulations noninvasively and computed anywhere in the coronary artery [13]. Our 

framework allows for the rendering of color-coded FFR on the 3D surface model. Compared 

to anatomic evaluation of coronary luminal geometry, the goal is to enable the identification 

of focal flow-limiting lesions from the FFR color map, as typically manifested as noticeable 

pressure drops. For more challenging diffuse diseases, it is also feasible to assess the integral 

effect of several lesions in series. While the FFR map alone is useful to identify 

physiologically significant lesions, the diagnosis would be more specific and meaningful by 

knowing the affected myocardial region subtended by a particular coronary lesion, as well as 

examining whether any perfusion abnormality exists in that region. We therefore support 

simultaneous evaluation of hemodynamics in the coronary arteries and the myocardium by 

overlaying the FFR map on top of the perfusion map, as shown in Fig. 11(a). Additional 

information obtained from the simulation, including the speed of blood flow and the 

magnitude of the shear stress on the vessel wall, are also displayed.

8.2 Display of Blood Flow Patterns

Adverse blood flow patterns have been attributed to play an important role in coronary 

atherosclerosis [68]. By default, the framework provides a global overview of 

hemodynamics in the whole coronary tree with the four-chamber heart model, shown in Fig. 

12(a). To avoid visual clutter, focus is directed for closer examination to a particular circular 

region of interest by limiting the rendering of the flow patterns only within the region and 

blending it with the FFR map in the background. From the simulated velocities, three 

techniques of rendering flow patterns are supported (see Fig. 12[b]), and each is intended to 

convey one facet of flow complexity. Choice of a particular technique should depend on 

whether and how flow direction and magnitude are visualized.

1. Glyph vectors (Fig. 12 [b2]): In the focus area, the glyph vectors are displayed at 

uniformly sampled vertices of the computer simulated mesh as 3D arrows, which 

orient in the directions of velocities and have scales and color codes reflecting 

the flow speed. One advantage of using glyphs is due to its precise depiction of 

both the magnitude and direction of the flow field. However, visual clutters and 

occlusions may arise to retain sufficient sampling density and volume coverage.

2. Volume rendering (Fig. 12 [b3]): The field of flow speed is also rendered as a 3D 

volume with a transfer function designed to map the range of the flow speed 

using a default rainbow and transparent-to-opaque color table. The user may 

choose other color tables. Despite the lack of direction information, volume 

rendering minimizes visual clutter and occlusions, and provides a closer 

perception of natural flow phenomenon.
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3. Streamlines (Fig. 12 [b4]): Seeded with the vertices on a cutting plane close to 

the ostium, the flow trajectories are depicted with widely-used streamline curves, 

which are color-coded with the flow speed. As streamlines convey both the 

direction and magnitude of a fluid element traveling in the flow field, complex 

flow features can be directly visualized, such as the flow separation and reversal.

8.3 Visualization of Shear Stress and Traction on the Vessel Wall

Hemodynamic forces on the wall of coronary arteries have been shown to be associated with 

plaque formation and rupture [11]. The simulated blood flow allows for calculation and 

visualization of patient-specific shear stress and total traction as biomechanical factors of 

plaque burden. The common method to visualize shear stress is to render a color-coded map 

of the magnitude on the surface of the vessel wall (e.g., Fig. 11[c]). Although this approach 

is effective towards facilitating the illustration of the complex non-uniform distribution of 

shear stress, three drawbacks are observed: (1) it is difficult to assess the whole distribution 

of shear stress patterns on the vessel wall due to occlusion; (2) contextual imaging features 

of wall composition are missing; and (3) the relative scale between total traction and shear 

stress applied on the wall is not clear.

We propose a new visualization method to overcome these limitations. Using our coronary 

model, a quadrilateral grid span in circumferential and longitudinal directions (Fig. 13[a]) is 

constructed along the centerline of an artery segment, which serves as the reference for 

visualization of the shear stress map and can also be used to flatten the map on a 2D plane 

