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Abstract

Background: Transcription Factors (TFs), essential for many cellular processes, generally work coordinately to
induce transcriptional change in response to internal and external signals. Disrupted cooperation between TFs,
leading to dysregulation of target genes, contributes to the pathogenesis of many diseases, including cancer.
Although the aberrant activation of individual TFs and the functional effects have been widely studied, the
perturbation of TF cooperativity in cancer has rarely been explored.

Results: We used TF co-expression as proxy as cooperativity and performed a large-scale study on disrupted TF
cooperation across seven cancer types. While the connectivity of downstream effectors, like metabolic genes and
TF targets, were more or similarly disrupted than/with non-TFs, the cooperativity of TFs (upstream regulators) were
consistently less disturbed in all studied cancer types. Highly coordinated TFs in normal, however, generally lost
that cooperation in cancer. Although different types of cancer shared very few TF pairs with highly disrupted
cooperation, the cooperativity of interferon regulatory factors (IRF) was highly disrupted in six cancer types.
Specifically, the cooperativity of IRF8 was highly perturbed in lung cancer, which was further validated by two
independent lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD) datasets. More interestingly,
the cooperativity of IRF8 was markedly associated with tumor progression and even contributed to the patient

survival independent of tumor stage.

Conclusions: Our findings underscore the far more important role of TF cooperativity in tumorigenesis than
previously appreciated. Disrupted cooperation of TFs provides potential clinical utility as prognostic markers for

predicting the patient survival.
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Background

Transcription factors (TFs) are proteins that bind to
either promoter or enhancer regions of a gene, thereby
regulating the transcription activity of the gene [1, 2].
About 10 % of genes in the human genome encode TFs
and they are essential for many cellular processes [3]. A
high proportion of TFs either acts as oncogenes or
tumor suppressors or regulates the activity of pathways
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related to tumor progression. The deregulation of these
TFs, reshaping the expression of their target genes, leads
to tumor formation, progression, and metastasis [4].
Numerous studies have revealed the functional impact
of aberrant activation of individual TFs on tumor progres-
sion. For example, mutations of BRCAI and BRCA2
cause the genetic instability of the cell and thus confer a
substantial risk of breast and ovarian cancer [5].

Rather than function alone, transcription factors gener-
ally cooperate to control gene expression. Like aberrant
activation of individual TFs, disruption of TF cooperativity
also alters the expression of downstream genes and con-
tributes to disease pathogenesis. Several studies have re-
ported the alteration of TF cooperativity in cancer [6—15].
For example, the association between SNAIL and ZEB1 is
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lost in human colon carcinomas [16]. SNAIL, ZEB, and
basic helix-loop-helix (bHLH) factors ally to mediate the
dynamic silencing of CDH1, and loss of CDHI1 function is
a hallmark of carcinoma cell invasiveness [17, 18]. Three
transcription factors TTF1/NKX2-1, NKX2-8, and PAX9
show pronounced synergy in promoting the proliferation
of immortalized human lung epithelial cells, and the
alteration of their cooperativity contributes to lung
cancer development [19]. Compared with the rapid
accumulation of knowledge on individual TFs, however,
there is only limited research on TF cooperativity and our
understanding of TF cooperativity perturbation in cancer
is lagging far behind.

Large-scale genomics projects, such as The Cancer
Genome Atlas (TCGA), generating various omics data
for thousands of tumors with matched normal samples
[20], have provided a great opportunity to explore the
common and specific disruption of gene co-expression
across multiple cancer types. For example, West et al.
has demonstrated that cancer is characterized by an in-
crease in network entropy, ie., reduced absolute gene
correlations, while cell cycle/proliferation genes are pref-
erentially associated with significant reductions in net-
work entropy [21]. Here we focused on transcription
factors, which are upstream regulators of transcriptome
change that results in phenotypic change. We analyzed
the dysregulated cooperation between TFs across seven
cancer types and compared that with the dysregulation
between non-TFs and other downstream effectors. We
not only identified specific TF pairs highly disrupted in
each individual cancer type but also detected common
TFs whose cooperativity were significantly disturbed
across diverse cancer types. Finally, the disrupted co-
operation of IRF8 in lung cancer was validated by two
independent lung squamous cell carcinoma (LUSC) and
lung adenocarcinoma (LUAD) datasets, and its contri-
bution to tumor progression and patient survival was
further investigated.

