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Abstract

Autophagy is a cellular degradative pathway that involves the delivery of cytoplasmic components, 

including proteins and organelles, to the lysosome for degradation. Autophagy is implicated in the 

maintenance of skeletal muscle; increased autophagy leads to muscle atrophy while decreased 

autophagy leads to degeneration and weakness. A growing body of work suggests that reactive 

oxygen species (ROS) are important cellular signal transducers controlling autophagy. 

Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases and mitochondria are major 

sources of ROS generation in skeletal muscle that are likely regulating autophagy through different 

signaling cascades based on localization of the ROS signals. This review aims to provide insight 

into the redox control of autophagy in skeletal muscle. Understanding the mechanisms by which 

ROS regulate autophagy will provide novel therapeutic targets for skeletal muscle diseases.
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Introduction

Cellular homeostasis, essential for tissue development and cell survival, is maintained by a 

balance of protein synthesis and degradation. Skeletal muscle is a highly plastic tissue, 

effectively adapting to changes in metabolic demand. There are three major pathways 

regulating proteolysis is skeletal muscle: 1) the ubiquitin proteasome pathway (UPP); 2) the 

caspase-3 and calpain (calcium dependent protease) pathway; and 3) the autophagy-

lysosomal pathway. Recently, mitochondrial specific proteases (i.e. Lon protease) have been 

shown to be upregulated in skeletal muscle in response to acute oxidative stress (1); 

however, its role in regulation of autophagy has not been investigated. Oxidative stress has 

been shown to increase protein breakdown through increased gene expression of key atrophy 

related protein such as atrogins and MuRF-1 (2, 3), as well as increase the activity of calpain 
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and caspase-3 (4, 5). Oxidative modification of proteins also causes partial unfolding, 

promoting the exposure of hidden recognition sequences that facilitate their proteolytic 

degradation. Oxidation of myofibrillar proteins promotes proteolytic cleavage by calpain and 

caspase-3 (4, 5), which is required to facilitate degradation by UPP (6–8). While oxidized 

proteins are cleared by UPP and the calpain/caspase-3 pathways, large protein aggregates 

and damaged organelles are degraded by the autophagy-lysosomal pathway.

Autophagy is a homeostatic process that clears protein aggregates and damaged organelles 

through the autophagosome-lysosome system. Autophagy has recently gained immense 

attention for its role in metabolic homeostasis and disease progression of skeletal muscle. 

Alterations in autophagic flux are commonly observed in response to stress and have been 

shown to increase in skeletal muscle in response to starvation, denervation, disuse atrophy, 

hypoxia, and exercise (9–12). A number of factors and signaling pathways have been shown 

to contribute to the regulation of autophagic flux. Among them, reactive oxygen species 

(ROS) have been implicated in the control of autophagic flux.

Oxidative stress may occur through an increase in ROS levels or a decrease in the cellular 

antioxidant capacity. While a certain level of ROS is essential for the regulation of cell 

growth and various biological functions, a disrupted ROS balance has negative implications. 

For example, oxidative stress has been associated with a number of pathological conditions, 

including neurodegenerative disorders (13–18), skeletal muscle disorders (19–23), 

lysosomal storage disorders (24, 25), cardiomyopathy (26, 27), carcinogenesis (28, 29), 

atherosclerosis (30, 31), diabetes (32, 33), and aging (34, 35). While the involvement of 

oxidative stress is firmly demonstrated in these pathological conditions, the specific source 

of ROS generation and the mechanisms by which each disease is regulated by ROS has yet 

to be elucidated. While ROS and autophagy were first described a number of years ago; the 

precise mechanisms of ROS-regulated autophagy and effective therapeutic strategies still 

remain to be discovered. Due to the compelling recent evidence associating autophagy with 

skeletal muscle homeostasis, we focus this review on summarizing the identified molecular 

mechanisms of ROS-regulated autophagy and their relevance to skeletal muscle health and 

disease.

Overview of Autophagy Signaling

Autophagy is an evolutionarily conserved cellular degradation pathway that involves 

breakdown of cytoplasmic components by the lysosome. In general, autophagy is 

categorized by three main types: microautophagy, chaperone-mediated autophagy (CMA), 

and macroautophagy (36, 37).

Microautophagy

Microautophagy is a non-selective lysosomal degradative process which directly engulfs the 

cytoplasmic cargo and eliminates them by both invagination and vesicle scission (38, 39). 

