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Abstract

The only known function of NAD(P)H oxidases is to produce reactive oxygen species (ROS). 

Skeletal muscles express three isoforms of NAD(P)H oxidases (Nox1, Nox2, and Nox4) that have 

been identified as critical modulators of redox homeostasis. Nox2 acts as the main source of 

skeletal muscle ROS during contractions, participates insulin signaling and glucose transport, and 

mediates the myocyte response to osmotic stress. Nox2 and Nox4 contribute to skeletal muscle 

abnormalities elicited by angiotensin II, muscular dystrophy, heart failure, and high fat diet. Our 

review addresses the expression and regulation of NAD(P)H oxidases with emphasis on aspects 

that are relevant to skeletal muscle. We also summarize: i) the most widely used NAD(P)H 

oxidases activity assays and inhibitors, and ii) studies that have defined Nox enzymes as 

protagonists of skeletal muscle redox homeostasis in a variety of health and disease conditions.
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Introduction

The history of redox signaling in skeletal muscle biology and NAD(P)H oxidases are 

inextricably intertwined. The production of reactive oxygen species (ROS) has long been 

recognized as a critical component of skeletal muscle cell biology in health and disease 

(reviewed in [1–3]). Early studies identified extracellular superoxide (O2
·−) release from 

isolated skeletal muscle at rest and during fatiguing contractions [4]. In hindsight, these 

findings were consistent with the presence and activation of NAD(P)H oxidases, which were 

not fully explored because mitochondria have been considered the most relevant ROS source 

in muscle (see review by Powers & Jackson [5]). Ten years after the discovery of 

extracellular superoxide release by muscle, Javesghani et al [6] reported the presence and 

molecular characterization of NAD(P)H oxidase in skeletal muscle. In recent years, 
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NAD(P)H oxidases have emerged as the main (or initial) source of ROS in skeletal muscle 

cells. Our main goal in this review article is to provide an overview of the expression and 

regulation of NAD(P)H oxidases, highlighting key aspects relevant to skeletal muscle 

biology. We have also summarized studies that have defined NAD(P)H oxidases as 

protagonists of skeletal muscle redox homeostasis in health and disease.

NAD(P)H oxidases in skeletal muscle cells

The homologues Nox1, 2, and 4 are expressed in skeletal muscle cells in culture [7–11]. Nox 

homologue abundance in C2C12 muscle cells, based on mRNA data, is as follows Nox4 > 

Nox2 > Nox1 [8, 10]. Although Nox1 is upregulated by myostatin in differentiating C2C12 

myoblasts [12], a physiological role for Nox1 has not been identified in skeletal muscle. The 

Nox2 homologues Duox1 and 2 are also expressed in C2C12 muscle cells, but very little is 

known about their physiological relevance beyond a recent report implicating a role in 

myogenesis [13]. Another important aspect to consider is the substrate of Nox enzymes. In 

non-muscle cells, Nox enzymes preferentially utilize NADPH over NADH [14]. However, 

NADH appears to elicit a three-to-five fold higher Nox activity than NADPH in adult 

skeletal muscle, which is consistent with NADH as the primary substrate [6]. Based on the 

above, we will focus our review on Nox2 and Nox4 regulation, and use the term NAD(P)H 

to consider both substrates.

Nox2

The functionally active Nox2 is a multimeric enzyme that catalyzes the conversion of O2 to 

superoxide. The enzyme was first discovered in phagocytes, and the assembled phagocytic 

oxidase (phox) consists of Nox2 (gp91phox), p22phox, p47phox, p67phox, p40phox, and Rac 

(reviewed in [14]). The subunits Nox2 and p22phox form the redox core flavocytochrome 
b558 responsible for electron transfer and superoxide production [15–17]. The other 

subunits organize and assemble the functional complex and regulate its activity. All Nox2-

related subunits are present in skeletal muscle [6, 18], and the active enzyme complex in 

muscle cells appears to be similar to that found in other cell types (Fig. 1).

Nox2 subunit composition and localization

Nox2 is a 58 kDa protein, but can appear as bands of higher molecular weight in Western 

Blots due to glycosylation [14]. Interestingly, a new splice variant of Nox2 (Nox2β, ~30 

kDa) has been identified in macrophages [19]. The Nox2β splice variant does not seem to be 

present in cardiomyocytes [19], and it is unclear whether it is expressed in skeletal muscle. 

In conventional Western Blots performed by our group [20], we have not detected the 30 

kDa splice variant in mouse diaphragm. Thus, the Nox2β isoform requires further 

investigation, and we will refer to the conventional Nox2 isoform in this review.

In skeletal muscle cells, Nox2 and p22phox are present in membrane-enriched protein 

fractions and co-localize with membrane proteins [6, 18]. These findings are consistent with 

Nox2 and p22phox being sarcolemmal proteins. Immunohistochemistry and triad/t-tubule 

fractionation experiments also suggest the presence of Nox2 and p22phox in t-tubules 

(invaginations of the membrane in skeletal muscle cells) [21, 22]. However, it appears that 
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Nox2 is not present in the sarcoplasmic reticulum [21, 22]. Based on its localization, Nox2 

produces superoxide outside the cell that can be enzymatically converted, by extracellular 

superoxide dismutase [23], into hydrogen peroxide (H2O2). Hydrogen peroxide readily 

crosses membranes and will exert its effects in the intracellular compartment [24]. This 

notion is supported by recent data in isolated skeletal muscle fibers [25].