Results and discussion
TF cooperativity is less disturbed than non-TF in cancer
We obtained 1991 human TFs in total by combining three
databases, AnimalTFDB [22], TRANSFAC [23], and TFCat
[24] (Methods). We studied seven cancer types and each
cancer type had mRNA expression profiles measured
for both tumor and matched normal samples (Table 1).
TF co-expression has been commonly used to predict
TF cooperativity [25-27]. For instance, Hammonds et al.
used TFs co-expression to suggest their co-association
[25]. Zhou et al. developed a second-order expression
similarity to infer TFs’ cooperativity [27]. Here we used
two lists of known cooperative TFs to study the rela-
tionship between co-expression and cooperativity. One
included interacting TFs with high confidence from
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Table 1 Sample size for each cancer type

CancerType Normal-tumor pair Source
Discovery NSCLC 85 GSE32665
PRAD 58 GSE6919
COADREAD 32 GSE8671
BRCA 61 GSE14999
HNSC 41 TCGA
KIRC 72 TCGA
LIHC 50 TCGA
Validation LUAD 57 TCGA
LUSC 50 TCGA

HitPredict (http://hintdb.hgc.jp/htp/) [28] , and the other
contained TF co-associations based on the non-randomly
distributed TF binding regions from ENCODE [29].
We used Spearman correlation coefficient to measure
the co-expression, which is more robust to outliers
than Pearson correlation. Compared to random TF
pairs, cooperative TFs were more tightly co-expressed
in all the studied cancer types (Wilcoxon Rank Sum test,
p <le-4) (Additional file 1: Figure S1). Among 712 co-
associated TFs in the HepG2 cell line, even higher correla-
tions were observed in the corresponding liver cancer
(LIHC) than general TF associations and random TF pairs
(Additional file 1: Figure S1). These findings demonstrated
that TF co-expression can act as an appropriate proxy for
cooperativity.

There was no general bias for TFs on the measure of
cooperativity compared to other genes. The scatterplot
containing the pair-wise correlation coefficient on the y-
axis and the average expression of genes (log, scale) on
the x-axis generally followed a horizontal line around
zero in all tumor and normal samples (Additional file 2:
Figure S2), suggesting no intensity-dependent bias on
the measure of cooperativity. TFs had comparable con-
centrations with non-TFs in each individual cancer type
and matched normal samples as well (Additional file 3:
Figure S3). In addition, TFs, non-TFs and TF targets
showed similar cooperativity level in all types of matched
normal samples (Additional file 4: Figure S4).

To measure the alteration of cooperation, we used the
absolute correlation change in tumor versus normal
(Methods). Analysis of gene correlation change, i.e.,
differential co-expression analysis, is a more comprehen-
sive technique to the differential expression analysis
[30, 31]. Correlation change between TFs is not only
caused by expression alteration of individual TFs, but
also driven by subtle perturbation in TFs expression
coordination, which both potentially leads to the dynamic
switch of TF partners [32, 33].

Although TF and non-TFs showed comparable co-
operative level, the absolute correlation change between
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TFs was significantly smaller than that between non-TFs
across all studied cancer types (Wilcoxon Rank Sum
test, p < 2.2e-308; difference between the medians (delta)
>0.01) (Fig. 1). Specifically, breast invasive carcinoma
(BRCA) exhibited the largest difference of correlation
change in TFs compared to non-TFs, followed by kidney
renal clear cell carcinoma (KIRC), liver hepatocellular
carcinoma (LIHC), and non-small-cell lung carcinoma
(NSCLC) (Fig. 1). In contrast, two other groups of genes,
metabolic genes and TF target genes, did not show the
consistent smaller correlation changes like what TFs
presented across different cancer types. Instead, these
two groups of genes either showed larger or same cor-
relation change compared to those of non-TFs (Fig. 1).
The fact that only the cooperation between TFs is sig-
nificantly less disturbed than non-TFs in all types of
tumor relative to normal tissues could be explained by
the functional roles of transcription factors rather than
statistical artifacts or other confounding factors. As up-
stream regulators for determining gene expression, the
cooperativity between TFs is considerably constrained
and more robust to disease than that of downstream ef-
fectors, like TF targets or genes in metabolic pathway
[34]. Restricting our analysis on two lists of known co-
operative TFs, however, we didn’t observe the consistent
constrained TF cooperativity across diverse cancer types,
which was possibly due to the low coverage and bias of
existing knowledge [35, 36]. There are only 114 TFs with
predicted associations from ENCODE, which covers
only 57 % of known TFs. Although there are much
more TFs from HitPredict compared to ENCODE, they
have similar number of TF interactions, which suggests
the number of TF interactions of HitPredict is far less
than expected. Moreover, protein-protein interaction
networks are generally associated with multiple types of
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biases, e.g., selection preference (disease proteins) and
technical limitations [35, 36].