(Fig. 13[c]). Then, a thick tubular shell structure is constructed by considering the thickness 

of the vessel wall (Fig. 13[b]). Two end caps of the shell are created at the beginning and end 

points on the centerline, which are initially specified by the user. The inner layer of the shell 

is rendered with the color-coded distribution of the magnitude of shear stress or total 

traction. The outer layer and end caps are rendered with the image intensities. Two types of 

user interactions are supported in order to be able to visualize the wall composition and 

shear stress anywhere in the shell structure: (1) the end caps can slide by specifying the 

beginning and end points of the centerline; and (2) a fan-shaped partial shell may be created 

to display the longitudinal distribution of image intensities by limiting the start and end 

angles in the circumference. To show the direction of traction on the vessel wall, glyph 

vectors are displayed with a scale according to the magnitude (Fig. 13[d]). In order to 

eliminate the occlusions by the shell structure, glyph arrows are drawn with the ends 

pointing to the inner layer and their bodies placed inside the lumen area. The glyph arrows 

are color-coded based on the magnitude of traction. Finally, the lumen area may be filled 

with the streamlines to show the blood flow pattern (Fig. 13[e]).

9 Implementation and Evaluation

All described visualization techniques of our framework were implemented in C++, 

supported by OpenGL, GLSL, and the Visualization Toolkit (VTK) and can be performed at 

interactive rates on a mid-class desktop workstation (Intel Xeon E5-2620 2.0GHz, 32GB 

RAM, Nvidia Quadro K2000). The preprocessing time for building the four-chamber heart 

models, coronary artery models, and coronary blood flow simulation were 10–30 seconds, 

Xiong et al. Page 15

IEEE Trans Vis Comput Graph. Author manuscript; available in PMC 2018 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



30–75 seconds, and 10–30 minutes, respectively, depending on the resolution of the dataset. 

The data tested in this paper were acquired using standard coronary CTA protocol on either 

Siemens Definition or GE Discovery scanners. Image volumes may contain 153–357 slices 

of identically 512×512 pixels with isotropic in-slice resolution ranging from 0.28 to 0.49 

mm and slice thickness from 0.30 to 0.63 mm.

Two cardiologists, who were specialized in cardiovascular imaging, provided expert 

feedback after using our system. They viewed our approach as potentially useful to 

supplement their currently available techniques, but also commented on some drawbacks. 

Below, we summarize their feedback in terms of the advantages, along with their 

suggestions for improvement.

9.1 Advantages

One advantage highly valued by the experts was the novelty of support for integrated 

visualization of both CT imaging and simulation data (e.g., displaying the CT myocardial 

perfusion with simulated fractional flow reserve), and the imaging characteristics of plaque 

with the simulated shear stress applied on the plaque. They noted that the feature of relating 

the severity of coronary stenosis causing perfusion abnormality as well as identification of 

biomechanically vulnerable plaques possibly resulting in acute myocardial infarction is of 

great importance for the diagnosis of coronary artery disease. They did anticipate 

incremental benefits led by the integration of imaging and simulation, though which, should 

be carefully evaluated through further clinical studies.

The experts appreciated the ability to visualize the four-chamber heart with labeled AHA 17 

segments, overlaid by the coronary anatomy in 3D, and agreed it is more straightforward to 

determine the coronary dominance in 3D view than on the 2D slice, especially for medical 

students or fellows. By extending the standard straightened view, they noted that direct curve 

reformatting of coronary arteries is useful to evaluate the lumen and the vessel wall without 

loss of the curved shape of the blood vessels.

One expert also showed interest in the strain computed from 4D CT data. Although it was 

not straightforward to understand the meaning of the color ellipsoids at first glance, the 

experts indicated that strain may serve as a new metric based on mechanical principles to 

quantify the ventricular dyssynchrony in patient selection for cardiac resynchronization 

therapy [69].

Finally, because our visualizations represented a new and intuitive way of illustrating cardiac 

anatomy and function, the experts actually started using these images in their publications 

and presentations. One example can be found elsewhere [6].

9.2 Suggestions for Improvement

A drawback of our method was the need for manual correction when automatic 

segmentation failed to generate satisfactory results. Interestingly, the experts did not claim 

for a fully automated segmentation approach but generally tolerate about 20 minutes of 

processing time. Instead, they preferred methods allowing them to interact and apply their 

medical expertise to adapt the segmentation. Our future work will focus on improving the 
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segmentation robustness and accuracy through machine learning, as well as developing new 

intuitive editing tools, which will facilitate modifying the segmented models of the heart and 

coronary arteries.

One expert remarked that the thick volume rendering and 2D surface rendering of CT 

myocardial perfusion data would be more helpful if the left ventricle could be unfolded 

along the long axis and used to depict the perfusion map on a flattened rectangle.