While Nox2 localization has been defined, the exact subcellular location of Nox2 subunits 

remains unclear. The protein Rac1 is present in multiple compartments and regulates several 

cellular functions. Cytosolic Rac1, which translocates to the cell membrane upon activation 

[26], appears to be the most relevant for Nox2 activation in non-phagocytic cells [27–29]. To 

date, there is no evidence to suggest that a different process takes place in skeletal muscle. 

The subunits p67phox and p40phox are also mainly cytosolic and translocate to the cell 

membrane upon Nox2 activation [14, 24, 30]. Overall, the cytosolic localization of Rac1, 

p67phox, and p40phox conforms to the traditional view of Nox2 regulation and signaling [14, 

30].

The subunit p47phox is required for Nox2 activity [31]. In non-skeletal muscle cells, p47phox 

is a cytosolic subunit [14, 30]. However, the localization of p47phox in skeletal muscle is less 

clear. Specifically, p47phox has been detected in membrane-enriched, but not cytosolic 

fractions of the diaphragm [6]. Immunohistochemistry and co-localization experiments also 

support the notion that endogenous p47phox is localized at (or very near) the sarcolemma and 

t-tubules in limb muscles [18, 25, 32] and diaphragm [6]. Other studies have identified 

increases in sarcolemmal p47phox with stimulation, which is consistent with membrane 

translocation. These findings pose a challenge to our understanding of Nox2 regulation in 

skeletal muscle and how p47phox participates in this process, as will be discussed below. 

Regardless, it is clear that p47phox is involved in the activation and regulation of Nox2 

activity in skeletal muscle.

Activation and regulation

In several cell types, phosphorylation of p47phox or p67phox, and activation of Rac1 regulate 

the production of superoxide by Nox2 [27, 33–36]. Two of these processes, phosphorylation 

of p47phox and Rac1 activation, have been reported in skeletal muscle [20, 37, 38]. These 

post-translational events lead to translocation and binding of cytosolic subunits to the cell 

membrane and Nox2/p22phox to form a functionally active complex. For example, activation 

of Nox2 by muscle contraction is associated with an apparent translocation of p40phox and 

p67phox to the cell membrane [18]. In the traditional view of Nox2 regulation, p47phox is 

considered the organizer component that forms a complex with all cytosolic subunits and 

governs their translocation to the cell membrane [14, 30]. Nox2 contains a p47phox binding 

motif [39–41]. Considering the potential localization of p47phox in skeletal muscle cells in 

the membrane versus the cytosol, it is unclear how the protein serves as organizer of 

cytosolic subunits. The apparent inconsistency between skeletal muscle and other cell types 

presents an issue that must be resolved for a better understanding of Nox2 regulation in 

skeletal muscle. One possibility is that p47phox, which binds to cytoskeletal proteins [42], 

co-localizes predominantly near the sarcolemma with proteins of the costamere in skeletal 
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muscle. Such localization would permit p47phox to function as organizer of cytosolic subunit 

translocation.

p47phox

A discussion on p47phox structure and function is paramount in understanding Nox2 

signaling in skeletal muscle. P47phox is a 390 amino acid protein that consists of one PX 

domain with phospholipid binding properties, two SH3 domains, one auto-inhibitory region, 

and a proline-rich region [33, 43, 44]. In the inactive state, the auto-inhibitory and proline-

rich regions interact with the PX and SH3 domains. This conformation prevents p47phox 

from binding to Nox2 membrane and cytosolic subunits (Fig. 2) [33, 43, 45, 46]. Conversely, 

serine phosphorylation exposes the SH3 domain and PX region, which allows membrane-

binding and docking to Nox2 and p22phox [33, 47, 48]. Hence, serine phosphorylation of 

p47phox is required for Nox2-dependent ROS production and has been used as an indicator 

of enzyme activation. Serine phosphorylation of p47phox is elevated in skeletal muscles in 

mouse models of Duchene muscular dystrophy and heart failure [20, 37], and in vitro 
exposure to a mediator of inflammatory signaling [38]. These are conditions where p47phox 

is required for elevated Nox activity and ROS emission.

The above evidence suggests that serine-threonine kinases and protein phosphatases play a 

major role on p47phox phosphorylation and Nox2 regulation in skeletal muscle. Serine-

threonine kinases known to be involved in phosphorylation of p47phox include PKC α, β, δ, 

and ζ (reviewed in [33]), mitogen-activated protein (MAP) kinases p38 [49, 50] and 

ERK-1/2 [50–52], JNK-1 [52], PI3K [53–55], AKT [55–57], and p21-activated kinase 1 

[58]. Not all kinases mentioned interact directly with p47phox. Some exert their effects via 

intermediate kinases. The tyrosine kinase Src promotes p47phox serine phosphorylation in 

skeletal and vascular smooth muscle cells [37, 59], which must be mediated by intermediary 

serine-threonine kinases sensitive to Src. However, protein kinases do not always activate 

Nox2 [33]. In cardiomyocytes, p21-activated kinase 1 acts as a negative regulator of Nox2 

[60]. These findings suggest cell-type specificity of kinases involved in p47phox 

phosphorylation. Tyrosine phosphorylation of p47phox and high concentration of arachidonic 

acid have also been identified as regulatory mechanisms of Nox2 activation in non-muscle 

cells [61, 62]. However, it is unclear whether tyrosine phosphorylation or arachidonic acid 

participate in Nox2 regulation in skeletal muscle.