Tightly coordinated TFs lost cooperation in cancer

Although the cooperativity between TFs is considerably
constrained during tumorigenesis, some TF pairs signifi-
cantly changed their coordination in cancer. We focused
on TF pairs tightly coordinated in either normal or
tumor samples (top 5 % here). We tracked the cooper-
ation changes of these TF pairs and classified them into
three categories, “Gain”, “Loss” and “Reverse” (Fig. 2a).
TF pairs with significant coordination changes (>2SD)
that only appeared in the highly coordinated list in
tumor but not in normal were defined as “Gain”. Ac-
cordingly, TF pairs with significant coordination changes
(> 2SD) that only presented in the highly coordinated
normal list were defined as “Loss”. TF pairs showing
both in the tumor and normal list but opposite direction
(e.g., positively correlated in tumor but inversely corre-
lated in normal or vice versa) were classified as “Re-
verse”. As expected, there were very few TF pairs
belonging to the “Reverse” category across all studied
cancer types. In most types of cancer, “Loss” is dominant
over “Gain”, especially in BRCA, NSCLC and KIRC
(Fig. 2b). Due to the dominant effect of losing tightly co-
ordinated TF pairs rather than gaining during tumori-
genesis, highly coordinated TF pairs in tumor were less
disturbed than those in normal. In BRCA, the highly co-
operative TFs in tumor were even less altered than other
TFs (Additional file 5: Figure S5). Consistent with previ-
ous studies revealing cancer is globally characterized by
reduced absolute gene correlations [21], our results indi-
cate that tightly coordinated TFs losing their normal
cooperation play a major role in tumorigenesis. That is,
disrupting the normally coordinated TFs affect gene
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Fig. 1 Cooperativity alterations in tumor versus normal. The box plots illustrate the absolute correlation change in tumor relative to normal between
TF pairs (red), non-TF pairs (blue), metabolic genes (steel blue) and TF target genes (light blue) in NSCLC, PRAD, COADREAD, BRCA, HNSC, KIRC, and LIHC
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Fig. 2 The pair-wise TF cooperativity is mainly lost in tumor relative in normal. a The schema of TF cooperation change. TF pairs with significant
coordination changes (>2SD) that only appeared in the highly coordinated list in tumor but not in normal were defined as “Gain”. TF pairs with
significant coordination changes (>2SD) that only presented in the highly coordinated normal list were defined as “Loss”. TF pairs showing both
in the tumor and normal list but opposite direction (e.g., positively correlated in tumor but inversely correlated in normal or vice versa) were
classified as “Reverse”. b Bar plot depicts percentage of Loss, Gain and Reverse in TF cooperativity alteration
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expression of their target genes, leading to tumor initi-
ation and progression.

Highly dyscooperated TFs across diverse cancer types
We ranked the disrupted TF pairs in each type of cancer,
trying to identify the TF pairs whose cooperativity is

