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Summary

In this article, we develop a piecewise Poisson regression method to analyze survival data from 

complex sample surveys involving cluster-correlated, differential selection probabilities, and 

longitudinal responses, to conveniently draw inference on absolute risks in time intervals that are 

prespecified by investigators. Extensive simulations evaluate the developed methods with 

extensions to multiple covariates under various complex sample designs, including stratified 

sampling, sampling with selection probability proportional to a measure of size (PPS), and a 

multi-stage cluster sampling. We applied our methods to a study of mortality in men diagnosed 

with prostate cancer in the Prostate, Lung, Colorectal, and Ovarian (PLCO) cancer screening trial 

to investigate whether a biomarker available from biospecimens collected near time of diagnosis 

stratifies subsequent risk of death. Poisson regression coefficients and absolute risks of mortality 

(and the corresponding 95% confidence intervals) for prespecified age intervals by biomarker 

levels are estimated. We conclude with a brief discussion of the motivation, methods, and findings 

of the study.
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1. Introduction

Lack of standard easy-to-use software has hindered the development and application of case-

cohort design (Prentice, 1986), despite practical advantages (Wacholder et al., 1992) and 

efficiency that are comparable to the standard nested case-control design.

* yli6@umd.edu. 

6. Supplementary Materials
The R codes for implementing multivariate piecewise exponential survival modeling are available with this paper at the Biometrics 
website on Wiley Online Library.
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Essentially, in a case-cohort design, biomarker levels are measured only in a subcohort or a 

random sample of individuals from a cohort, and in all the cases. The efficiency loss from 

case-cohort designs is small, but the cost-savings from measuring biomarkers only on the 

subcohort and on cases can be very large when the cases comprise a small fraction of the 

cohort. The savings arise from collecting or measuring expensive, individual data for 

members of the sample instead of the entire cohort.

Because all the covariates are available for cases and a random sample of the entire cohort, 

case-cohort studies allow estimation of any parameter that can be estimated from the full 

cohort. One particular advantage for biomarker studies in clinical epidemiology is that 

absolute risks of disease are easily available, unlike standard Cox proportional hazards 

modeling. In particular, case-cohort designs allow Poisson regression that provides estimates 

of the absolute risk with the additional benefit of allowing for multiple complex time 

variables (age, time since first exposure or randomization, time exposed, etc.) (Wacholder, 

1991). Poisson regression is also a reasonable alternative to fitting proportional hazards 

models for estimates of hazard ratios or risk ratios (Breslow et al., 1983).

Li et al. (2012) developed a piecewise-exponential approach where Poisson regression 

model parameters are estimated from pseudo-likelihood and the corresponding variances are 

derived by Taylor linearization methods. The simple piecewise exponential assumption 

allows efficient computation, even with time-varying exposures. In addition, the estimates of 

covariances retain the computational efficiency and the flexibility of Poisson regression 

methods. Methods by Li et al., (2012), however, were developed for the situation when the 

failure rate for each time interval is modeled only by a single categorical covariate. In this 

article, we extend their methods to a more typical, but more complex, problem of multiple 

covariates, both categorical and continuous, and emphasize the modeling of absolute 

survival rates in time intervals that are specified by the investigators. In addition, extensive 

simulations evaluate the extensions to multi-covariates under various complex sample 

designs, including stratified sampling, sampling with selection probability proportional to a 

measure of size (PPS), and a multi-stage cluster sampling.

This work was motivated by a study of mortality in men diagnosed with prostate cancer in 

the Prostate, Lung, Colorectal, and Ovarian (PLCO) cancer screening trial. The goal of the 

study was to evaluate whether a hypothesized biomarker available from biospecimens 

collected near time of diagnosis stratifies subsequent risk of prostate cancer death. In our 

sampling plan, all men who died of prostate cancer (cases) are selected with certainty and a 

subcohort of men diagnosed with prostate cancer is selected with stratified simple random 

sampling (SSRS) from the intervention arm of PLCO. The proposed piecewise Poisson 

regression method is applied to evaluate the prognostic value of a biomarker of interest 

among men diagnosed with prostate cancer. Poisson regression coefficients and absolute 

risks of mortality (and the corresponding 95% confidence intervals) for each of three 

prespecified age intervals by biomarker levels are estimated.