Less is known about specific phosphatases that regulate the phosphorylation status of 

p47phox. P47phox plays a required role on Nox2 activation during repetitive muscle 

contractions and deactivation during recovery [25]. Nox2 deactivation likely requires 

p47phox dephosphorylation. Thus, it is reasonable to speculate that p47phox protein 

phosphatases have a major impact on Nox2 regulation and redox homeostasis during skeletal 

muscle contractions and rest. Pharmacologic inhibitor studies in non-muscle cells suggest 

that protein phosphatases type 1 and 2A regulate p47phox dephosphorylation [63–65], but 

these have yet to be confirmed with genetic manipulations (knockdown, knockout, and 

overexpression of dominant-negative or constitutively active constructs).

Overexpression of p47phox per se is typically considered insufficient to heighten Nox2-

dependent ROS production. These considerations are based mainly on studies of NAD(P)H 
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oxidases in vascular biology. For instance, overexpression of p47phox in endothelial cells 

does not increase Nox2-dependent ROS emission [49]. However, these effects are cell-type 

specific. In murine microglia, overexpression of p47phox heightened Nox2 activity [66]. The 

effects of p47phox overexpression on Nox activity in skeletal muscle cells have not been 

defined. Preliminary studies from our group suggest increased Nox activity with 

overexpression of p47phox (data not shown). Importantly, sustained and pathophysiological 

elevation of skeletal muscle Nox2 activity and ROS in diseases states is associated with 

upregulation of p47phox mRNA and protein. The transcription factors HBP1, Ets-1, 

STAT1/3, and NF-kB regulate p47phox expression [67, 68]. Signaling pathways that 

modulate these transcriptional factors are, therefore, likely to influence Nox2 expression in 

skeletal muscle.

Rac1

Rac1 (Ras-related C3 botulinum toxin substrate 1) is a small G-protein that, once activated, 

facilitates translocation of cytosolic subunits to the membrane and the interaction between 

p67phox and Nox2 that are required for enzyme activity [27, 69]. In fact, targeting Rac1 to 

the cell membrane is sufficient to induce Nox activity [26]. Rac1 activity is determined by 

the GDP-bound (inactive) and GTP-bound (active) states [28, 70, 71]. Rac1 activity is 

increased in skeletal muscle of mdx mice and participates in the pathophysiology of 

Duchenne Muscular Dystrophy via its effects on Nox2 signaling [37]. The transition from 

Rac1-GDP (inactive) to Rac1-GTP (active) is modulated by GDP Dissociation Inhibitors 

(GDI) and guanine nucleotide exchange factors (GEF). There are several GEF in cells, but 

Tiam1 [72], Trio [73], P-Rex2 [74], and obscurin [75] appear to be particularly relevant for 

skeletal muscle. P-Rex2 is expressed predominantly in skeletal muscle [74]. Obscurin 

interacts with titin, a mechanosensitive sarcomeric protein. This makes obscurin an attractive 

candidate for mechano-dependent activation of Rac1 and Nox2, which occurs during 

skeletal muscle stretch [76] and contraction [25]. Rac1 is inactivated by its intrinsic GTPase 

activity, which is stimulated by GTPase-activated proteins (GAP) [27, 28, 70]. In this regard, 

p190 Rac-GAP can inhibit Nox2 activity and superoxide production in neutrophils [77]. 

However, the role of specific GAPs on regulation of skeletal muscle Nox2 remains to be 

defined.

Nox4

The Nox4 isoform was first discovered in the kidney and is homologous (39%) to Nox2 [14, 

48, 78]. Nox4 is highly expressed in tumor cells [79], being considered an oncoprotein [80]. 

Nox4 can produce both O2
·− and H2O2 [81–83], but the predominant ROS produced by 

skeletal muscle Nox4 remains unknown. The production of H2O2 depends on the presence 

of a histidine residue within an extra-cytosolic loop, which is 28 amino acids longer in Nox4 

than Nox2 [84]. Nox4 can appear as two bands on Western Blots (75–80 kDa and 67 kDa), 

which may reflect glycosylation or splice variants [14]. In skeletal muscle homogenates, we 

have found higher levels of the 67 kDa band in diaphragm than other limb muscles [85]. 

These findings suggest that Nox4 abundance may vary based on muscle fiber type 

composition or recruitment pattern.
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Nox4 subunit composition and localization

Nox4 requires binding to p22phox for ROS production in a cell-free system, but is 

independent from other Nox subunits [30, 78, 83]. Nox4 contains a mitochondria 

localization sequence in its N-terminal region [86]. Accordingly, Nox4 is present in cardiac 

and limb muscle mitochondria [18, 86]. Nox4 is also present in skeletal muscle sarcoplasmic 

reticulum [8]. Considering that Nox4 is constitutively active and requires p22phox for ROS 

production [82, 87], we speculate that p22phox is also present in the sarcoplasmic reticulum.