While microautophagy is unresponsive to amino-acid deprivation (39), little else is known 

regarding the mechanisms regulating miroautophagy in mammalian cells.
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Chaperone-mediate autophagy (CMA)

During CMA, cytoplasmic cargo is targeted to the lysosome, where it is degraded by 

lysosomal enzymes (40–42) (Figure 1). The pentapeptide motif of CMA substrates contains 

a glutamine (Q) residue at the beginning or end of the sequence, one or two of the positive 

charged amino acids lysine (K) or arginine (R), one of the hydrophobic amino acids, 

phenylalanine (F), valine (V), leucine (L) or isoleucine (I) and one of the negatively charged 

amino acids, glutamic (E) or aspartic acid (D) (40, 43, 44). In the cytosol, a constitutive 

chaperone, heat shock cognate protein of 70 kDa (Hsc70), along with other co-chaperones 

(Bag1, Hip, Hop and Hsp40), bind to the substrate on the pentapeptide motif KFERQ, which 

is present in the amino acid sequence of all CMA substrates, consequently transporting it to 

the surface of the lysosomal membrane (40, 43, 45).

Once the substrate complex is targeted to the lysosomal surface, it interacts with the 

cytosolic tail of lysosomal-associated membrane protein type 2A (LAMP-2A). The 

monomeric LAMP-2A forms multi-protein complex structures, along with many other 

proteins, promoting the translocation of CMA substrates. CMA substrates can be introduced 

to this multi-protein complex in the folded or unfolded state; however, translocation of the 

substrates can only be carried out in the unfolded form (46, 47). The folding and unfolding 

of CMA substrates are tightly regulated by Hsc70 and the other co-chaperones. Once the 

CMA substrates are internalized into the lysosomes, they are degraded by lysosomal 

hydrolases. Subsequently, LAMP-2A dissociates from the multi-protein complex to form 

monomers, where another CMA substrate can bind, and thus this dynamic process maintains 

the homeostasis of CMA (48). Alterations in redox balance and subsequent oxidative stress 

is one of the major factors that regulate the levels of LAMP-2A (40, 48–50). The role of 

CMA in skeletal muscle has not been widely studied. Increased LAMP2A has been reported 

in mouse skeletal muscle after a single bout of exercise (51). Additionally, abnormalities of 

CMA have been observed in sporadic inclusion-body myositis muscle fibers (52).

Macroautophagy

Macroautophagy, referred to here as autophagy, is the most investigated form of autophagy 

and is characterized by the formation of double-membrane structures, called 

autophagosomes, which sequester cytoplasmic substrates and fuse with lysosomes to 

eliminate damaged components or recycle end products for production of energy that 

regulates cellular homeostasis (53, 54) (Figure 2). Substrates of autophagy include damaged 

proteins, organelles, inclusion bodies, and superfluous and invasive bacteria (36, 53, 55). 

Precise regulation of autophagy is a highly selective process, as it critically depends on 

engulfment of specific substrates within autophagosomes, while preventing engulfment of 

undamaged cytoplasmic contents (55). Due to the vast range of substrate selectivity, 

autophagic pathways can be impaired through a wide range of mechanisms that vary in each 

disease. Therefore, understanding the key regulators of autophagy in mammalian cells and 

how they are altered under different pathological conditions has gained immense attention in 

recent years.
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Control and regulation of autophagy

Low basal levels of autophagy allow cells to break down long-lived and large cytosolic 

protein aggregates and organelles, which has been shown to be necessary for cell survival. 

The regulatory process of autophagy is divided into two distinct forms, selective and 

nonselective autophagy. Selective autophagy is mainly regulated under homeostatic 

conditions; while, nonselective autophagy is induced upon starvation or in response to 

external or internal stress related conditions (56). Both selective and nonselective autophagy 

are regulated by core autophagic machinery structured by a number of autophagy-related 

(ATG) genes that have been identified by large-scale genetic screening in yeast almost three 

decades ago (57). Most of the ATGs identified in yeast have mammalian counterparts, where 

they are actively involved in regulating autophagy by highly-conserved mechanisms in the 

initiation of double-membrane autophagosome formation (54, 56–58).