In Section 2, we describe the methodology. The performance of the proposed methods is 

evaluated using simulation studies with various sampling designs in Section 3 and illustrated 
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through application to the case-cohort data with SSRS from PLCO in Section 4. We 

conclude with a brief discussion in Section 5.

2. Methods

Let the follow-up time be divided into I disjoint time intervals, i = 1, 2, …, I, and x be a p-

vector of covariates, including both continuous and/or categorical covariates. Let N be the 

size of the total cohort. Suppose we have exposure data for a sample size d of observed cases 

and a subcohort of size n from the entire cohort. Denote tim and tik the time at risk in the ith 

interval for the mth and kth subjects from the case sample and from the subcohort, 

respectively, for m = 1, … , d and k = 1, … , n. We write the loglikelihood function as

where ξim denotes a disease indicator that is equal to 1 if the case m experiences the event in 

the time interval i. δk is an indicator variable that is equal to 1 if the kth subject in the 

subcohort becomes a case and equal to 0 otherwise.  and  are the sample weights of 

the mth and kth subjects selected from the case sample and from the subcohort, respectively; 

these weights are inverse of the selection probability. Absolute risk of failure at time interval 

i for individual j, rij = rij(xij; θi) with θi = (αi, β), is a function of a p-vector of regression 

covariates xij, αi the intercept parameter for time interval i, and β a p-vector of unknown 

parameters. We assume rij is twice differentiable with respect to θi. Denote  and  the 

first and second derivatives of rij with respect to the model parameter θ. As a function of the 

regression covariates, rij can be quite general and allows either a relative or absolute hazard 

form. Solve the associated pseudo-score equation

for θ and the solution  is a consistent estimator of θ (refer to Binder (1983) for conditions 

for consistency). A convenient way of approximating the variance for nonlinear estimators 

involves calculating the Taylor deviate of the estimator for each observation. Following Shah 

(2004), we derived the Taylor deviate by differentiating the weighted nonlinear estimator 

with respect to its weights.

For case m′, we have

(1)

and for control k′, we have
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(2)

where

Following Li et al. (2012), the variance of  can then be approximated by the variance of the 

weighted sum of

(3)

The estimate of the variance–covariance matrix of this weighted sum depends on the sample 

design for the selection of the cases and the subcohort. Assume cases are selected by simple 

random sampling, but allow for the subcohort to be selected with a complex design, 

involving stratification and/or clustering. Suppose the entire cohort is partitioned into 

primary sampling units (PSUs) with similar PSUs grouped into strata (for h = 1, … , H). 

Within stratum h, Ih PSUs are selected at the first stage and then at the second stage, that is, 

within selected PSU l (for l = 1, … , Ih) in stratum h, nhl individuals are selected such that 

the subcohort has the total sample size  with . We select the 

subcohort sample with possibly unequal probabilities of selections of the PSUs and/or 

secondary sampling units. Following Cochran (1977), the variance estimate is

(4)

where , , the weighted PSU total  and 

. If all cases are sampled and the subcohort is selected by stratified simple 

random sampling (SSRS), then w’s for the sample of cases are equal to one and the 

weighted PSU totals within strata are just the weighted individuals with Ih = nh and 

.
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Under multistage cluster sampling in large-scale population-based surveys, sampling of 

PSU’s at the first stage is often approximated by sampling with replacement due to small 

selection probabilities, even though the PSUs are selected without replacement (Rao and 

Rust, 2009). The Ih PSU totals of weighted Taylor deviates in stratum h, i.e.,  for l = 1, 

… , Ih, are then independent random variables, and their variances can be estimated by 

sample variance, i.e., the average of squared deviation of  from their stratum mean. 

Thus, the variability from sampling within PSU’s is accounted for in this variance estimation 

(Korn and Graubard, 1999).