Nox4 regulation and activation

The traditional view is that Nox4 is constitutively active and, therefore, transcriptionally 

regulated [30, 78]. The expression of Nox4 is induced by cytokines, transforming growth-

factor β, and angiotensin II [68, 88]. The following conditions and diseases are associated 

with increased Nox4 mRNA or protein levels in skeletal muscle: heart failure (unpublished 

results), cancer [89], and aging sarcopenia [90]. Transcription factors that have been 

involved in regulation of Nox4 expression in various cell types include Nrf2 [91], NF-κB 

[92], HIF-1α [93], STAT1/3 [92], E2F [94], c-Jun [95], AP-1 [96], and SMAD3 [96]. The 

mRNA expression of Nox4 is also regulated by histone deacetylases (HDAC) [97]. In human 

endothelial cells, pharmacological inhibition of HDACs or knockdown of HDAC3 decreases 

Nox4 transcription [95]. In C2C12 myotubes, knockdown of the deacetylase sirtuin 1 

(SIRT1) increases Nox4 protein levels, suggesting that SIRT1 is a negative regulator of 

Nox4 expression [11]. Lastly, the interaction among Hic5, heat shock protein 27, and Cbl-c 

regulate Nox4 expression post-transcription/translation through the ubiquitin-proteasome 

system [98].

The rapid increase in Nox4-dependent ROS stimulated by agonists has challenged the notion 

that ROS production by Nox4 is regulated solely at the transcriptional level. Myotubes 

exposed to IGF-I (15 min; [10]), adipocytes exposed to insulin (5 min, [99]), cerebral 

microvascular endothelial cells exposed to TNF-α (1–3 hr., [100]), and mesangial cells 

exposed to angiotensin II or arachidonic acid (5 min, [88]) show heightened ROS or ROS-

mediated signaling that is inhibited by knockdown of Nox4. Some modulators of Nox4 

activity include Poldip2 (polymerase [DNA-directed] delta-interacting protein 2), Tks5 

(tyrosine kinase substrate 5), Hsp70 (heat shock protein 70), and possibly Rac1 [14, 30, 

101]. Poldip2, which is highly expressed in skeletal muscle [102], interacts with p22phox and 

Nox4 in vascular smooth muscle cells. In this setting, Poldip2 serves as a stabilizer of the 

Nox4 and p22phox complex and regulator of enzyme activity [30, 102]. Similarly, Tks5 has 

emerged as a possible regulatory subunit that is required for Nox4 dependent ROS 

production in certain cell types, e.g., melanoma [103]. Tks5, which has a structure closely 

related to p47phox, is expressed in myoblasts and interacts with dystroglycan [103, 104]. 

Nox4 contains a binding sequence for p47phox within the B loop [41, 105]. Thus, the 

identification of Tks5 as a regulator of ROS production by Nox4 raises the possibility that 

Tks5 modulates Nox4 activity in skeletal muscle cells. Another potential post-translational 

regulator of Nox4 activity is Hsp70. In vascular smooth muscle cells, Hsp70 functions as a 

chaperone that negatively regulates Nox4 activity and expression. The acute inhibitory effect 

of Hsp70 on Nox4 appears to be due to membrane translocation of cytosolic Hsp70 [106, 

107], whereas chronic inhibitory effects involve pathways that result in Nox4 ubiquitination 
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and degradation [108]. Rac1 has also been implicated in Nox4 regulation [14, 69, 88, 109]. 

Specifically, Nox4-dependent increase in ROS stimulated by angiotensin II and arachidonic 

acid were inhibited by Rac1 knockdown or expression of dominant-negative Rac1 [88]. In 

kidney cells, Nox4 interacts with toll-like receptor 4 and mediates ROS signaling in 

response to lipopolysaccharide [110]. This raises the interesting possibility that 

abnormalities induced by TLR4 signaling in skeletal muscle are in fact mediated by Nox4, 

e.g., rheumatoid arthritis [111], mechanical ventilation [112], and endotoxemia [113].

The constitutive activity of Nox4 is an important aspect to take into account regarding ROS 

production in skeletal muscle cells. For instance, NADH serves as substrate for Nox4 and 

elevation in the NADH/NAD+ ratio, which occur during high-intensity muscle contractions 

or hypoxia, could heighten ROS production. Indeed, Nox4-dependent ROS are important for 

skeletal muscle response to hypoxia (see below and ref. [8]). Nevertheless, it remains to be 

established whether changes in NADH/NAD+ ratio affect Nox4-dependent ROS production.

Nox activity assays

The lack of specific measurements of Nox activity has been a problem in the field. Methods 

currently available present technical difficulties and limitations that have diminished the 

enthusiasm of skeletal muscle biologists to investigate NAD(P)H oxidases. The techniques 

used more frequently such as lucigenin-enhanced chemiluminescence, cytochrome C 

reduction, and p47-roGFP are discussed below.

Lucigenin-enhanced chemiluminescence is a method that has typically been used for 

measurement of Nox activity. Lucigenin, which is actually a fluorescent chloride indicator, 

reacts with superoxide to produce light. The lucigenin signal stimulated by addition of 

NAD(P)H to the reaction buffer is considered a measurement of Nox-derived superoxide. A 

conceptually similar approach involves the use of NAD(P)H consumption by tissue 

homogenates or membrane fractions. The lucigenin and NAD(P)H consumption assays have 

been used to assess Nox activity in skeletal muscle, e.g., [6, 20, 114–116]. However, a recent 

study from Prof. Ralf Brandes’ group shows that the assay is not specific to Nox activity 

and, in several tissues and cell types, the signal was unchanged with a triple Nox1, Nox2, 

and Nox4 knockout [117]. Based on these findings, the authors suggested that assays based 

on lucigenin and NADPH consumption are invalid [117].

