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Abstract

Epithelial ovarian cancer (EOC) is one of the deadliest common cancers. The five most common 

types of disease are high-grade and low-grade serous, endometrioid, mucinous and clear cell 

carcinoma. Each of these subtypes present distinct molecular pathogeneses and sensitivities to 

treatments. Recent studies show that certain genetic variants confer susceptibility to all subtypes 

while other variants are subtype-specific. Here, we perform an extensive analysis of the genetic 

architecture of EOC subtypes. To this end, we used data of 10,014 invasive EOC patients and 

21,233 controls from the Ovarian Cancer Association Consortium genotyped in the iCOGS array 

(211,155 SNPs). We estimate the array heritability (attributable to variants tagged on arrays) of 

each subtype and their genetic correlations. We also look for genetic overlaps with factors such as 

obesity, smoking behaviors, diabetes, age at menarche and height. We estimated the array 

heritabilities of high-grade serous disease ( ), endometrioid ( ), 

clear cell ( ) and all EOC ( ). Known associated loci contributed 

approximately 40 % of the total array heritability for each subtype. The contribution of each 

chromosome to the total heritability was not proportional to chromosome size. Through bivariate 

and cross-trait LD score regression, we found evidence of shared genetic backgrounds between the 

three high-grade subtypes: serous, endometrioid and undifferentiated. Finally, we found significant 

genetic correlations of all EOC with diabetes and obesity using a polygenic prediction approach.

Introduction

In developed countries, epithelial ovarian cancer (EOC) is the leading gynecological 

malignancy with an estimated annual incidence rate of 12 per 100,000 and a poor 5 year 

survival between 20 and 50 % (Chornokur et al. 2015; Sopik et al. 2015; Sung et al. 2014). 

About 90 % of invasive tumors in the ovary are of epithelial origin (Kurman et al. 2014). 

These tumors are divided into various histological subtypes that include: serous, mucinous, 

endometrioid, clear cell, Brenner, other minor types, as well as undifferentiated, mixed and 

unclassified carcinomas (Prat 2012; Sung et al. 2014). Serous carcinomas can be subdivided 

into high-grade (90 %) and low-grade disease (10 %) (Kurman and Shih Ie 2008; Malpica et 

al. 2004; Shih Ie and Kurman 2004).
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Each epithelial ovarian cancer histologic subtype exhibits a distinct etiologic and molecular 

pathogenesis and sensitivity to treatment (e.g., chemotherapeutic agents) (Anglesio et al. 

2013; Della Pepa et al. 2015; Risch et al. 1996; Shih Ie and Kurman 2004; Soslow 2008). It 

has been suggested that serous carcinomas arise from the epithelial mucosal lining of the 

fallopian tube fimbriae or from endosalpingiotic deposits on the ovarian or peritoneal 

surfaces. Clear cell and endometrioid subtypes may arise from endometriotic lesions 

(Kurman et al. 2014; Wiegand et al. 2010), while mucinous tumors do not yet have a clear 

origin, though metaplastic transformation of the epithelial lining of ovarian inclusion cysts 

has been suggested. Serous carcinoma is by far the most deadly type of EOC, with 5-year 

survival of less than 20% for patients suffering from high-grade disease and 50 % for those 

with low-grade disease (Malpica et al. 2004). In contrast, women with mucinous, 

endometrioid or clear cell carcinomas tend to have better prognosis, with estimated 5-year 

survivals of 50–60 % (Malpica et al. 2004; Simons et al. 2015). These differences in survival 

are due at least in part to the fact that high-grade serous carcinomas are usually detected at 

advanced stages of disease but the other subtypes at earlier stages (Devouassoux-

Shisheboran and Genestie 2015; Malpica et al. 2004; Simons et al. 2015).

Genetic studies have shown that around 20 % of patients with high-grade serous cancers 

carry germ-line and somatic mutations in BRCA1 or BRCA2 (Alsop et al. 2012; Berchuck 

et al. 1998) along with somatic mutations in TP53 that are present in most tumors (Cancer 

Genome Atlas Research Network 2011). Alterations in KRAS and BRAF but not TP53 have 

been associated with low-grade serous carcinomas (Della Pepa et al. 2015; Grisham et al. 