3. Simulations

We conducted simulations to evaluate the performance of the proposed estimator and its 

variance estimator under various sampling designs that reflect typical epidemiologic studies. 

We assumed that exposed and unexposed individuals enter the cohort at a certain [the same 

or different age at entry] age and are followed for up to 15 years over three 5-year time 

intervals. Two sets of disease rates over three time-intervals are specified (λ1, λ2, λ3) = (90, 

150, 200) per 100,000 person-years and  per 100,000 

person-years, representing the 2000–2004 annual US mortality rates for all causes at ages 

60–64, 65–69, and 70–74, respectively, according the Surveillance, Epidemiology, and End 

Results (SEER) Program (http://seer.cancer.gov/).

The entire cohort of size N = 100, 000 is generated with two covariates (x1 and x2) and two 

sets of failure time, where x1 ~ binomial(N, π) with π = Pr(x1 = 1) = 0.3 and x2 ~ N(0 1); 

one set failure time t is generated from the piecewise exponential distribution with the rate in 

the ith time interval

where αi = ln(5λi/100, 000) for time interval i = 1, 2, 3 and β1 = β2 = ln(5) = 1.61; while the 

other set of failure time s is generated for competing causes with mortality rates of

with  for i = 1, 2, 3. With the two sets of failure time, the disease 

indicator at each time interval can be inferred by di = 1 if ti < 5 and ti < si; 0 otherwise; and 

di′ = 0 if di = 1 for any i < i′.

For simple illustration purposes, we sample all the cases. For the selection of the subcohort, 

three one-stage sample designs (simple random sampling [SRS], selection probability 

proportional to the size [PPS], stratified SRS [SSRS]) are applied. For PPS, we sample a 

subcohort with selection probability proportional to the size of the function of the failure 

time, i.e., , and therefore the inclusion probability  for j = 1, … , 

N. For SSRS, we form four strata of equal sizes, with strata defined by the value of x2, 
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increasing from stratum 1 to 4. The final sample weights for selected units are the inverse of 

the selection probabilities. Note that SRS is noninformative sampling, while the PPS and 

SSRS designs depend on the failure time t or the covariate x2 that predicts the failure time. 

We are expecting that the analysis without considering the designs of PPS and SSRS will 

produce biased estimates, whereas the proposed estimators, taking the design features into 

account, are design-consistent under various sampling designs. To make fair comparison 

among the three sample designs, we set the selection probability for SRS and PPS to be 0.01 

and selection probabilities for SSRS to be 0.016, 0.0064, 0.0128, and 0.0192, respectively, 

for the four strata so that all the three designs select subcohorts of the same sample size of 

1000.

Table 1 shows the relative biases of the model parameter estimates, their empirical variance 

estimates, and the ratio of linearization to empirical variance estimates from 1000 simulation 

runs. We observe the following: (i) the parameter estimates are approximately unbiased 

across SRS, SSRS, and PPS sampling designs with relative biases close to zero; (ii) 

compared to SRS and PPS, SSRS design is more efficient and produces smallest empirical 

variance estimates; and (iii) the proposed Taylor linearization variance estimates 

approximate the true variances well with the ratios of Taylor linearization to empirical 

variance estimates consistently close to the value of one.

In addition to the one-stage sampling designs described above (SRS, PPS, and SSRS), we 

also apply two-stage sampling to select the subcohort to study the clustering effect on the 

performance of the proposed estimators and their variances. To introduce the clustering 

effect, we sort the population by the value of the risk factor of x1, and then sequentially 

group the population into M = 1000 clusters of each cluster size of Nl = 100. As such, the 

population intracluster correlation ρ(x1) > 0. At the first stage of sampling, m = 40 clusters 

are randomly selected by PPS sampling, where the size for cluster l,  for l = 1, … , M, is 

defined by the cluster mean of the size value for each individual defined before, i.e., 

, the function of the failure time. At the second stage of sampling, 

stratified SRS is used to sample individuals within sampled clusters, where four equalsized 

strata have the value of x2 increasing from stratum 1 to stratum 4, and the selection 

probabilities are, respectively, 0.04, 0.16, 0.32, 0.48. As a result, the subcohort size is about 

n = 1000.