A derivation of the lucigenin-based assay involves measurement of cytochrome c reduction 

by superoxide. The assay has been widely employed to measure superoxide in skeletal 

muscle preparations [4, 118, 119], and was adapted to determine Nox activity in skeletal 

muscle homogenates. In this setting, the signal that is induced by NADH and inhibited by 

superoxide dismutase is considered a measure of Nox activity [114, 120]. However, the 

specificity of the cytochrome c reduction assay for Nox activity has yet to be verified in 

skeletal muscle. At present, the recommendation by experts in the biology of NAD(P)H 

oxidase is “…to measure ROS formation in intact tissue rather than boosting their signal 
with NADPH or using homogenates when addressing ROS production to Noxes” [117].
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A promising approach to study p47phox-dependent Nox activity in live tissue and cells has 

been developed recently [25]. Specifically, the group led by Dr. George Rodney fused the 

redox sensitive probe roGFP with p47phox (p47-roGFP). When expressed in cells, p47-

roGFP was localized to cellular compartments where Nox2 is present, seemingly 

sarcolemma and t-tubules as discussed above. The probe has several advantages that include 

sensitivity to Nox-dependent ROS production in skeletal muscle, ratiometric fluorescence 

that makes it independent of differences in content or expression levels, rapid response time, 

and reversibility. The limitation of p47-roGFP is that overexpression of p47phox may induce 

Nox activation in certain cell types. The probe also rescues Nox activity in p47phox deficient 

cells, which are frequently used to test the role of Nox(s) on ROS production. However, the 

advent of p47-roGFP has already provided insights into Nox activation during skeletal 

muscle contraction and stretch [25]. P47-roGFP can now be used to define signaling 

pathways leading to Nox activation and its role in several physiological and pathological 

settings.

Nox Inhibitors

There are several Nox inhibitors available [48, 101, 121]. The compounds that have been 

mostly used to examine Nox in skeletal muscle are apocynin, diphenyleneiodonium (DPI), 

gp91dstat, and GKT-137831 [18, 25, 38, 122]. Although inhibitor studies provide useful 

information, the compounds commercially available are generally non-specific as discussed 

below.

Apocynin is a plant phenol that depends on hydrogen peroxide and peroxidases for 

conversion to a radical form that inhibits Nox activity. The mechanism of apocynin action 

appears to involve oxidation of the flavocytochrome b558 core that prevents interaction with 

Nox cytosolic subunits. Apocynin does not affect skeletal muscle contractile function in 

concentrations employed to inhibit Nox, whether used in vitro [38] or in vivo [123, 124]. 

However, it is important to note that, beyond being non-specific and having direct 

antioxidant properties in cells, apocynin can react directly with oxidant-sensitive probes and 

interfere with assays in vitro [38].

The broad-spectrum flavoprotein inhibitor DPI is often used to block ROS production by 

NAD(P)H oxidases. However, DPI inhibits other sources of ROS, including mitochondrial 

complex I [9, 125]. Because DPI is a general flavoprotein inhibitor, it can affect cell 

metabolism and have an unrecognized impact on function. Indeed, we have found that DPI 

depresses skeletal muscle force in a dose dependent manner, with diaphragm muscle force 

decreasing by 40% at 5 μM and 65% at 10 μM [38, 85]. Thus, the loss of force induced by 

DPI occurs at concentrations that are typical for studies of NAD(P)H oxidases, supporting 

the notion that DPI should no longer be considered for studies of Nox. Instead, new and 

more specific inhibitors are a better choice [48, 101, 117].

The inhibitor Nox2ds-tat (originally named gp91ds-tat) was developed based on the 

mapping of peptide sequences involved in the interaction of Nox2 and p47phox [41, 126]. 

The peptide sequence that most potently inhibited Nox activity in cell-free assays was then 

conjugated to the peptide sequence of HIV viral coats (HIV-tat) to promote cellular uptake. 
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Nonetheless, the HIV-tat sequence can elicit confounding effects such as increased 

autophagy and remodeling of the actin cytoskeleton [127, 128]. Thus, control experiments 

should include the scrambled peptide with the tat sequence. Other issues include cleavage of 

the tat sequence en route to tissues and development of immune response to the peptide that 

limits repeated exposure and long-term treatment [129]. The Nox2ds-tat peptide sequence is 

also present in Nox1 and Nox4 [105, 129, 130], but the compound is considered a specific 

Nox2 inhibitor at low concentrations [101]. In skeletal muscle, Nox2ds-tat prevents ROS 

production during contraction [18, 25] and in disease [37, 131].

Novel inhibitors of Nox1/4 such as GKT-137831 have been developed by the pharmaceutical 

industry and are currently undergoing clinical trials. The compound appears to be specific to 

Nox1/4 within the nano-to-micromolar range [101], and initial safety data are promising as 

indicated by press-releases from Genkyotex S.A. The compound GKT-137831 does not 

interfere with submaximal muscle function [122], yet its efficacy in inhibiting ROS in 

skeletal muscle is unknown.