commonly disturbed across diverse cancer types. We
found different cancer types shared very few highly dis-
rupted TF pairs. Among the top 3000 TF pairs with the
highest disruption in cooperativity, there were only 5 ~
16 TF pairs shared between two cancer types (Fig. 3a).
Moreover, there were only 5 TF pairs shared by three or
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Fig. 3 Highly disrupted TFs across diverse cancer types. a Heat map of highly disrupted TF pairs shared across different cancer types. Upper
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the top 3000 TF pairs with the highest disruption in cooperativity. ¢ Heat map of common highly disrupted TFs across different cancer types. Red
bars designate that the TF labeled on the left is identified in the cancer type labeled on the top with greatly disturbed cooperativity with other
TFs. Datasets from GSE and TCGA are shaded in different colors. TFs marked with “*" function association with tumor progression
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more cancer types (Fig. 3b). The correlation plots of
these 5 TF pairs and correlation measures in normal and
tumor were given in Additional file 6: Figure S6. Con-
sistent with our previous finding, most of TF pairs lose
cooperation during tumorigenesis, such as CXXC1-
SMAD4 in NSCLC and BRCA. We also observed that
few uncorrelated TFs in normal became co-expressed in
tumor, e.g., HSF1-ZNF7 in BRCA and HNSC (Additional
file 6: Figure S6), indicating abnormal co-expression po-
tentially drive tumorigenesis as well. TAF2 and HSFI
were identified as driver genes of liver carcinoma and
closely linked on chromosome 8q24 [37, 38]. This find-
ing reveals that tumor is quite different from each other
on disrupted TF pairs. Among the top 3000 TF pairs
with the highest disruption in cooperativity in each can-
cer type, less than 50 % of TF pairs were due to the dif-
ferential expression of TF itself except KIRC (62.3 %).
Among the 5 common TF pairs, only the disruption of
TCEB1-ZFP41 in LIHC was caused by the differential
expression of ZFP41 (|log,FC| > 1 & FDR < 0.05).

We aggregated the disrupted cooperation of TF pairs
to each individual TF by calculating the number of signifi-
cantly changed cooperation for this TF (Methods). The
TFs with significant number of broken cooperative rela-
tionship are called “highly dyscooperated” TFs. As a result,
more than 20 highly dyscooperated TFs were identified
for each cancer type. KIRC identified 87 highly dyscooper-
ated TFs, and NSCLC discovered 61, and 44, 42, 34, 28
and 24 were recognized for LIHC, HNSC, COADREAD,
PRAD, and BRCA respectively (Additional file 7:
Table S1). Less than 50 % of these dyscooperated TFs
were differentially expressed in the corresponding cancer
type (JlogoFC| >1 & FDR < 0.05). Compared with the low
overlap of disrupted TF pairs, the dyscooperated TFs were
much more common between different types of cancer,
which either share the same TFs or TFs belonging to the
same family. For example, NSCLC shared 47.5 % of its
highly dyscooperated TFs/TF families with other cancer
types (Fig. 3c). Notably, there were 57 TFs/TF families
common in two or more cancer types (Fig. 3c). These
highly disrupted TF families included well-known genes
related to tumor progression, such as the HOX family, the
ZBTB family, WT1, and so on [39—41]. Most interestingly,
the interferon regulatory factors (IRF) family was detected
in six out of the seven studied cancers. Specifically, IRF8
was identified as one of the most dyscooperated TFs in
NSCLC and COADREAD, IRF6 was detected in PRAD,
IRF5 was found in HNSC and KIRC, and IRF2 was discov-
ered in LIHC (Fig. 3c). IRF family members share a DNA-
binding domain (DBD) and recognize a consensus motif,
5'-AANNGAAA-3" [42]. Previous studies have revealed
the versatile and critical functions performed by the IRF
family transcription factors, including immune response,
cell growth regulation, cell apoptosis, and hematopoietic
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development [43-45]. Moreover, IRF family members
contribute to tumorigenesis and tumor progression. For
example, IRF6 interacts with maspin (mammary scrine
protease inhibitor), which is characterized as a tumor sup-
pressor [46]. The targets of IRF8 are involved in anti-
apoptotic function [47]. Reported as a direct target of p53
[48], IRF5 can also regulate the cell cycle and apoptosis in
a p53-independent way [49, 50]. IRF2 is an oncogenic
gene which plays a positive role in the cell cycle regulation
of the human histone H4 gene FOIO08 [51]. Taken to-
gether, it can be inferred that the dyscooperated IRF family
might be a common mechanism in tumor initiation or
progression.