Initiation of autophagosome formation

In mammalian cells, formation of the autophagosome is initiated by a complex consisting of 

the serine/threonine protein kinase unc-51-like kinase-1 (ULK1) and -2 (ULK2), FIP200, 

and Atg13 (53, 56–58). The classical paradigm of autophagosome formation is controlled by 

two master regulators of ULK, mammalian target of rapamycin (mTOR) complex1 and 

AMP-activated protein kinase (AMPK) (59–63). mTOR is a serine/threonine kinase which 

acts as a central inhibitor of autophagy by inhibiting ULK1 activity through phosphorylation 

at S757, thereby disrupting its interaction with AMPK. Under nutrient starvation, mTORC1 

is inhibited, resulting in its dissociation from the ULK1 complex with subsequent 

dephosphorylation and activation of ULK1. Recent studies have identified the association 

between AMPK and ULK1. Bioinformatics approaches have screened several possible 

AMPK-phosphorylation sites in ULK1 (S555, T574, S637, and S467). However, all the 

phosphorylation sites have not been confirmed in vivo. Recently, using systematic 

mutagenesis, two major AMPK-phosphorylation sites in ULK1 (S317 and S777) were 

identified and later confirmed by cell based assays (62, 63). AMPK-dependent 

phosphorylation of ULK1 increases ULK1 activity and promotes autophagy (63). In addition 

to ULK1 phosphorylation, AMPK can directly phosphorylate the Tuberous sclerosis 

complex2 (TSC2), leading to the inactivation of the GTPase Rheb, which directly binds to 

and activates mTORC1 kinase activity (62). AMPK-mediated inactivation of mTORC1 

increases ULK1 activity and promotes autophagy.

Nucleation of the phagophore

The nucleation and assembly of the initial phagophore membrane is a major determinant of 

mature autophagosome formation. This process is centrally regulated by a complex which 

consists of class III phosphatidylinositol 3-kinase (PI3K or hVps34), its regulatory subunits 

p150 or hVps15, Beclin1, and Atg14L, the relatively recent discovered mammalian 

homology of Atg14 (56, 57, 64, 65). The activity of this complex is tightly controlled by 

several positive and negative regulators, and is often dysregulated in various pathological 

conditions. Recent studies have implicated an mTORC1/AMPK-independent regulation of 

autophagy, which is directly dependent on the interaction between Beclin1 and hVps34 (66). 
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However, the precise mechanisms by which ULK:Atg13:FIP200 complex connects with 

beclin1:hVps34:Atg14L complex has not been clearly established.

Elongation of the phagophore, autophagosome formation, and fusion

Elongation of the autophagophore is critical for the completion of the autophagosome. 

Atg12 conjugates with Atg5, and the conjugated Atg12:Atg5 complex interacts with Atg16L 

to form a multimeric complex Atg12:Atg5:Atg16L. This multimeric complex associates 

with the microtubule-associated protein-light chain 3 (LC3) conjugation system, which is 

recruited by the beclin1:hVps34:Atg14L complex to form the mature autophagosome (56, 

57, 67–69). While mammalian cells express three variants of LC3 (LC3A, LC3B, LC3C), 

LC3B is expressed in nearly all tissues and is the most widely used marker of autophagic 

flux (70). Conjugation of phosphatidylethanolamine (PE) to soluble LC3B (LC3B-I) is 

mediated by the protease Atg4 followed by Atg3 and Atg7. The lipidated form of LC3B 

(LC3B-II) is associated with the outer and inner membranes of the autophagosome for the 

induction and maturation of the autophagosome (71–73). Atg4 also acts to delipidate LC3B-

II present on the cytoplasmic face of the autophagosome, recycling it back to LC3B-I, 

thereby ensuring elongation of the autophagosome. Autophagosomes move along 

microtubules in a dynein/kinesin dependent manner to the lysosome and fuse with the 

lysosome to form the autolysosome. Lysosomal acid hydrolases then degrade the autohagic 

cargo.

Redox balance, oxidative stress and redox control of autophagy in skeletal 

muscle

ROS are produced at relatively low rates under physiological conditions in skeletal muscle 

fibers and exert positive effects on gene expression, regulation of cell signaling, and 

modulation of contractile force. In contrast, high levels of ROS result in damage to cellular 

components such as proteins and organelles, leading to muscle dysfunction. The role of ROS 

and oxidative stress in the regulation of skeletal muscle has been extensively reviewed 

elsewhere (74–81) as well as in this Special Issue.

Indeed, autophagic flux has been shown to participate in pro-atrophic stimuli (11, 12, 82–

90), fasting (91, 92), high fat diet/insulin resistance (93, 94), hypoxia (95), and exercise (9, 

96–101). Conversely, impaired autophagy has been reported in several myopathies (23, 102–

108). While autophagy and oxidative stress have been studied individually, little is known 

about the molecular regulation of autophagy by ROS. A number of studies, as reviewed 

below, report that ROS induces autophagy and, vice-versa, autophagy serves to reduce 

oxidative stress.