Redox cross-talk

The formation of ROS can promote further ROS production and release, which has been 

termed ROS-induced ROS release – reviewed in detail by Zorodov et al. [132]. NAD(P)H 

oxidases and mitochondria are the primary sources of ROS in skeletal muscle, and a redox-

mediated crosstalk between Nox and mitochondria can exacerbate ROS production and 

disrupt redox homeostasis [133–135]. Several mechanisms can account for the cross-talk 

between Nox and mitochondrial ROS production and release. Oxidation of mitochondrial 

electron transfer chain complexes or glutathione can play an important role in ROS 

production and release. The former leads to uncoupling of electron transfer that results in 

superoxide formation [136, 137]. The latter diminishes mitochondrial H2O2 scavenging by 

glutathione peroxidase and exacerbates H2O2 production by the pyruvate dehydrogenase 

complex [137, 138]. Studies in the last 15 years have shown that the cross-talk involves 

mitochondrial ATP-sensitive K+ channels (mito-KATP). Nox-derived ROS can oxidize and 

promote the opening of mitochondrial ATP-sensitive K+ channels (mito-KATP) [139]. 

Potassium influx into the matrix lowers the mitochondrial membrane potential, which causes 

mitochondrial swelling, opening of permeability transition pores, and elevates ROS 

production (Fig. 3, [133–135]). Another possibility is that Nox-derived ROS cause 

sarcoplasmic reticulum Ca2+ leak [89, 140] or extracellular Ca2+ entry into the sarcoplasm 

through ‘transient receptor potential’ channels [131, 141, 142]. These processes heighten 

cytosolic Ca2+ concentration. Mitochondria acts as buffers of elevated cytosolic Ca2+, and 

the Ca2+ overload heightens mitochondrial ROS emission [143, 144]. In this model, Noxes 

act as ligand- or mechano-activated triggers and mitochondria are amplifiers of ROS in the 

cell.

The cross talk can also be initiated at the mitochondria by conditions that impair myocyte 

metabolism and increase mitochondrial ROS such as high fat diet, diabetes, denervation, and 

inactivity [145–150]. Mitochondrial ROS activate redox-sensitive kinases (e.g., PKC and Src 

[151, 152]) that increase Nox activity (see above) and promote upregulation of Nox2 and 

Nox4 [153]. Excess mitochondrial ROS can also cause RyR oxidation and Ca2+ release. In 
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non-muscle cells, Ca2+ accumulation triggers Nox activation [154, 155]. Overall, the cross-

talk between Nox and mitochondrial ROS consists of positive feedforward and feedback 

loops that, in general, disrupts redox homeostasis.

The pathways discussed above have been shown in several cell types, including cardiac and 

smooth muscle [135]. To our knowledge, there is only indirect evidence to support the 

existence of a redox cross-talk in skeletal muscle. Specifically, systemic administration of 

angiotensin II increases Nox and mitochondrial ROS in skeletal muscle [156, 157], and 

p47phox knockout blocks the increase in skeletal muscle cytosolic superoxide induced by 

angiotensin II [157]. Mechanical ventilation elevates diaphragm ROS, which can be 

prevented by either apocynin or a mitochondria-targeted antioxidant [123, 148]. Similarly, 

the increase in diaphragm ROS elicited by chronic heart failure or exposure to exogenous 

sphingomyelinase are prevented by knockout of Nox2 subunits (Nox2−/y [158], 

p47phox−/− [38]) or mitochondria-targeted antioxidants [159]. Finally, repetitive contraction 

induces a rapid rise in cytosolic superoxide mediated by Nox, which is followed by a slower 

rise in mitochondrial ROS [18, 160]. Other examples of potential skeletal muscle redox 

cross-talk involving Nox and mitochondria include high fat diet and sepsis [124, 146, 161, 

162].

Nox and skeletal muscle biology in health and disease

Contraction and E-C coupling

Skeletal muscle contraction heightens ROS production that modulates cellular homeostasis 

and adaptations. The original hypothesis was that mitochondria were the main source of 

contraction-induced ROS. However, several pieces of evidence suggest that Noxes are the 

main source of ROS induced by skeletal muscle contractions. During repetitive contractions, 

the rise in cytosolic ROS precedes and is greater than the increase in mitochondrial ROS 

[160, 163]. Immunohistochemistry data are consistent with membrane translocation of 

cytosolic subunits of Nox2 [18]. A cause and effect relationship involving Nox2 has been 

established with pharmacologic and genetic interventions. Specifically, contraction-induced 

increase in ROS was blocked or attenuated by pharmacologic agents (apocynin and Nox2ds-
tat) [18, 25, 158, 164, 165] or knockout of Nox2 subunits [25, 166]. These data suggest that 

Nox2 is the main source of ROS during muscle contractions.

ROS modulate excitation-contraction coupling in skeletal muscle. Skeletal muscle 

depolarization activates Noxes in the t-tubule and sarcoplasmic reticulum, and ROS 

modulate Ca2+ release by the RyR1 channel [21, 22, 164]. Some studies suggest that ROS 

produced by Nox2 modulates excitation-contraction coupling [21, 164], whereas other 

studies have suggested that Nox4 is the main source of ROS affecting excitation-contraction 

coupling [8]. Calcium transients are similar in muscle fibers from Nox2 knockout and wild-

type mice [166], and force production is normal in p47phox and Nox2 knockout mice during 

single or repetitive fatiguing contractions [20, 38, 158]. Knockdown of Nox4 lowers tetanic 

force production in experiments with solutions gassed with 20% O2, 5%CO2 [8]. In contrast, 

we have found that twitch and tetanic forces are similar in muscles from whole-body Nox4 

knockout and wild type mice tested under standard in vitro conditions (95% O2, 5% CO2) 

[85]. However, adaptations that occur with embryonic deficiency of a protein might affect 
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redox balance in knockout animals. For instance, diaphragm from mice lacking p47phox have 

downregulation of protein levels of antioxidant enzymes SOD1 and catalase [38] and 

upregulation of Nox4 protein levels (B. Ahn and L. Ferreira, unpublished observations). In 

this regard, pharmacologic compounds are useful to resolve acute effects of Nox inhibition. 