Functional effect of dyscooperated IRF in tumorigenesis
GO enrichment analysis was performed for the target
genes of IRF transcription factors, which were identified
by motif searching and further filtered by chromatin ac-
cessibility from DNase-seq data in the corresponding
cell lines, to investigate their potential functional roles.
The target genes are enriched in many cancer related
functions such as cell death, response to stress, cell pro-
liferation, and regulation of apoptotic processes. Further-
more, 132 (accounting for 25.3 %) genes are annotated
as cancer census genes in the Cancer Gene Census of
COSMIC [52]. Among them, BRAF is an important gene
associated with various cancers, including colorectal
cancer, malignant melanoma, thyroid carcinoma, non-
small cell lung carcinoma, and adenocarcinoma of lung
[53, 54]; NDRGI acts as a tumor suppressor gene in-
volved in stress responses, cell growth, and differenti-
ation, and its expression may be a prognostic indicator
for several types of cancer [55-57].

We explored the potential cause and functional effect
of dyscooperated IRF family transcription factors in the
six cancers. We first compared the expression abun-
dance of IRF transcription factors in tumor versus nor-
mal to see whether the dyscooperation is caused by
differential expression of the TF itself. We found that
the IRF transcription factor was not significantly differ-
entially expressed in each tumor versus the matched
normal (Fig. 4), which means the dyscooperation of IRF
members was caused by perturbation in expression co-
ordination rather than expression alteration of the IRF
itself. Moreover, the expression abundances of IRF target
genes were more significantly disturbed than non-target
genes (Kolmogorov—Smirnov test, the p-value in NSCLC,
PRAD, COADREAD, HNSC, KIRC and LIHC is 0, 5.66e-4,
1.51e-9, 9.06e-7, 3.67e-10 and 4.35e-6 respectively) (Fig. 5).
To reduce the potential bias introduced by the global effect
of tumorigenesis, we further compared the expression alter-
ation of IRF’s targets and non-targets involved in the stress
response. As a result, the targets involved in stress response
were more likely to be dysregulated than non-targets
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with the same function across all six cancer types
(Additional file 8: Figure S7). These results demonstrated
that disturbance of the IRF cooperativity affects the tran-
scription of downstream target genes. The observation
that the dysregulation of the target genes is mainly caused
by the disrupted TF cooperation rather than differentially
expressed TF itself suggests that the analysis of TF
cooperativity in tumor is more important than previously
recognized. It holds great potential for identifying novel
drivers that could never be discovered by regular differen-
tial expression analysis.

Validation of dyscooperated IRF8 using LUAD and LUSC
datasets

We downloaded two public RNA-seq datasets from
TCGA and performed the same analysis on the disrupted
TF cooperation. One includes 57 LUAD patient tumor
and adjacent normal samples, and the other consists of 50
LUSC tumor and matched normal samples (Table 1).
Consistent with our observation in the discovery cohort,
we found TFs had comparable expression abundances
with non-TFs in both LUAD and LUSC datasets. Highly
coordinated TF pairs dominantly lost cooperativity during
tumorigenesis, and those highly coordinated TF pairs in
tumor were less disturbed than those in normal (Fig. 6a).
We further identified dyscooperated TFs in these two
datasets. The results showed that 13 out of the 61 identi-
fied highly dyscooperated TFs in the discovery NSCLC co-
hort were confirmed in the LUSC and/or LUAD datasets
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(Fig. 6b). The IRF family member, IRF8, was confirmed in
both LUAD and LUSC datasets. Moreover, seven add-
itional highly dyscooperated TFs were detected in both
LUAD and LUSC (Fig. 6b). Additionally, the expression of
IRF8’s targets was more significantly altered than non-
targets in tumor versus normal (Kolmogorov—Smirnov
test, p-value < 3.16e-14, Fig. 6¢). Repeated studies on the
two independent datasets reproduced the findings from
the discovery cohort, which demonstrate that the disrup-
tion of TF cooperativity is highly reproducible and bio-
logical meaningful in cancer.