We include a variance estimator (denoted by var), for comparison purposes, that considers 

differential weighting effect but ignores the clustering effect, which is computed as the sum 

of the variance of weighted Taylor deviates in cases and the variance of weighted Taylor 

deviates in the sampled subcohort. Recall that the proposed linearization variance estimators 

account for both the differential weighting and clustering effects.

Table 2 shows the simulation results across the two multistage sample designs, with and 

without intracluster correlation of the risk factor x1. We observe that the variance estimates 

that ignore the clustering effect considerably underestimate the true (empirical) variances 

when population intracluster correlation ρ(x1) > 0 with the variance ratios smaller than 1 

(ranging from 0.312 to 0.768), while the proposed linearization variance estimators are 
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consistently close to empirical estimates whenever the population intracluster correlation 

ρ(x1) = 0 or ρ(x1) > 0.

The robustness of the proposed methods with various disease rates at the three time intervals 

with different population size (N = 5000) was also evaluated; the results showed a similar 

pattern (Table 3).

4. Application to PLCO Data

The PLCO trial, sponsored by the National Cancer Institute, is a multicenter randomized 

trial aimed at evaluating the effectiveness of prostate, lung, colorectal, and ovarian cancer 

screening modalities on cancer-specific mortality. The design and rationale are described in 

detail elsewhere (Prorok et al., 2000). In brief, 154,952 subjects (49.5% men and 50.5% 

women) aged 55–74 years were enrolled at 10 screening centers between September 1993 

and July 2001. 77,469 subjects (men n = 38, 340) randomized to the intervention arm 

underwent regular tests, including a prostate-specific antigen (PSA) test and digital rectal 

exam at baseline and annually thereafter for 3 years, followed by an additional 2 years of 

screening with PSA alone. Men with abnormal screening test results were referred to their 

personal physicians for a diagnostic evaluation. Cancer incidence and deaths were 

ascertained primarily through the Annual Study Update form, supplemented by periodic 

linkage to the National Death Index. All prostate cancer diagnoses and deaths were verified 

by ascertainment of medical records and death certificates. Information on the diagnosis of 

prostate cancer, including date of diagnosis, stage, and grade (Gleason score), were 

abstracted by trained medical record specialists. Participants were followed-up for cancer 

incidence and death through December 31st, 2009.

4.1. Aim

The aim of the current study, chosen to illustrate the application and performance of the 

piecewise Poisson method described in this article, was to evaluate the prognostic value for 

mortality risk of insulin-like growth factor (IGF)-1 among men diagnosed with prostate 

cancer.

4.2. Inclusion/Exclusion Criteria

Blood specimens were only available from men randomized to the intervention (screening) 

arm. As such, men from the control arm were ineligible for this study. Men were also 

considered ineligible if they were missing important covariates (PSA, Gleason score, or 

clinical stage), had no prediagnostic serum, or if their closest blood draw to diagnosis 

exceeded 7 years.

4.3. Case Definition

Cases were men in the intervention arm who were diagnosed with prostate cancer and 

subsequently died of prostate cancer. A total of 111 deaths due to prostate cancer were 

validated and selected with certainty, giving weights equal to one.
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4.4. Subcohort Sampling

After exclusions, 3259 men in the intervention arm who were diagnosed with prostate cancer 

remained eligible for inclusion. Measuring the biomarkers of interest in all of these men 

would have been cost-prohibitive, immensely time-consuming, and could result in further 

depletion of a precious specimen resource. Therefore, from these eligible men we selected a 

subcohort using stratified random sampling (SSRS) to evaluate the prognostic value of 

IGF-1 on prostate cancer mortality. Before sampling, we stratified the entire cohort by 

whether a case was prevalent, (i.e., diagnosed within 12 months of first screen), or incident 
(i.e., diagnosed more than 12 months after first screen), and by four categories of risk of 

prostate cancer mortality (low risk: PSA < 10 ng/ml and Gleason 2–6 and clinical stage T1/