Much of the work that has reported on autophagy and oxidative stress in skeletal muscle 

merely hypothesize that ROS are crucial for induction of autophagy (11, 82–84, 86, 87, 91, 

95), as direct cause and effect was not established. More direct evidence that ROS regulates 

autophagic flux comes from Dobrowolny et al (109), who have shown that skeletal muscle 

expressing a mutant form of superoxide dismutase 1 (SOD1G93A) increases oxidative stress 

and triggers activation of autophagy, leading to muscle atrophy and weakness. In addition, 
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pharmacological application of H2O2 has been shown to induce autophagy in C2C12 

myotubes (85, 110, 111). Concomitantly, antioxidant treatment has been shown to inhibit the 

induction of autophagy (92, 94, 110, 112). In a mouse model of muscular dystrophy, we 

have shown that blocking Nox2-dependent ROS production relieves inhibition of autophagy 

and improves muscle function (23). On the contrary, skeletal muscle specific genetic 

knockout of Atg7 showed an altered metabolic profile, defective mitochondrial respiration, 

and increased steady state ROS production (113–115), suggesting that decreased autophagy 

results in increased production of ROS. It is clear that ROS and autophagy play a role in 

skeletal muscle homeostasis; however, it is unclear how up or down regulation of these 

processes induce a negative or beneficial response. The emerging theme is that the amount 

of ROS generated and its sub-cellular localization are major determinants of ROS-mediated 

autophagy regulation in skeletal muscle (Figure 3).

The source of ROS in regulation of not only autophagy, but many skeletal muscle cell 

signaling cascades is an area of active research. There are a number of potential sources of 

ROS production in skeletal muscle. These include mitochondria, NADPH oxidase (Nox), 

xanthine oxidase, and phospholipase A2 (reviewed in (74, 75)). However, mitochondria and 

Nox isoform 2 (Nox2) have emerged as the two main sources of ROS production. 

Mitochondria have been proposed as the primary source of ROS to regulate autophagy in 

many cell types (116–120), including skeletal muscle (86, 91, 109, 110). The role of Nox2 in 

regulation of autophagy is less clear. In macrophages, Nox2-dependent ROS has been shown 

to induce autophagy upon bacterial infection (121, 122), functioning as an innate immune-

defense mechanism. In a cellular model of neurodegeneration we have shown that rotenone, 

a prototypical mitochondrial complex I inhibitor, increases Nox2-dependent ROS production 

(18), resulting in inhibition of autophagy. To our knowledge, we are the only group to show 

that Nox2-generated ROS regulates autophagy in skeletal muscle. We found that exuberant 

Nox2-dependent ROS production impairs autophagic flux in skeletal muscle (23).

While many studies show that ROS are a signal to induce or impair autophagy, we still know 

very little about the mechanisms of action. Some studies have shown that ROS activate 

autophagy by regulating the activation of the PI3K/Akt/mTORC1-signaling pathway. In 

malignant glioma, ROS promoted autophagy by inhibiting Akt/mTOR signaling (123, 124). 

In a hindlimb casting model of disuse atrophy, Talbert et al (125) have shown that 

mitochondrial ROS promote inhibition of Akt/mTOR and subsequent induction of 

autophagy. In our recent study, we have demonstrated that ROS generated from Nox2 

induces activation of mTORC1 through activation of a Src/PI3K/Akt pathway, and thus 

ROS-mediated activation of mTORC1 inhibits autophagy in a dystrophic mouse model (23).

Another potential pathway for ROS dependent regulation of autophagy is through p38 

MAPK/p53. Mitochondrial ROS was shown to induce autophagy through a p38/p53 

dependent path in A375 cells (126). In skeletal muscle, ROS induced autophagy in a p38 

MAPK dependent manner (85). Interestingly, Yuan et al (127) have shown that the p38/p53 

pathway appears to not only activate autophagy, but to be involved in a positive feed-back 

response, as both p38 and p53 were shown to increase ROS production in cardiomyocytes. 

Inhibition of the p53-target gene TIGAR (TP53-induced glycolysis and apoptosis regular) 
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results in increased ROS production and activation of autophagy (mitophagy), (128) while 

TIGAR overexpression results in decreased ROS levels and inhibition of autophagy (129).