Tumors progress through a series of stages, which is
the most important factor in prognosis. We divided the
LUSC patients into different groups based on tumor
stages and aggregated the cooperativity of IRF8 in each
individual group. We combined stage III and IV together
since there are only few samples in stage IV. As a result,
we have 211 stage I, 123 stage II, and 82 stage III/IV
samples, respectively. Notably, we found that the coop-
erativity of IRF8 was remarkably inversely correlated
with tumor stages. As the tumor stage increasing, IRF8
cooperation with other TFs became looser and looser
(Fig. 7a), which indicates that IRF8 cooperativity might
play an important role in cancer development. More im-
portantly, we investigated the survival contributions of
IRF8 cooperativity within each LUSC stage. We divided
patients into two groups according to survival time,
long-survival and short-survival. We found that IRF8
was more tightly cooperated with other TFs in patients

100%

~

b

Validation

Reverse wall

80% = Gain
o

mlLoss

|

60%

|

40%

1

20%

Alteration of cooperativity
00 02 04 06 08 10

|

= top 5% TFs in Normal
= top 5% TFs in Tumor

:

TFs

LUAD

LUSC
IRF8
NR
PLAGL2
ACTL6A
"OU6F1
RAR

ik

0%
LUAD LUSC

LUAD_IRF8

p =3.164e-14

1 2 3 1

Expression alteration

T
LUAD

LUSC_IRF8

Expression alteration

STAT
NFI
STRAP
ARID5A
LMO2
CREB
FOX
CEBPZ
E2F
HDGF
HOX
TCF
NF2L
SPI1

T
LUSC

— non-targets

p=0

— targets

2 3

Fig. 6 Validation of dyscooperated IRF8 in LUAD and LUSC. a Cooperativity alterations between TF pairs that highly coordinated in normal/
tumor. b Highly dyscooperated TFs also identified in the previous NSCLC dataset. ¢ Comparison of expression alteration between IRF8's target
and non-target genes




Wang et al. BMIC Genomics (2016) 17:560

Page 8 of 11

a p=2e6 b

| p=99314

0.22
1

0.30

0.20
1

0.28

0.26

0.24

IRF8’s cooperativity with other TFs
0.18
1

0.16
1

0.22

0.14
1

p=563e4
—_

- p=249-5 p=334e3

—_

o _
—_

tal,

-
! l
M Long H ! [¢)

Short i '

stage | stage Il stage III&IV

Fig. 7 The IRF8 cooperativity associated with tumor progression and patient survival. a IRF8 loosens its cooperation with other TFs along with
cancer progression in LUSC. b IRF8 is more loosely coordinated with other TFs in patients with poor survival within each LUSC stage

T T T
stage | stage Il stage &IV

with long survival than those with short survival within
the same tumor stage (Fig. 7b, Wilcoxon Rank Sum test,
the p-value is 5.63e-4, 2.49¢-5, and 3.34e-3 for stage I, II,
and III&IV patients respectively). That is, the coopera-
tivity of IRF8 contributes to the survival of patients inde-
pendent of tumor stage. These results demonstrated that
the disruption of TF cooperation provides clinical utility
for predicting patient survival.

Conclusions

We characterized the disrupted cooperation of transcrip-
tion factors in cancer and identified common TFs whose
cooperativity was highly disrupted across diverse cancer
types. Our findings underscore the far more important
role of TF cooperativity in tumorigenesis than previously
recognized. Disrupted cooperation of TFs provides po-
tential clinical utility as prognostic markers for predicting
the patient survival.

Methods

Datasets

The gene expression profile analysed in this study included
both next-generation sequencing (NGS) and microarray
data. For the seven cancer types for discovery ana-
lysis, the mRNA-seq data of HNSC, KIRC, and LIHC
were downloaded from Firehose developed by the
Broad GDAC (https://confluence.broadinstitute.org/dis-
play/GDAC/Dashboard-Stddata). The microarray data
for NSCLC (GSE19804), PRAD (GSE6919), COADREAD
(GSE8671), and BRCA (GSE14999) were downloaded
from the Gene Expression Omnibus (GEO, http://
www.ncbi.nlm.nih.gov/geo/) [58]. The two independent
datasets for validation, LUAD and LUSC, and the clinical
data were also obtained from Firehose. The detailed

information about the sample size and source for each
dataset is shown in Table 1. We excluded genes if they
were not expressed in more than 50 % of samples for
TCGA RNA-seq data. For affymetrix microarray data, we
applied data-dependent cutoffs to remove lowly expressed
genes based on their average signal (log, signal intensity
<7 for GSE32665, log, signal intensity <2 for GSE6919
and GSE8671).