T2a; intermediate-risk: clinical stage T2b/T2c or PSA 10–20 ng/ml or Gleason score 7; 

high-risk: PSA > 20 ng/ml or Gleason score 8–10, or clinical stage T3a; very high: T3b-T4 

or metastatic: Any T, N1, or Any T, Any N, M1) defined by the 2012 National 

Comprehensive Cancer Network guidelines for the risk stratification of men diagnosed with 

prostate cancer. Within these eight strata, we randomly selected ~20% of the men within 

low-, intermediate- and high-risk strata and oversampled the very-high-risk strata with 

respective selection probabilities 69 and 92% for prevalent and incident cases. Overall, a 

subcohort of 594 men diagnosed with prostate cancer was selected for the analysis. The 

weight for each subcohort control participant is the inverse of the selection probability.

4.5. Covariates and Follow-Up Time

Body weight and height, race, history of diabetes, and other comorbidities were collected at 

baseline on a self-administered lifestyle questionnaire, while the IGF-1 was measured at the 

time of subcohort selection using blood samples closest to the time of prostate cancer 

diagnosis.

Follow-up time for the men in the subcohort was determined from the date of prostate cancer 

diagnosis to the exit date of prostate cancer death, death due to other causes, or the end of 

follow-up (December 31, 2009), whichever came first. Survival time was created by 

computing the follow-up time in each of the three time intervals (<75, 75 to <80, ≥80 years 

of age). The time between age of diagnosis and the end of the follow-up was up to 13 years 

(with median follow-up time 7 years).

4.6. Real Data Application

We used a modified Cox regression method (Binder, 1983) suitable for analysis of complex 

survey data to estimate hazard ratios (HR). Absolute risks (AR) of failure in the ith time 

interval were estimated using the developed piecewise-Poisson regression with failure rate 

defined by

where αi is the intercept corresponding to the ith age interval; logIGF1 is log-transformed 

levels of IGF-1 (in ng/mL); BMI is the body mass index (<25, 25–30, ≥30 in kg/m2); smoke 

is the baseline smoking status (never, current, former smoker); fam is the family history (no 
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or yes); refers to whether the subject was diagnosed with diabetes or not, and Damico is the 

risk of prostate cancer mortality (low, medium, high, or very high/metastatic) according to 

the D’Amico risk classification.

The results for this example are reported in Table 4. As expected, the risk of mortality for 

cases diagnosed as prostate cancer tends to increase as age increases. Cox regression and 

piecewise-Poisson regression analyses show the similar results in terms of the statistical 

significance of the estimated regression coefficients, except that a marginal increase in 

mortality risk was found for BMI ≥ 30 kg/m2 compared with BMI < 25 kg/m2 (with P-value 

= 0.081) using the piecewise-Poisson regression method. The risk of prostate cancer 

mortality is not associated with logIGF1 levels (P-value = 0.614). With the estimated 

Poisson regression model coefficients , the marginal prediction 

(PM) of absolute risks for the three age intervals of 55–74, 75–79, and 80–85 years of old 

can be estimated by (Korn and Graubard, 1999):

(5)

where xk is a 3×3 diagonal matrix, concatenated with a 3-row matrix of each row the same 

covariate vector x for the kth observation. The variance of PM are estimated by first deriving 

the Taylor deviate of PM for the uth observation (u = 1, … , n):

where  is Taylor deviate of , derived in (1) and (2). Then, the variance of PM, denoted 

by var(PM), can be approximated by the variance of the weighted sum of zu along the same 

line as described in (3) and (4) in the method section. Marginal predictive margins with their 

 for the three age intervals of 55–74, 75–79, and 80–85 

years old are, respectively, 0.46% (0.33–0.59%), 0.69% (0.42–0.96%), and 1.39% (0.65–

2.13%). Table 5 further presents marginal predictive margins (PM) and the corresponding 

95% CI’s by age intervals and biomarker levels. Here the PM’s are estimated using (5) but 

changing the value of logIGF1 in xk to be the weighted mean of logIGF1 within the four 

groups formed by 25th, 50th, and 75th quartiles of logIGF, i.e., 4.31, 4.78, 5.01, and 5.3 