2013; Jones et al. 2012). Mucinous carcinomas also frequently have somatic mutations in 

KRAS (Cuatrecasas et al. 1997) in addition to mutations in HER2 (Anglesio et al. 2013). 

Endometrioid and clear cell carcinomas often carry somatic mutations in AR1D1A and 

PIK3CA (Jones et al. 2010). In addition, genome-wide association studies (GWAS) have 

found 20 common polymorphisms associated with risk of EOC (Bojesen et al. 2013; Bolton 

et al. 2010; Goode et al. 2010; Permuth-Wey et al. 2013; Pharoah et al. 2013; Song et al. 

2009).

Specific germ-line SNPs are commonly found in the different EOC subtypes. However, 

these variants explain only a fraction of the cases, thus, it is not known whether or not other 

genetic components are shared among the subtypes. One of our previous studies (Lu et al. 

2015) estimated the array heritability (i.e., heritability explained by about 200,000 

genotyped SNPs but not all the genome) of all EOC to be 5.6 %, and 8.8 % for the most 

common EOC subtype, high-grade serous.

Beside genetic factors predisposing to these diseases, some environmental factors such as 

smoking (Collaborative Group on Epidemiological Studies of Ovarian Cancer et al. 2012; 

Faber et al. 2013) and obesity (Aune et al. 2015; Collaborative Group on Epidemiological 

Studies of Ovarian Cancer 2012; Olsen et al. 2013) may be associated with increases in risk 

of some subtypes of EOC. In addition, traits including achieved height (Aune et al. 2015; 

Wiren et al. 2014) and diabetes mellitus (Gapstur et al. 2012; Lee et al. 2013) have been 

positively associated to EOC. In contrast, some studies have shown that age at menarche 

(Gong et al. 2013) is inversely associated with risk of EOC. Evidence suggests that all these 

traits have heritable components. Genetic variation may explain as much as 80 % of the total 
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variance of height (Yang et al. 2010) or even 40 % for smoking behavior (Vink and 

Boomsma 2011; Vink et al. 2005). It is possible that part of the heritability of EOC may be 

explained by the heritability of these traits, if they are associated with EOC risk.

In this work, we investigate three aspects of the genetic architecture of EOC and its 

subtypes: (1) the total genetic contribution of all array genotyped SNPs (genome-wide, per 

chromosome and after accounting for known EOC associated loci); (2) the genetic 

correlations between EOC subtypes; and (3) the genetic correlations between EOC subtypes 

and risk factors such as obesity and smoking. To this end, we use genotype and risk-factor 

data from studies participating in the Ovarian Cancer Association Consortium (OCAC). We 

quantify genetic contributions to disease using genome-wide complex trait analysis (GCTA) 

(Lee et al. 2011; Yang et al. 2010, 2011a). Then, we evaluate shared genetic backgrounds 

between EOC subtypes and candidate risk factors using complementary approaches: 

bivariate linear mixed models (Lee et al. 2012), cross-trait LD score regression (Bulik-

Sullivan et al. 2015a) and polygenic risk prediction (International Schizophrenia Consortium 

et al. 2009).

Methods

Data

We used data from the Ovarian Cancer Association Consortium (OCAC). This dataset 

consists of custom Illumina iCOGS array genotyping of 47,630 cases and controls in 43 

OCAC studies. Detailed description of the content of the array can be found elsewhere 

(Pharoah et al. 2013). In brief, the array consists of 211,155 variants within breast, ovarian 

and prostate cancer susceptibility loci as well as candidate SNPs, SNPs associated with other 

cancers and SNPs associated with relevant quantitative traits such as body mass index (BMI) 

and the onset of menarche.

We applied standard quality control (QC) for the genotype data. First, we selected only 

samples from European ancestry studies and that were within 6 s.d. from the genotype-

derived PC1 and PC2 from the 1000 Genomes European population (Supplementary figure 

1). We excluded individuals with missing genotypes in 5 % or more of the SNPs. Likewise, 

we removed SNPs with call rates below 99 %, minor allele frequencies (MAF) below 1 % 

and SNPs that deviated from Hardy–Weinberg equilibrium at P < 0.0001 (Lu et al. 2014). 