After combining 1469 TFs in AnimalTFDB (v2.0) [22],
1837 in TRANSFAC (v2014.1) and 405 in TFCat [23, 24]
and removing redundant TFs, we obtained 1991 human
TFs in total (Additional file 9: Figure S8). The metabolic
genes were downloaded from UniProt-GOA (release
2014_11, GO: 0008152) [59], and the TF target genes were
downloaded from MSigDB (v5.0, C3: motif gene sets,
TFT: transcription factor targets) [60].

Disruption of cooperativity between genes

We used co-expression as proxy for cooperativity. Spear-
man correlation coefficients were used to measure the
correlation between any pair of genes, which is more ro-
bust to outliers than Pearson correlation. The absolute
correlation change of any pair of genes in tumor relative
to normal was used to measure the alteration of coop-
erativity. The cooperativity alteration between gene i and
j was defined as:

- e -l »

where Cj is the correlation between gene i and j in
tumor, and Cﬁ}l denotes the correlation in matched nor-
mal tissue. We compared the cooperativity alteration be-
tween TF pairs (i€ TF & jeTFj=i ), gene pairs in
metabolic pathway, and TF target pairs with non-TF
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pairs (i ¢ TF & j ¢ TF) using the Wilcoxon Rank Sum test
[61]. We used the criteria that the median difference is
greater than 0.01 and the p-value is less than 1e-20.

To assess the disruption of the cooperation of individ-
ual TF i in cancer C; ~, we aggregated the cooperativity
alterations of this TF with other TFs. The cooperativity
alteration between TF i and other TFs j (j=i , je TF)
was z-transformed and the number of significantly
changed cooperation, positive change or negative changes,
was counted separately,

n
Z Py,

j=Ljsi

if Zcrx > 3P = 1; otherwise Pjj = 0
ij
CL.T’N —

n
Z Ny, ifZcrx <=3 Ny = 1;0therwise Njj =0
Jj=1j=i !
(2)

where # is the number of TFs, and Z 7~ is the z-score
ij

of the cooperation change between TF i and j in tumor
versus normal. The change is considered significant if
the z-score is greater than 3 or less than -3. We identi-
fied highly disrupted TFs by setting the cutoffs. The
cutoffs were chosen where the decreasing number of
highly disrupted TFs was less than or equal to 10 as the
increasing requirement of the number of significantly
changed cooperation (Additional file 10: Figure S9).

Statistical analysis

The gene expression abundances were log, transformed
and the paired t-test was used to identify differentially
expressed genes between tumor and matched normal
tissues. The Kolmogorov—Smirnov test was used to
compare the expression changes between IRF’s targets
and non-targets, and between IRFs targets and non-
targets involved in stress response. The Wilcoxon Rank
Sum test was applied to compare the cooperativity alter-
ation of TF pairs, metabolic gene pairs, and TF target
pairs with that of non-TF pairs. The BH method was used
to adjust p-values for multiple testing. All statistical tests
in this study were implemented by R (version 3.0.3).

IRF targets identification and GO enrichment analysis

Match program (version 1.0) [62], provided by TRANS-
FAC database, was used to identify putative IRF binding
sites in the promoter regions, which were defined as
500bp upstream and 100bp downstream of the tran-
scription start site. The characteristic motifs for binding
sites searching were obtained from TRANSFAC and
listed in Table 2. Motif hits were further filtered by only
considering those that fall in chromatin accessible re-
gions for each type of cancer, which were obtained from
ENCODE DNase-seq data (Additional file 11: Table S2).
For example, we identified 1546 IRF8’s targets in NSCLC
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Table 2 Motifs for binding sites searching

Motif Matrix_acc® IRF2 IRF5 IRF6 IRF8
5'-RAAANTGAAAN-3' MO00972 v v v
5'-BNCRSTTTCANTTYY-3"  M00772 v v v v
5'-GAAAAGYGAAASY-3' MO00063 v

5'-RAARTGAAACTG-3' MO00699 v

“Matrix_acc means the accession number of matrix in TRANSFAC

and 431 of them are involved in the function of stress
response (Additional file 12: Table S3). The GO enrich-
ment analysis for IRFs targets was performed via Web-
Gestalt [63]. Functional categories with FDR <0.0001
were reported.