Apocynin blunts depolarization-induced Ca2+ release in myotubes [164]. In isolated fibers, 

Nox2ds-tat or GKT137831 did not change Ca2+ transients or force during repetitive 

fatiguing contractions, but appeared to increase resting Ca2+ concentration [122]. At this 

stage, it is difficult to define the specific role of Noxes as modulators of E-C coupling. Data 

from knockout animals suggest that Nox2 or Nox4 are not required for normal E-C coupling 

in skeletal muscle.

Angiotensin II-induced muscle abnormalities

Angiotensin II mediated signaling has been identified as an important component of skeletal 

muscle abnormalities in cancer [167], muscular dystrophy [168], mechanical ventilation 

[169], and chronic heart failure [170, 171]. Wei et al. [172] demonstrated that angiotensin II 

increases ROS in skeletal muscle cells. This increase in ROS was associated with higher 

levels of p47phox and p67phox in the plasma membrane fraction and was blunted by 

apocynin. Apocynin, gp91ds-tat, or knockdown of p47phox inhibited responses stimulated by 

angiotensin II in muscle cells [172–174]. Similarly, whole-body p47phox knockout mice are 

protected from increases in skeletal muscle ROS and atrophy elicited by systemic 

administration of angiotensin II [157]. Therefore, Noxes are critical mediators of angiotensin 

II signaling in skeletal muscle cells.

Insulin-signaling and glucose transport

ROS are mediators of insulin signaling and glucose transport in skeletal muscle, and Nox-

derived ROS play a critical role in these processes. For instance, Espinosa et al. [175] 

demonstrated that insulin promotes sarcolemmal translocation of p47phox and increases ROS 

levels in cultured muscle cells. The increase in ROS stimulated by insulin was blunted by 

knockdown of p47phox, suggesting a role for Nox2 on insulin signaling [175]. Consistent 

with this notion, Nox2 knockout mice have higher baseline levels of plasma glucose and 

insulin compared to wild type animals [161]. Muscle contraction and stretch stimulate 

glucose transport in a ROS-dependent manner [176, 177], and recent studies have indicated 

that Rac1 is required for contraction- and stretch-stimulated glucose uptake in skeletal 

muscle [76, 178]. These findings suggest Nox2-derived ROS as potential mediators of 

skeletal muscle glucose transport. However, the stimulating effects of ROS on muscle 

glucose transport are concentration-dependent. High levels of ROS impair insulin signaling 

and cause insulin-resistance [146]. For instance, Nox2-derived ROS mediates insulin 

resistance induced by angiotensin II in muscle cells [172, 174]. Skeletal muscle insulin 

resistance after myocardial infarction is associated with elevated Nox activity and 

ameliorated by systemic administration of apocynin [179]. A direct role for Nox2 in insulin 

resistance has also been shown with high fat diet. Specifically, abnormalities in insulin 

signaling and glucose transport caused by high fat diet were blunted in Nox2 knockout 

animals [161]. Therefore, the relationship between Nox-derived ROS and insulin signaling/

glucose transport is likely a bell-shaped curve, as with muscle contraction [3]
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Mechanotransduction

Emerging data suggest that ROS are important in mechano-sensing and signaling in striated 

muscles. This phenomenon has been termed X-ROS and was reviewed in detail by Ward et 

al. [141]. The working hypothesis is that Rac1 is associated with microtubules and activates 

pre-assembled Nox2 complexes upon mechanical perturbation [141]. Stretching causes 

pronounced increases in ROS production by muscle [25, 176, 180]. Nox2 appears to be the 

primary source of stretch-induced ROS. Specifically, stretch-induced increase in ROS is 

absent in skeletal muscle fibers that lack Nox2 or Rac1 [25, 76]. Nevertheless, Nox4 may 

also be involved in mechanotransduction in skeletal muscle. For instance, Ito et al [181] have 

shown that Nox4 knockout or pharmacological inhibition of Nox4 blunted signaling through 

mTOR (mammalian-target of rapamycin) and prevented overload-induced skeletal muscle 

hypertrophy. However, it is unclear whether Nox4 is directly involved in 

mechanotransduction or if the blunted hypertrophy is secondary to impaired angiogenesis in 

whole-body Nox4 knockout [182]. Importantly, the data from Ito et al. [182] suggest that 

ROS derived from Nox4 are critical mediators of biological responses of skeletal muscle 

tissue to mechanical stress, i.e., overload.