Further, given that our analytic methods are sensitive to relatedness (e.g., results may be 

biased by common environmental factors in relatives) we removed individuals such that no 

sample pairs had identity by descent (IBD) >10 % (i.e., less than second cousins), giving 

more priority to keeping cases than controls. In concordance with one of our previous work 

(Lu et al. 2015), we focused only on those with invasive EOC tumors. In total, 10,014 EOC 

cases and 21,233 controls met these criteria and were genotyped for 195,183 SNPs. The 

number of cases according to histologic subtype is displayed in Table 1. The numbers of 

initial cases and controls per study are summarized in Supplementary Table 1.
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Analysis

We estimated the variance explained by all SNPs in the array ( ) (Lee et al. 2011), the 

variance after removing known loci, and the variance explained by each chromosome for 

each of the EOC subtypes. We used GCTA to calculate one genetic relationship matrix 

(GRM) for all autosomes.

The estimated variance explained was transformed from the observed scale to an unobserved 

continuous “liability” scale using a probit transformation (Lee et al. 2011) taking into 

account the disease prevalence. The lifetime risk of the various EOC subtypes were 

calculated as the lifetime risk of ovarian cancer (~1 % according to the Surveillance, 

Epidemiology and End Results (SEER), http://seer.cancer.gov/statfacts) multiplied by the 

relative proportion of each subtype according to SEER program DevCan database (http://

surveillance.cancer.gov/devcan/canques.html) in all ovarian cancer. Given that around 90 % 

of ovarian cancers are of epithelial origin, we used 0.9 % as the prevalence for all EOC. As 

, is derived solely from the SNPs tagged on the genotyping array instead of the whole 

genome, it provides a lower bound on heritability estimates (Lu et al. 2014). Phenotypes 

were modeled as a linear function of the sum of the additive effects due to all SNPs 

associated with trait-associated variants and residual effects. Variance components were 

estimated using residual maximum likelihood (REML) (Yang et al. 2010). For tests of 

whether a variance component is zero or not, the test is one-sided and under the null 

hypothesis that the test statistic follows a 50:50 mixture of a point mass at zero and the χ1 

distribution (Yang et al. 2010, 2011a). One-sided p values were calculated to estimate the 

statistical significance. Likewise, to estimate the proportion of  that is explained by the 

known loci [WNT4, RSPO1, SYNPO2, GPX6, ABO, ATAD5, C19orf62, CMYC, TIPARP, 

BNC2, ARHGAP27, TERT, RAD51B/C/D, BRIP1, BARD1, PALB2, NDN, CHMP4C, 

MLLT10, HNF1B, BRCA1, BRCA2, KRAS, TP53, HER2, AR1D1A and PIK3CA (Bojesen 

et al. 2013; Bolton et al. 2010; Goode et al. 2010; Permuth-Wey et al. 2013; Pharoah et al. 

2013; Song et al. 2009)], we recomputed the GRM with the SNPs (6391 SNPs) close to the 

known loci SNPs (±1 megabase either side) removed.

Similarly, to investigate the genetic contributions within each of the chromosomes, we 

computed one GRM per chromosome and performed analyses using REML fitting the 22 

genetic variance components in the model as implemented in GCTA with the flag –mgrm 
(multiple GRMs) (Yang et al. 2011b). Given that loading 22 GRMs with the 21,051 controls 

and the cases of the various histotypes was computationally intractable, we assigned to each 

case just one control of the same study, yielding smaller GRMs (e.g., for high-grade Serous 

cancer there were 3705 cases and 3705 controls). We then normalized the contribution of 

each chromosome by the number of independent SNPs (percentage) in the iCOGs array per 

chromosome. This number of independent SNPs was estimated through LD pruning using 

the PLINK command –indep 50 5 1.2, where 50 is the window size (#SNPs), 5 is the 

number of SNPs the window can shift, and 1.2 is 1/(1 − R2), where R2 is the multiple 

correlation coefficient for a SNP regressed on all other SNPs simultaneously (Chang et al. 