AMPK, a widely established sensor of cellular energy levels, is an essential regulator of 

muscle metabolism during exercise, as well as in skeletal muscle adaptation to exercise 

training (reviewed in (130)). Alterations in redox balance have been shown to regulate 

AMPK activity. Exposure of C2C12 cells to pharmacological H2O2 concentrations resulted 

in activation of AMPK (110, 111), with a subsequent increase in autophagy (110).

The tumor suppressor gene PTEN (phosphatase and tensin homolog deleted on chromosome 

10) is inhibited by oxidative stress (131–135). Inactivation of PTEN results in an increase in 

cellular PIP3 levels, activation of PI3K/Akt, and subsequent activation of autophagy. PTEN 

can also regulate ROS production, providing a feedback loop in which Nox may be 

intimately poised to regulate this signaling (131). While ROS has been shown to activate Akt 

through inhibition of PTEN in C2C12 myotubules (135), its role in regulating autophagy in 

skeletal muscle has not been directly assessed.

In Chinese Hamster Ovary (CHO) cells, nutrient deprivation resulted in increased ROS 

production, specifically mitochondrial H2O2, oxidation and inactivation of Atg4, thus 

preventing its delipidation of LC3B-II and ensuring elongation of the autophagosome (120). 

REDD1 (regulated in development and DNA damage responses 1), is a hypoxia-inducible 

factor-1 target gene and plays a crucial role in inhibiting mTORC1 (136). Ellisen and 

colleagues (137) have shown that hypoxia and exercise increase ROS production through a 

REDD1/TXNIP pro-oxidant complex, inhibiting Atg4 activity and promoting autophagy. 

Mice lacking REDD1 displayed impaired oxidative phosphorylation and reduced exercise 

capacity, presumably due to altered Atg4 activity and decreased mitophagy.

The Forkhead box O (FoxO) transcription factors play essential roles in regulation of muscle 

physiology (10, 12). They are phosphorylated and inactivated by Akt/PKB and 

predominantly localize in the cytosol. However, in response to Akt supression, FoxO 

translocates to the nucleus, inducing transcription of atrophy related genes (atrogin 1 and 

MuRF-1) and the autophagy related genes cathepsin L, Bnip3, and LC3B (10). While basal 

autophagy is essential for the maintenance of metabolic homeostasis, oxidative stress-

dependent activation of FoxO3 and subsequent up-regulation of FoxO3-mediated autophagy 

have been shown to promote muscle atrophy and weakness (10, 138). Other studies have 

also demonstrated that ROS generation induces activation of Akt (139–142), an event that 

negatively regulates transcriptional activity of FoxO3. Therefore, the precise role of 

oxidative stress on FoxO-mediated autophagy in skeletal muscle remains unclear.

Regulation of redox balance by autophagy

Dysregulation in the homeostasis of autophagy promotes ROS generation and subsequent 

alterations in redox balance. Impairment of autophagy leads to cytosolic-accumulation of 

ubiquitinated proteins that induces mitochondrial damage and promotes ROS generation 

(143). In squamous cell carcinoma cells autophagy was shown to increases ROS generation 

from xanthine oxidase, leading to mitochondrial damage and exacerbating oxidative stress 
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(144). Keap1 (Kelch-like ECH- associated protein 1) binds Nrf2 (nuclear factor erythroid 2-

related factor 2), sequestering Nrf2 in the cytoplasm and preventing transcriptional 

regulation of antioxidant genes. Autophagic degradation of Keap1 allows Nrf2 to translocate 

to the nucleus and bind the antioxidant-responsive elements (ARE) in the promoter region of 

antioxidant genes (145). Skeletal muscle specific knockout of Atg7 leads to dysfunctional 

mitochondria, oxidative stress, myofiber atrophy, and muscle weakness (102, 113–115). 

Although it is not clearly established whether autophagy is a major checkpoint for the 

control of redox balance, together, these studies suggest that alterations in redox balance 

coordinate with changes in autophagy.