Diseases, muscular dystrophies, and aging

Skeletal muscle Nox subunits are upregulated and appear to contribute to skeletal muscle 

abnormalities in muscular dystrophy [32, 37, 183, 184], several chronic acquired diseases 

[20, 185], and aging sarcopenia [90]. Skeletal muscles of the mdx mouse model of 

Duchenne Muscular Dystrophy show elevated mRNA or protein levels of Nox2 subunits 

(p47phox, p67phox, Rac1, and Nox2) [32, 37, 183, 184]. The increase in Nox2 subunits is also 

evident in cultured primary myotubes from mdx mice [184], suggesting that a mechanism 

independent of infiltration of macrophages underlies the overexpression of Nox2 subunits in 

Duchenne Muscular Dystrophy. Recent studies suggest that Nox2 plays a causative role on 

the pathology of Duchenne Muscular Dystrophy. Specifically, the Nox inhibitor Nox2ds-tat 

and knockout of p47phox blunt excess ROS and skeletal muscle abnormalities in mdx mice 

[37, 184]. Heart failure also increases Nox2 subunits in limb and diaphragm muscle of mice 

[20, 179]. Recent studies point to Nox2 as a mediator of skeletal muscle dysfunction in heart 

failure [20, 179]. For instance, mice lacking p47phox are protected from increases in 

diaphragm ROS and weakness induced by heart failure [20]. Moreover, there is indirect 

evidence to suggest the involvement of Noxes in muscle abnormalities in other settings. 

Specifically, apocynin prevents increases in markers of redox imbalance, atrophy, and loss of 

specific force in sepsis or mechanical ventilation [123, 124]. Overall, the findings 

summarized above show the importance of Noxes to the pathophysiology of skeletal muscle 

abnormalities.

Osmotic stress

Skeletal muscle fibers are exposed to a number of shifts in intracellular and extracellular 

solute content during exercise, heat, and dehydration. These changes in solutes can result in 

osmotic stress and stimulate ROS production [186]. Exposure to a hypotonic extracellular 

fluid, experimentally causing muscle fibers to swell, elevates ROS and triggers Ca2+ sparks 

[187, 188]. Both the ROS signal and Ca2+ sparks can be inhibited by apocynin [187], 
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suggesting that Noxes might be involved in skeletal muscle responses to osmotic stress. 

However, a causal role remains to be established with genetic manipulations or specific 

pharmacologic inhibitors.

Conclusions

Skeletal muscle cells express several Nox isoforms. The cellular localization of Nox 

subunits in skeletal muscle seems distinct from other cell types. It has become clear that 

Noxes are critically involved in redox homeostasis in skeletal muscle cells. Nox2 is the main 

source of ROS during repetitive skeletal muscle contractions, while Nox4 is required for 

overload-induced skeletal muscle hypertrophy. In disease states, Nox2 contributes to the 

pathophysiology of muscular dystrophy, muscle fiber atrophy, and contractile dysfunction. 

However, evidence supporting the involvement of skeletal muscle cell-specific Noxes and 

their regulation in hypertrophy and diseases is still lacking. Overall, we are in the early 

stages of understanding factors and mechanisms regulating Nox expression, activation, and 

deactivation in skeletal muscle cells. The initial evidence suggests some level of similarity in 

these pathways across cell types. However, aspects unique to skeletal muscle cells are also 

likely to emerge. These will be relevant for rational drug design and interventions to 

specifically manipulate Nox expression and activity in skeletal muscle.
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Highlights

• Skeletal muscle cells express Nox1, Nox2, and Nox4 isoforms and 

subunits

• Nox2 and Nox4 are critical sources of skeletal muscle ROS in health 

and disease

• Recent studies suggest unique aspects of Nox2 and Nox4 in skeletal 

muscle

• Several studies suggest a cross-talk between Nox2 and mitochondrial 

ROS
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Figure 1. 
Schematic diagram of Nox2 (A) and Nox4 (B) complex and associated proteins that 

modulate enzyme activity. GEF: Guanine exchange factors, GAP: GTPase-activated 

proteins, GDI: GDP-dissociation inhibitor, Tks4/5: tyrosine kinase substrate 4/5, Hsp70: 

heat shock protein 70; Poldip2: polymerase (DNA-directed) delta-interacting protein 2. 

Other heat shock proteins also interact with or modulate Nox2 and Nox4 [101, 189], but 

their relevance to skeletal muscle biology is less clear.
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Figure 2. 
Schematic diagram of conformational changes in p47phox that promote binding to the cell 

membrane and activation of Nox subunits. * High concentration of arachidonic acid 

promotes a conformational change in p47phox similar to that elicited by phosphorylation, 

without adding the phosphate group, and activates Nox. AIR: auto-inhibitory region, PRR: 

proline-rich region, SH3: Src-homology domain 3, PX: PX domain. Figure adapted from ref. 

[33, 46]

Ferreira and Laitano Page 27

Free Radic Biol Med. Author manuscript; available in PMC 2017 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 3. 
Illustration of redox cross-talk between Nox and mitochondria. The cartoon includes 

potential sites of reactive oxygen species (ROS) production, localization of Nox2 

(sarcolemma) and Nox4 (sarcoplasmic reticulum and mitochondria), and examples of factors 

that can trigger the redox cross-talk by acting initially on Nox2 or mitochondria. SOD: 

superoxide dismutase, TRP: transient receptor potential channel GSH: glutathione, 

mitoKATP: mitochondrial ATP-sensitive potassium channel, ETC: electron transfer chain, 

PKC: protein kinase C, Src: tyrosine kinase Src, RyR: Ryanodine receptor channel. The 

figure is based on concepts developed by Profs. Brandes [133], Daiber [134], and Dikalov 

[135, 190] and is adapted to skeletal muscle.
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