2015). To approximate the s.e. of the variance explained by each chromosome, we 

performed a jackknifing procedure up to 1000 times, taking 80 % of the cases and 80 % of 
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the controls each time. Given the complexity of the sample, around 20 % of the jackknifing 

repetitions did not converge within 1000 iterations so the standard errors were computed 

from just the 800 successful jackknifings.

To investigate the genetic correlations between the subtypes, to remove potential biases from 

overlapping control samples from the different studies, we matched each case to 1 control of 

the same study, and distributed controls in such a way that each EOC subtype had separate 

sets of controls. For example, all of the controls for mucinous EOC were different from the 

endometrioid EOC controls.

Genetic correlation (rg) represents the proportion of the total genetic variance that two traits 

share. To investigate the rg between EOC subtypes, we used two distinct approaches that can 

be applied to population-based samples. We first used the GRM in a bivariate mixed-effects 

linear model implemented in GCTA (Cross-Disorder Group of the Psychiatric Genomics 

Consortium et al. 2013) to compute the genetic correlations between the various EOC 

subtypes. The estimated genetic correlation is the additive genetic covariance between traits, 

normalized by the geometric mean of the individual trait genetic variances (producing values 

from −1 to +1). The additive genetic covariance was estimated by relating trait covariances 

between unrelated individuals to genetic relationship estimates from marker data. Increased 

covariance between traits with high genetic relationship values implies a positive genetic 

correlation between traits. To control for any potential effects of population stratification, all 

the analyses were performed using the first ten principal components (PCs) of the genotypes 

as covariates. Estimates are reported as genetic correlation ± standard error.

We also used cross-trait LD score regression (Bulik-Sullivan et al. 2015a), a recently 

developed approach that is able to estimate the genetic correlations using solely GWAS 

summary statistics and is not affected by sample overlap. We first ran genome-wide 

association analyses using the same samples as when computing  per each EOC subtype 

(i.e., we repeatedly made use of all of the controls for analysis of each subtype) and with the 

ten first PCs and study site as covariates. Genomic inflation factors for these GWAS 

analyses ranged from 0.99 for mucinous cancer to 1.07 for all EOC. We used the LD-scores 

estimated by Bulik-Sullivan et al. (2015a, b) available at http://www.broadinstitute.org/

~bulik/eur_ldscores/which are based on the 1000 Genomes European population and 

estimated within 1-cM windows. We then estimated the genetic correlation using software 

available at https://github.com/bulik/ldsc with the default parameters.

Genetic correlations between EOC subtypes and risk factors

Using cross-trait LD score regression, we estimated genetic correlations between risk factors 

and EOC histotypes. To this end, we used publicly available GWAS summary results from 

the latest GWAS meta-analyses of BMI and height from the Genetic Investigation of 

Anthropometric Traits (GIANT) Consortium. These analyses included 339,225 (Locke et al. 

2015) and 253,288 (Wood et al. 2014) individuals, respectively. We also estimated genetic 

correlations using the GIANT extreme anthropometric traits GWAS which used obesity 

class 1 (BMI > 30), class 2 (BMI > 35) and class 3 (BMI > 40) groups as cases, and 

individuals with BMI ≤25 as controls, in a sample of 263,407 individuals (Berndt et al. 
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2013). Genetic overlaps with age at menarche were carried out based on the GWAS of the 

Reproductive Genetics Consortium which involved 182,416 women (Perry et al. 2014). 

Smoking behavior genetic predisposition was approximated based on the Tobacco and 

Genetics Consortium GWAS which involved 74,053 participants (Tobacco and Genetics 

Consortium 2010). Finally, for diabetes, we used the summary results for type 2 diabetes 

GWAS of the DIAGRAM (diabetes genetics replication and meta-analysis) consortium, 

which involved 34,840 cases and 114,981 controls (Morris et al. 2012).

We also carried out a polygenic risk prediction approach. This method involves the 

computation of polygenic risk scores (PGRS) of each of the risk factors and uses these 

scores to predict disease status (International Schizophrenia Consortium et al. 2009). The 

PGRS describes a predicted phenotypic value based on the genetic component and is 

computed by aggregating the magnitude of associations of many variants. These associations 

are estimated using a discovery set of subjects (e.g., for height or BMI) to identify the 

relevant SNPs and estimate the magnitude of association of each, and these magnitudes or 

the number of “high-risk” alleles in each SNP are then summed to create a score. 