The cooperation of IRF8 associated with clinical outcome
We studied the relationship between the IRF8 coopera-
tivity and clinical outcome on LUSC dataset, which pro-
vided relatively more complete clinical information than
the LUAD dataset. In total, 416 LUSC patients were in-
cluded, among which, 211 were classified as stage I, 123
as stage II, and 82 as stage III/IV. We quantified the
cooperativity of IRF8 by summarizing its cooperation
score with other TFs,

n

Cirrg = Z

j=1,TF;#IRF8

Cirrs, (3)

where Cizrg; denotes the cooperation of IRF8 with TF j,
and n is the number of TFs. To make the cooperativity
of IRF8 comparable between stages, we applied the sub-
sampling technique. We selected 80 % of 82 patients
(the smallest sample size of LUSC stages) and calculated
the cooperativity of IRF8 in each resampling dataset, and
we ran 50 resamplings. We compared the distribution of
cooperativity of IRF8 between different stages and found
that IRF8 has the highest cooperativity in stage I but the
lowest cooperativity in stage III/IV.

To further investigate the contribution of IRF8 coop-
erativity to patient survival independent of tumor stage,
we classified patients into two groups by their survival
time: long-survival (top 25 %) and short-survival (bot-
tom 25 %) within each stage. We compared the IRF8’s
cooperativity between these two groups.

Additional files

Additional file 1: Figure S1. The correlation between TF pairs from
different datasets. The box plots illustrate the correlation (absolute
value of Spearman correlation coefficient) between interacted TFs
from HitPredict (HitPredict-TF), associated TFs and HepG2-specific associated
TFs from ENCODE (ENCODE associated-TF), and the correlation of random
TF pairs (random TF) in NSCLC, PRAD, COADREAD, BRCA, HNSC, KIRC, and
LIHC. (TIF 189 kb)
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Additional file 2: Figure S2. The impact of gene expression abundance
on the measure of cooperation. The scatterplots containing the pair-wise
correlation coefficient on the y-axis and the average expression of genes
(log; scale) on the x-axis. (TIF 316 kb)

Additional file 3: Figure S3. Transcriptional abundances of TFs and
non-TFs across cancers. TFs show comparable expression abundance
with non-TFs in both normal and tumor. TFs are colored in red and
non-TFs are colored in blue respectively. The expression value is log,
transformed. (TIF 193 kb)

Additional file 4: Figure S4. Cooperation of TFs, non-TFs, TF-targets
and metabolic genes in normal samples. TFs, non-TFs and TF targets

showed similar cooperativity level in all types of matched normal
samples. (TIF 181 kb)

Additional file 5: Figure S5. Comparison of cooperation alterations
between highly coordinated TFs in normal and those in tumor. (TIF 153 kb)

Additional file 6: Figure S6. The correlation measures of recurrent TF
pairs in normal and tumor. Normal samples are colored in dark blue while
the tumor ones are colored in dark red. ry and ry denote the Spearman
correlation coefficients in normal and tumor respectively. (TIF 1020 kb)

Additional file 7: Table S1. Identified highly dyscooperated TFs of
each cancer type. (XLSX 15 kb)

Additional file 8: Figure S7. Comparison of expression alterations of
IRF's targets and other genes involved in RS. Each of the six plots
illustrates the cumulative distribution function (cdf) of expression change
in tumor relative to normal for IRF's targets versus other genes involved
in the GO term of response to stress (RS). The x-axis is the absolute value
of log, transformation of fold change. (TIF 16347 kb)

Additional file 9: Figure S8. The source of TFs data sets. (TIF 112 kb)
Additional file 10: Figure S9. Cut-offs for identifying highly
dyscooperated TFs. (A) The distribution of the number the Z-transformed

cooperativity alteration (Zim) greater than 3. (B) The distribution of the

number the Z-transformed cooperativity alteration (ch> less than -3.

The cut-off for identifying highly disrupted TFs is shown by the vertical
line for each cancer type. (TIF 23144 kb)

Additional file 11: Table S2. Encode DNase-seq data used to filter
motif hits. (XLSX 10 kb)

Additional file 12: Table S3. List of IRF8's targets and those involved in

stress response in NSCLC. (XLSX 32 kb)
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