One expert was also concerned that the surface rendering of the coronary lumen and wall 

image intensities was confusing, as it does not reflect the conventional way. Our original 

goal was to display transluminal attenuation gradients and vulnerable plaques without 

resorting to the use of cutting planes. We plan to integrate this feature with the rendering of 

lumen and wall features with image intensities depicted on the fan-shaped shell.

In clinical routine and medical research, quantitative analysis is often preferred to qualitative 

evaluation, although the scope of our current study was focused on the development of 

visualization techniques. Therefore, we conveyed most quantitative information via color-

coding. One expert suggested that it would be even more useful if visualization was linked 

closely with quantitative plots of parameters (e.g., flow rate, or ejection fractions) when 

possible.

Finally, both experts were interested in how different CT acquisition parameters affected the 

results of our integrated visualization tools. For example, the variations in CT Hounsfield 

units at different tube voltage, type of iterative reconstructions, intravenous contrast agent 

density, and radiation dose would have an impact on the classification of plaque types and 

interpretation of transluminal attenuation gradient using predefined thresholds.

10 Discussion and Conclusion

We have presented a new visualization framework for computer-aided diagnosis of heart 

framework. It consisted of modeling and visualization techniques to allow for a 

comprehensive evaluation of anatomy and physiology for ischemic heart disease from CT 

imaging and CFD simulation.

The four heart chambers, as well as the attached aorta and pulmonary arteries were modeled 

as subdivision surfaces and automatically segmented from CT images. The lumen and vessel 

wall of the coronary arteries were implicitly modeled by lumen distances and wall 

thicknesses, which were automatically determined. The heart function or motion was tracked 

by deforming the four-chamber heart model using image registration of 4D CT images. The 

Green-Lagrange strain tensor of the myocardial tissue in each phase of the 4D motion model 

was calculated by setting a selected phase as the reference. In addition, our framework also 

supported the quantification and visualization of myocardial perfusion information from 

standard coronary CT angiography. The LV was divided according to AHA 17-segment 

model and the perfusion was computed in each segment and displayed in both 3D surface 

models and 2D BEPs, which were overlaid with the coronary geometry. Finally, our 

framework allowed for visualizing the patient-specific coronary hemodynamics. The 

simulated blood velocity, pressure, as well as shear stress and total traction forces on the 
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vessel wall were displayed with both the anatomic context of segmented heart models and 

the physiologic context of myocardial perfusion.

Although many types of visualization were provided in our framework, we do not expect all 

of them to be used in the clinical setting. The user may select the most relevant set of 

features for a specific disease, therefore saving time to prepare data (e.g., computer 

simulations) while also grasping visualization information. Another possibility moving 

forward may be to build statistical models by summarizing conditions obtained from all 

sources for computer-aided diagnosis. In addition, our current framework does not support 

the close integrated visualization of myocardial deformation with coronary anatomy and 

hemodynamics. We believe adding this feature may help to identify the abnormal motion 

caused by a coronary stenosis, or to elucidate the dynamic environment in which a plaque is 

experienced.

We believe certain features can support MRI data, especially when visualizing perfusion and 

functional data. Because imaging coronary anatomy by MRI is under active development 

and has not reached the reliability and spatial resolution offered by CT [70], segmentation 

and computer simulations using MRI data is currently limited.

Overall, the independent cardiologists provided us with positive feedback, and we intend to 

address their recommendations for improvement in our future work. Due to the scope of the 

current research, however, clinical evaluation is currently limited. Nevertheless, a more 

thorough case study with experts from multiple centers will be performed in the near future 

to investigate whether the proposed features of visualization actually improve diagnosis of 

ischemic heart disease. Finally, we aim to expand our framework towards a comprehensive 

and “one-stop shop” for visualizing cardiac anatomy and physiology from CT imaging and 

computer simulation.
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Fig. 1. 
Heart modeling and segmentation. (a) Heart surfaces including four chambers and attached 

large vessels are modeled by subdivision surfaces, where white dots are control vertices. The 

LV wall is generated by warping the mid-surface using the thickness explicitly defined. (b) 