Autophagy is differentially regulated in fast-twitch glycolytic and slow-

twitch oxidative muscle

Several lines of evidence suggest that autophagy signaling is differentially regulated between 

muscles with distinct fiber type distribution and metabolic characteristics. Analysis of 

autophagsome formation in skeletal muscle in response to starvation has indicated that there 

is a significantly greater increase in glycolytic muscle (tibialis anterior, TA) compared to 

oxidative muscle like the diaphragm (105, 108, 146). After spontaneous wheel running for 3 

months, TA muscle from mice, did not show any evidence of autophagy induction (LC3 

lipidation) (9). Conversely, in plantaris muscle, composed of glycolic and oxidative fibers, 

from mice subjected to 4 weeks of voluntary running displayed increased LC3 lipidation, 

decreased p62 protein content, and increased expression of several autophagy-related 

proteins (i.e., Atg6, LC3, and Bnip3) (101, 147). Inactivation of mTORC1 signaling resulted 

in greater atrophy in glycolytic muscle fibers compared to oxidative muscle fibers (148, 

149). In this regard, muscle specific ATG5 knockout mice showed increased p62 protein 

content and accumulation of cytoplasmic ubiquitinated proteins in glycolytic muscle fibers 

but not oxidative muscle fibers (150).

Autophagic flux also shows fiber-type variability in myopathic conditions. Autophagy is 

severely compromised in glycolytic TA compared to the more oxidative diaphragm muscle 

in both Collagen VI (105) and Duchenne muscular dystrophies (108, 146). Deficiency of the 

glycogen-degrading lysosomal enzyme acid-alpha glucosidase (Pompe disease) resulted in 

accumulation of p62, LAMP-1, and ubiquitinated proteins in fast glycolytic fiber of the 

gastrocnemius but not slow oxidative fibers of the soleus (150). In a mouse model of sepsis, 

LPS induced upregulation of autophagy was greater in the TA than either the diaphragm or 

soleus (86). Pessin and colleagues (151) have shown that a Fyn/STAT3/Vps34 pathway 

upregulates macroautophagy in glycolytic muscle, with less effect on oxidative muscle. 

Finally, in a rat model of myocardial infarction, autophagy-related genes (MAP1LC3B, 

GABARAPL1, BNIP3 and CTSL1) were upregulated in plantaris (glycolytic) muscle fibers 

but not soleus muscle fibers; even though both fiber types showed marked atrophy (152).

Taken together, there is sufficient data indicating that autophagy is differentially regulated in 

a fiber-type specific manner. However, the basis for the selectivity under different 

physiological or pathophysiological conditions and what role oxidative stress may play are 

important yet unresolved issues.
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Conclusions

ROS play an important role in controlling a wide range of cell signal transduction pathways 

and modulation of skeletal muscle force. Autophagy is an important cell survival mechanism 

that is now recognized to be crucial in skeletal muscle health. Both ROS and autophagy 

likely have either beneficial or detrimental effects, depending on their balance. While ROS 

have been shown to promote autophagy in skeletal muscle, ROS have also been shown to 

impair autophagy. An important question is how ROS crosstalk with autophagic signaling. 

While we have begun to uncover the role of redox signaling in regulation of specific 

signaling cascades in autophagy, intricate details of this process have yet to be elucidated. It 

is likely that the amount of ROS generated and the specific sub-cellular localization of ROS 

are major determinants of ROS-mediated autophagy regulation in skeletal muscle. Future 

studies aimed at understanding the control of autophagy through micro-domain redox 

signaling will aid in our understanding of the control of autophagy, providing valuable 

information for the development of selective therapies for skeletal muscle dysfunction.
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Highlights

Autophagy regulates skeletal muscle homeostasis.

Skeletal muscle atrophy occurs due to increased autophagy.

Impaired autophagy leads skeletal muscle degeneration due to accumulation 

of damaged proteins and organelles.

Regulation of skeletal muscle autophagy by reactive oxygen species is due 

to sub-cellular production of ROS.
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Figure 1. Schematic diagram of chaperone mediated autophagy
Chaperone mediated autophagy is involved in the breakdown of damaged cytosolic proteins. 

Chaperones recognize a KFERQ motif on the targeted protein and deliver the protein to 

LAMP-2A on the lysosomal membrane for degradation. See text for details.
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Figure 2. Schematic diagram of macroautophagy
Macroautophagy involves the formation of distinct complexes during five sequential stages: 

(1) initiation, (2) expansion and elongation, (3) closure, (4) maturation and fusion of 

autophagosomes with lysosomes, and (5) degradation of the autophagic cargo. See text for 

details.
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Figure 3. Regulation of autophagy by ROS
Nox2 and mitochondria are the main sources of ROS in skeletal muscle. Activation or 

inhibition of autophagy is likely governed by micro-domain redox signaling and the amount 

of ROS produced. See text for details.
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