(log-ng/mL), respectively. It can be observed that marginal predicted absolute risk PM 

increases as age increases, but decreases as the biomarker level logIGF1 increases. The 

similar pattern that the risk of prostate cancer mortality decreases as the logIGF1 level 

increases, although not statistically significant, has been previously reported in Cao et al. 
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(2014). In general, the role of IGF-1 in the etiology and progression of prostate cancer has 

been controversial and the available literature is likely to suffer from multiple reporting 

biases (Panagiotou and Ioannidis, 2012).

5. Discussion

The methods in this article overcome an obstacle to the use of an economical case-cohort 

design. The Poisson regression analysis method described here has good performance for 

analyzing case-cohort studies. The absolute risk, which is very important for clinical practice 

and decision-making, is conveniently estimated, as in the data example. Data analysts 

familiar with the basics of R programming and generalized linear models should be able to 

use the software available at the Biometrics website.

Li et al., (2012) focused on categorical covariates thereby reducing the number of terms in 

the likelihood down to the number of categories of the covariates. In this article, the focus is 

on estimating the absolute risk for individuals which is more easily addressed by changing 

the likelihood from category-based to individual-based. In addition, this methodological 

change provides more flexibility for incorporating time-dependent covariates and facilitating 

multi-covariate modeling of both continuous and categorical covariates. In the PLCO data 

example, we now further estimate predictive margins (PM) of absolute risks (i.e., covariate-

adjusted absolute risks), the corresponding variances, and 95% C.I. by age intervals and 

biomarker levels. The variances of PM are estimated using Taylor linearization methods that 

account for differential weighting and multistage clustering effects in complex designs.

To the best of our knowledge, no existing software is available to analyze data from complex 

sample surveys involving cluster-correlated, differential selection probabilities, and 

longitudinal responses, to conveniently draw inference on absolute risks in time intervals 

that are prespecified by investigators. For example, the loglink procedure in the survey 

software SUDAAN fits log-linear regression models to count data and provides estimates of 

exponentiated linear functions of the regression coefficients. Expected value of the response 

is related to the covariates, however, by assuming common absolute risks over time with the 

OFFSET variable included for the correction of unequal time interval lengths. By contrast, 

the developed method estimates absolute risks that vary among prespecified time intervals.

The developed methods can be applied to case-cohort studies with general complex 

sampling designs. As shown with simulations, the proposed methods consistently produce 

approximately unbiased estimates under various commonly used sample designs, such as 

stratified simple random sampling, proportion proportional to sizes (defined by outcome 

and/or risk factors), or even stratified multistage cluster sampling. Moreover, the proposed 

methods are robust to the random effects induced from the number of subjects that are 

originally selected in the subcohort from the entire cohort at the baseline but become cases 

during the follow up.

In analysis of the PLCO data on mortality from prostate cancer, results in terms of the 

estimates, corresponding standard errors, and statistical significance of the regression 

coefficients were similar for piecewise Poisson regression and Cox proportional hazards 
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regression analyses. This result is consistent with our expectation. Essentially, piecewise 

Poisson regression for modeling survival data assumes a constant absolute risk of failure 

within the prespecified time intervals for each individual. That is, over the same time 

interval, individual i has a constant absolute risk of failure, although different from the 

absolute risks of failure in other time intervals. On the other hand, Cox proportional hazard 

regression uses a single baseline hazard, which is a function of the follow-up time metric, 

and therefore the absolute risk changes over the follow-up time metric, and of course within 

time intervals. If the assumption holds for piecewise Poisson regression, i.e., absolute risk of 

failure within time intervals is approximately constant, we would expect both methods to 

produce similar results in estimating relative risks (approximated by relative hazards for Cox 

regression). Under the situation in which each cell of the cross-classification of person-time 

and events includes a single event, piecewise Poisson regression method is essentially 

equivalent to the Cox proportional hazards regression (Loomie et al., 2005). In addition, the 

proposed piecewise Poisson method provides convenient estimation of absolute risks of 

failure as well as potentially greater computational efficiency, which can be useful in 

applications to case-cohort studies.