Segmented heart boundaries shown on the views of four chambers, left two chambers, two 

ventricles and left ventricular outflow tract. Three borders are used to divide the 

endocardium and epicardium for the LV wall.
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Fig. 2. 
Coronary modeling and segmentation. (a) Geometric model of the coronary arteries with an 

unstructured mesh. (b) Geometric modeling of the same arteries by linking the centerlines 

with a structured mesh. The centerline endpoints and bifurcation points (shown in red) are 

connected by centerline edges (shown in blue). (c) Coronary segmentation shown on the 

straightened and cross sectional views.
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Fig. 3. 
Implicit modeling of coronary lumen and wall contours by a list of radial vectors with 

lengths equal to lumen distances d1,···dk and wall thicknesses w1,···wk.
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Fig. 4. 
LV visualization using 3D volume rendering (top row) and 2D surface rendering (bottom 

row). In both cases, the LV is flattened from 3D (a, d) to 2D thick (b, c) or thin (e, f) slices in 

order to display the LV on the polar map. CT perfusion was rendered with uniform and 

absolute thickness in (b) and (c), respectively. The aggregated perfusion and thickness are 

shown in the (e) and (f), respectively. The green arrows point to the perfusion and 

myocardial thickness abnormalities.
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Fig. 5. 
Coronary artery visualization using (a) circular lumen cross-sections color-coded by 

diameter, (b) noncircular lumen cross-sections color-coded by lumen distance, (c) 

noncircular cross-sections and transparent vessel wall color-coded by wall thickness.
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Fig. 6. 
Coronary artery visualization using noncircular lumen cross-sections color-coded by (a) 

lumen distance, (b) lumen image intensity, (c) wall image intensity. Note that lumen distance 

(a) indicates the geometry of the coronary arteries or existence of any coronary stenosis, 

whereas image intensities shown in (b) and (c) indicates the contrast enhancement within the 

lumen and the wall, respectively. The high values of the latter are often caused by the 

calcifications.
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Fig. 7. 
Curved reformatting of coronary arteries. (a) The plot of lumen area versus the distance 

along the centerline (yellow curve) with least squares fitting (red dashed line). Color overlay 

on the vessel wall depicts the composition of different plaque types. (b) The plot of mean 

intensity shows transluminal attenuation gradient [49] from proximal to distal. (c) Direct 

curve reformatting in 3D with surface models and delineated borders of coronary arteries. 

The red arrows in all subfigures point to the calcified and noncalcified plaques in the vessel 

wall.
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Fig. 8. 
Visualization of coronary arteries with (a) four-chamber heart and the 3D left ventricle 

displaying (b) myocardial thickness (c) partitioned myocardial regions by closest distance to 

vessel segments, as well as flattened coronary arteries displaying the same information (d) 

and (e) on the 2D BEP, respectively. In (c), a vessel segment is defined by a vessel branch 

that is between bifurcations or between a bifurcation and an endpoint.
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Fig. 9. 
Visualization of heart motion and deformation on 3D myocardial surface. The Green-

Lagrange strain tensor is calculated for all ten frames from 4D CT data, from which the 

geometry in the first frame is used as the reference configuration. The color-coded max 

eigenvalue of the strain tensor were shown in four sample frames from an animation 

sequence.
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Fig. 10. 
Visualization of CT perfusion on 3D myocardial surface and 2D BEP. The coronary arteries 

with of (a) lumen distances and (b) wall image intensity are overlaid to show the information 

of luminal geometry and vessel wall composition (e.g. calcification). (c) Absolute CT 

Perfusion in the myocardial, endocardial, and epicardial walls, as well as the likelihood of 

segmental perfusion defects by relative ranking in the database of normal subjects are 

displayed. Note that the rainbow color map for displaying myocardial perfusion can be 

replaced by other maps that may be more appropriate [64].
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Fig. 11. 
Visualization of CT myocardial perfusion with simulated (a) fractional flow reserve, (b) the 

speed of blood flow, and (c) the magnitude of shear stress on the vessel wall.
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Fig. 12. 
Display of simulated blood flow patterns. (a) Visualization of FFR within the context of the 

four-chamber heart model; (b) Closer view of FFR (b1) and the complex flow patterns 

across the stenosis (inside the black circle) using glyph vectors (b2), volume rendering (b3), 

and streamlines (b4).
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Fig. 13. 
Visualization of simulated shear stress with the image features on the wall: (a) The 

distribution of shear stress with a quadrilateral grid with circumferential and longitudinal 

directions; (b) Image intensities in the arterial wall on a fan-shaped partial shell by sampling 

in radial directions; (c) The flattening of shear distribution on a 2D plane; (d) the total 

traction of the blood flow on the vessel wall as glyph vectors; (e) The streamlined blood 

flow patterns in the lumen.
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