Subsequently, we examine the association of this score within a target subject set (e.g., EOC 

cases and controls). If the score association is significant, it implies a genetic correlation 

between the two traits. In this study, we selected variants to compute the PGRS based on 11 

p value thresholds (<0.00001, 0.001, 0.01, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.75, 1). Given the 

nature of the iCOGS array in which many loci have high densities of tagged SNPs, we 

performed linkage disequilibrium (LD) clumping to remove the correlated variants (r2 > 0.2) 

within 500 kb windows for each component of the PGRS. The computations for PGRS and 

LD clumping were performed with PLINK (Chang et al. 2015). Finally, we standardized 

each of the PGRS to have mean 0 and variance 1 and examined their associations with the 

various EOC subtypes through logistic regression, adjusted for the first ten PCs.

Multiple testing corrections

The polygenic risk prediction approach carries a high multiple testing burden, as does 

consideration of the various histologic groups and risk factors. However, given that we 

computed 11 PGRS for each trait based on sequential p-value thresholds, our statistics are 

not independent. To estimate the real number of independent hypotheses, we computed the 

correlation matrix of all the PGRS used in this study and fed this into a Matrix Spectral 

Decomposition (matSpD) algorithm (Nyholt 2004), to estimate the number of independent 

variables. This algorithm provides an equivalent number of independent variables in a 

correlation matrix, by examining the ratio of the observed eigenvalue variance to its 

theoretical maximum. We estimated the number of independent PGRS to be 35 out of the 88 

PGRS. As we examined these 35 independent PGRS in five separate EOC subtypes (high-

grade serous, endometrioid, clear cell, mucinous and unknown), our significance threshold 

for the polygenic risk prediction analyses was 0.05/(35 × 5) = .00029.
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Results

Genetic contribution of each chromosome and known loci

Fitting a GRM computed after removing known EOC-associated loci in univariate mixed-

effect linear models implemented in GCTA (Yang et al. 2010, 2011a), we found that the 

known loci contributed about 40 % of the total heritability of EOC and each of the subtypes 

(Table 1). The estimated heritability of all EOC dropped from 5.6 to 3.6 % once we removed 

known EOC-associated loci from the GRM. We observed a similar reduction of variance 

explained by the polygenic component for the EOC subtypes high-grade serous (8.8–4.7 %), 

endometrioid (3.2–2.0 %) and clear cell (6.7–4.6 %) (Table 1). Interestingly, in contrast to 

grade 1 and grade 2 (G1/G2) endometrioid where the heritability did not drop substantially 

(4.4–3.7 %), grade 3 (G3) endometrioid  dropped from 4.9 to 0.9 %. As shown previously 

(Lu et al. 2015), the heritability of mucinous cancer was not detectably different from 0. We 

were unable to perform any analyses for low-grade serous cancer given the small sample 

size (Ncases = 350). We also had a set of cases with unknown EOC subtype classification; we 

expect that a high portion of these are individuals with undifferentiated high-grade serous, 

endometrioid or mixed serous EOC subtypes. For these, the heritability dropped from 7.0 to 

4.1 % after removing known loci.

To inspect the contributions of heritability per chromosome, we computed one GRM per 

chromosome, and fitted the multiple genetic variance components into linear mixed models 

as above. We found that the chromosomal contributions were not proportional to the number 

of independent SNPs in each of the chromosomes (Fig. 1). For example, the contribution of 

chromosomes 9, 11, 17 and 19 to high-grade serous EOC were larger than expected the 

95 % confidence interval (approximated through jack-knifing 1000 times) did not overlap 

with 1. In contrast chromosomes 4, 10, 12, 14, 18 and 20 contributed less than expected.