The case-cohort design with Poisson regression may overcome the reluctance of some 

molecular epidemiologists to apply the economical practice of using the same subcohort 

measurements with several case series. Of course, when different case series are studied at 

different times, using preexisting samples may be untenable when strong batch effects are 

suspected. For well-standardized assays, especially in studies with limited amounts of 

biospecimens available, routine estimates of absolute risk measures, including positive and 

(complement of) negative predictive values, are available using the case-cohort design. In 

addition, the full panoply of case-cohort analysis, such as flexibility regarding different time 

scales (age, time since specimen collection, time after diagnosis of prostate cancer, etc.) is 

available (Preston, 2005) as well as reduce costs about biomarker measurement. Now that 

we have established that the Poisson regression approach works well for case-cohort data as 

well as for full-cohort studies (Breslow et al., 1983), the economy of the case-cohort design 

is restricted only by possibility of differential error, when assays in different batches or with 

sampling designs are different in the subcohort and case biospecimens.
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Table 1

Simulation results from piecewise Poisson regression analysis under various one-stage sample designs

α 1 α 2 α 3 β 1 β 2

True parameter values −5.404 −4.893 −4.605 1.609 1.609

Simple random sampling: SRS

Relative bias (×102) 0.860 0.196 −1.370 3.071 1.534

Empirical variance estimates (×103 2.808 2.639 6.957 6.278 1.438

Ratio of linearization to empirical variance estimates 0.892 0.933 0.930 0.931 0.957

Probability proportional to size of failure time: PPS(t)

Relative bias (×102) 1.785 1.839 1.646 6.816 2.008

Empirical variance estimates (×103) 3.431 3.312 9.645 7.913 1.797

Ratio of linearization to empirical variance estimates 0.938 0.976 0.920 0.928 0.933

Stratified SRS with strata defined by risk factors: SSRS(x2)

Relative bias (×102) −0.060 −0.003 −0.414 −1.543 0.896

Empirical variance estimates (×103) 2.403 2.228 5.815 4.940 1.173

Ratio of linearization to empirical variance estimates 0.971 1.009 1.019 1.015 1.087
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Table 2

Simulation results from piecewise Poisson regression analysis under various two-stage sample designs

α 1 α 2 α 3 β 1 β 2

True parameter values −5.404 −4.893 −4.605 1.609 1.609

PPS(t)+SSRS(x2) with intracluster correlation ρ(x1) = 0

Relative bias (×102) 0.078 −0.017 −0.131 0.269 0.134

Empirical variance estimates (×103) 2.494 2.490 5.795 5.266 1.121

Ratio of vara to empirical variance estimates 0.937 0.916 1.029 0.953 1.149

Ratio of linearization to empirical variance estimates 0.949 0.961 1.055 0.960 1.028

PPS(t)+SSRS(x2) with intracluster correlation ρ(x1) > 0

Relative bias (×102) −0.066 −0.159 −0.291 0.552 −0.235

Empirical variance estimates (×103) 5.212 4.493 7.776 36.986 1.661

Ratio of vara to empirical variance estimates 0.443 0.509 0.766 0.132 0.768

Ratio of linearization to empirical variance estimates 1.063 1.065 1.038 1.053 1.028

a
var considers differential weighting effect but ignores the clustering effect, computed as the sum of the variance of weighted Taylor deviates in 

cases and the variance in sampled subcohort.
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Table 3

Simulation results from piecewise Poisson regression analysis under various mortality rates at the three time 

intervals

α 1 α 2 α 3 β 1 β 2

(λ1, λ2, λ3) = (90, 150, 200)

True parameter values −5.991 −5.298 −4.893 1.609 1.609

Relative bias (×102) 0.234 0.151 0.041 0.559 0.373

Empirical variance estimates (×102) 1.640 1.370 2.287 1.750 0.517

Ratio of linearization to empirical variance estimates 1.016 0.998 0.976 1.009 1.074

(λ1, λ2, λ3) = (50, 150, 200)

True parameter values −5.404 −4.893 −4.605 1.609 1.609

Relative bias (×102) 0.111 0.061 −0.087 0.497 0.124

Empirical variance estimates (×102) 1.154 1.045 2.192 1.522 0.414

Ratio of linearization to empirical variance estimates 0.970 0.961 0.927 0.932 1.080

(λ1, λ2, λ3) = (20, 50, 100)

True parameter values −6.908 −5.991 −5.298 1.609 1.609

Relative bias (×102) 0.261 0.217 0.094 0.559 0.559

Empirical variance estimates (×102) 3.124 2.250 2.813 2.667 0.763

Ratio of linearization to empirical variance estimates 0.977 1.040 0.988 0.958 1.048

(λ1, λ2, λ3) = (20, 40, 60)

True parameter values −6.908 −6.215 −5.809 1.609 1.609

Relative bias (×102) 0.362 0.209 0.121 0.497 0.870

Empirical variance estimates (×102) 3.602 2.750 3.625 3.014 0.901

Ratio of linearization to empirical variance estimates 0.928 0.991 0.986 0.951 0.986

(λ1, λ2, λ3) = (10, 20, 30)

True parameter values −7.601 −6.908 −6.502 1.609 1.609

Relative bias (×102) 0.553 0.391 0.369 0.746 1.243

Empirical variance estimates (×102) 6.027 4.925 5.530 4.462 1.423

Ratio of linearization to empirical variance estimates 0.951 0.965 1.024 0.971 0.933
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Table 4

Parameter estimates and their standard errors using Taylor linearization methods

Piecewise-Poisson regression Cox regression

Estimate Standard error P-value Estimate Standard error P-value

Age (years)

 α1 [55–75) −6.318 1.627 <0.001

 α2 [75–80) −5.914 1.598 <0.001

 α3 [80–85] −5.219 1.636 0.001

LogIGF1 −0.160 0.317 0.614 −0.235 0.320 0.464

BMI (kg/m2)

 Overweight (25–30) 0.225 0.286 0.431 0.167 0.285 0.557

 Obese (≥30) 0.571 0.327 0.081 0.439 0.319 0.169

Smoking status

 Current smokers −0.096 0.417 0.817 −0.186 0.418 0.657

 Former smokers 0.013 0.242 0.957 −0.008 0.240 0.972

Family history −0.261 0.409 0.524 −0.368 0.466 0.407

Diabetes −0.381 0.450 0.397 −0.386 0.424 0.385

D’Amico score

 Medium 0.858 0.361 0.017 0.927 0.349 0.008

 High 2.191 0.327 0.000 2.242 0.313 0.000

 Very high/metastatic 4.262 0.366 0.000 4.346 0.326 0.000
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Table 5

Predictive margins of absolute risks PM by age intervals and biomarker levels based on the piecewise Poisson 

regression analysis given in Table 4

LogIGF1 (in log-ng/mL)

4.31 4.78 5.01 5.30

<75 years 0.5% (0.27–0.73%) 0.47% (0.34–0.6%) 0.45% (0.32–0.58%) 0.43% (0.26–0.6%)

75–80 years 0.76% (0.4–1.12%) 0.7% (0.43–0.97%) 0.68% (0.39–0.97%) 0.64% (0.3–0.98%)

>80 years 1.52% (0.55–2.49%) 1.41% (0.65–2.17%) 1.35% (0.61–2.09%) 1.29% (0.51–2.07%)

Biometrics. Author manuscript; available in PMC 2016 August 07.


	Summary
	1. Introduction
	2. Methods
	3. Simulations
	4. Application to PLCO Data
	4.1. Aim
	4.2. Inclusion/Exclusion Criteria
	4.3. Case Definition
	4.4. Subcohort Sampling
	4.5. Covariates and Follow-Up Time
	4.6. Real Data Application

	5. Discussion
	References
	Table 1
	Table 2
	Table 3
	Table 4
	Table 5