Genetic correlation between EOC subtypes

We used the GRM as a random effect in a bivariate mixed-effects linear model implemented 

in GCTA to assess genetic heterogeneity across EOC histologic subtypes. Table 2 

summarizes the genetic correlations between the various EOC subtypes. We found 

significant genetic overlap between high-grade serous EOC and endometrioid EOC (rg = 

0.63 ± 0.27; P = .0029). Given that high-grade serous disease is not infrequently 

misclassified as endometrioid EOC (Gilks et al. 2008), we also estimated the genetic 

correlations separating (G1/G2) endometrioid disease from (G3). Here we found that the 

genetic correlation between high-grade serous and G1/G2 endometrioid cancer was lower (rg 

= 0.33 ± 0.23; P = .062) than between G3 endometrioid and high-grade serous cancer (rg = 

1.00 ± 0.83; P = .00078), suggesting that potential misclassification may have inflated the 

genetic correlation estimate when using all endometrioid EOC. Interestingly, we observed an 

appreciable but non-significant genetic overlap of about rg = 0.5 between low-grade 

endometrioid and clear cell EOC. We also found that the genetic correlations between 

“unknown/unclassified” EOC and high-grade serous and high-grade endometrioid disease 

were significant and essentially 1 (rg = 1.0 ± 0.30; P = 10−7 and rg = 1.0 ± 0.96 P = .0049, 

respectively). The REML bivariate analyses involving Mucinous did not converge so did not 

yield any meaningful estimates. Further, removing known associated loci from the analyses 
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affected the genetic correlation between endometrioid EOC (high and low grade) in a way 

that this was no longer significant (Table 2).

Given that splitting the controls during the bivariate analyses to avoid sample overlap could 

have resulted in decreased power to detect genetic correlations; we complemented the 

genetic correlation analysis with the cross-trait LD score regression method, which is not 

biased by overlapping samples. In line with our results above, we found a statistically 

significant genetic correlation between high-grade serous EOC and endometrioid EOC (rg = 

0.67 ± 0.25; P = 7.4E–03), high-grade serous EOC and unknown EOC (rg = 0.63 ± 0.25; P 
= .013) and endometrioid EOC and unknown EOC (rg = 1.00 ± 0.30; P = 5.7E–04) (Table 

3).

Genetic overlap of EOC subtypes and associated environmental factors

To investigate the genetic overlap between all EOC and age at menarche, BMI, obesity, 

smoking, height and diabetes we used the cross-trait LD score regression method as well as 

a polygenic risk prediction approach. We did not detect any significant genetic correlations 

using cross-trait LD score regression (Table 4). However, through the polygenic risk 

prediction approach, we found significant genetic overlap (at Bonferroni P value threshold 

= .00029) of all EOC with obesity and with diabetes (Table 5). The genetic overlap with 

diabetes appeared mainly in association with mucinous EOC. Overall, the directions of 

association are consistent with what has been reported in observational studies (Aune et al. 

2015; Collaborative Group on Epidemiological Studies of Ovarian Cancer 2012; Faber et al. 

2013; Olsen et al. 2013), although most of these associations are not significant.

Discussion

In this work, we have investigated the genetic architecture of EOC and its different subtypes. 

Our univariate analyses show an extent of hidden heritability inherent in the iCOGS array, 

with known associated loci accounting for about 40 % of the total array heritability for most 

EOC histotypes, except for high-grade endometrioid, where they account for most of . Its 

important to note that to reach these estimates we removed 2 Mb per locus, which was done 

to ensure that no effect of these loci remained; however, this could also have inflated the 

estimates. We also showed that the hidden heritability is not spread proportionally across the 

chromosomes, with some contributing very little to the array heritability and others up to 

five times more than expected given their iCOGS SNP compositions. A limitation in our 

univariate experiments was that it was underpowered to compute meaningful estimates for 

low-grade serous and mucinous EOC. Although we had a bigger sample size for mucinous 

EOC than clear cell EOC, the analyses could have been affected by how each individual 

study deal with mucin-producing peritoneal tumors.

Using bivariate linear mixed model and cross-trait LD score regression approaches, we 

investigated genetic correlations between the various EOC subtypes. The bivariate linear 

mixed model provides unbiased estimates of genetic correlation and it requires individual 

genotype data to compute the GRM. Cross-trait LD score regression only requires summary 

results from the discovery set, and in contrast to the bivariate mixed model approach, it 

Cuellar-Partida et al. Page 8

Hum Genet. Author manuscript; available in PMC 2017 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



allows sample overlap (in this case, overlapping controls) (Bulik-Sullivan et al. 2015a). 

While studies have shown shared germ-line risk mutations across the various EOC subtypes, 

these account for only a small fraction of general heritability (Bojesen et al. 2013; Bolton et 

al. 2010; Goode et al. 2010; Permuth-Wey et al. 2013; Pharoah et al. 2013; Song et al. 

2009). We found a very high genetic correlation between high-grade serous EOC and poorly 

differentiated (G3, high-grade) endometrioid disease, and with unknown/unclassified EOC, 

which represents undifferentiated epithelial carcinoma. These correlations seem entirely 

reasonable, because high-grade endometrioid disease is sometimes misdiagnosed as high-

grade serous, or may constitute a version of high-grade serous with slightly different 

differentiation. Undifferentiated ovarian carcinoma clinically resembles high-grade serous in 

response to treatment and in mortality. Low-grade serous, low-grade endometrioid and clear 

cell carcinoma (which is relatively low grade) are heritability-distinct from the high-grade 

diseases and behave that way. Mucinous ovarian cancer seems to be a largely separate 

disease and has its own set of risk factors (Risch et al. 1996). It does not appear to be related 

heritably to the other ovarian cancer histotypes.

We also considered whether the heritability of EOC and its subtypes could be explained (at 

least partly) via factors such as obesity, height, diabetes, smoking and age at menarche. As 

these factors have genetic components, it is plausible that the heritability of EOC could 

reflect the heritability of a causal factor. Using cross-trait LD score regression, we had 

insufficient power to detect genetic correlations, as this approach is greatly affected by small 

numbers of SNPs and by small sample sizes. However, through a polygenic risk prediction 

approach—which, although it does not directly quantify genetic overlap, is powerful for 

detecting genetic correlations between traits when the discovery and target sets are well 

powered (Dudbridge 2013), we found a significant positive genetic overlap between 

diabetes, obesity and all EOC. This genetic overlap appeared to be concentrated within 

mucinous disease and may not reflect other EOC histotypes. Genetic correlation in this 

analysis is estimated based on a large number of SNPs, so it is possible that the correlations 

seen between diabetes and obesity and EOC may be mediated by an upstream phenotype 

(e.g., hormonal changes). Genetic overlap analyses between EOC and the other risk factors 

did not reveal any other significant associations. Potential reasons for this include small 

sample sizes for some of the EOC subtypes, and incomplete mapping of relevant variants of 

the risk factors (i.e., variants in the iCOGS array explain only a limited amount of variance 

of the risk factors).

Its important to note that our results were derived from SNPs tagged in the iCOGS array. 

Hence, the numbers of SNPs included in the analyses (195,183 SNPs) are smaller than in a 

typical GWAS array. Additional analyses could be performed on imputed genotypes from 

the iCOGS data; however, the iCOGS array is not designed to tag the whole genome, so 

imputation would likely still be limited to the existing tagged regions. Nevertheless, this 

array, which included several SNPs associated with other cancer types as well as with 

relevant quantitative traits such as BMI and the onset of menarche (Pharoah et al. 2013), 

allowed us to establish reasonably accurate estimates where the target sample sizes were 

well powered (e.g., high-grade serous, endometrioid, unknown/undifferentiated, and all 

EOC).
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In summary, our results show that the major important EOC subtypes are genetically very 

homogeneous, and likely arise from a combination of known risk factors plus genetic 

contributions (beyond the known genetic predisposition mutations). This commonality 

highlights that high-grade disease could be considered a single clinical entity, with perhaps 

only minor variation between the serous, endometrioid and undifferentiated types. Low-

grade histotypes, as well as mucinous ovarian cancer, likely represent more distinct 

pathologic variation. We also found that a great proportion of heritability is “missing”. Our 

analyses will be complemented once data of individuals genotyped in the OncoArray, which 

integrates a GWAS backbone, becomes available.
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Fig. 1. 
Contribution to the heritability by chromosome versus expected. Black vertical lines show 

the 95 % confidence intervals approximated through jackknifing up to 1000 times. These are 

only shown for those instances that do not overlap with 1 to facilitate visualization. The 

same graph with all confidence intervals is included as supplementary figure 2
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