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Abstract

The evolution of functional magnetic resonance imaging to resting state (R-fMRI) allows measurement of changes
in brain networks attributed to state changes, such as in neuropsychiatric diseases versus healthy controls. Since
these networks are observed by comparing normalized R-fMRI signals, it is difficult to determine the metabolic
basis of such group differences. To investigate the metabolic basis of R-fMRI network differences within a normal
range, eyes open versus eyes closed in healthy human subjects was used. R-fMRI was recorded simultaneously
with fluoro-deoxyglucose positron emission tomography (FDG-PET). Higher baseline FDG was observed in the
eyes open state. Variance-based metrics calculated from R-fMRI did not match the baseline shift in FDG. Func-
tional connectivity density (FCD)-based metrics showed a shift similar to the baseline shift of FDG, however, this
was lost if R-fMRI ‘‘nuisance signals’’ were regressed before FCD calculation. Average correlation with the mean
R-fMRI signal across the whole brain, generally regarded as a ‘‘nuisance signal,’’ also showed a shift similar to the
baseline of FDG. Thus, despite lacking a baseline itself, changes in whole-brain correlation may reflect changes in
baseline brain metabolism. Conversely, variance-based metrics may remain similar between states due to inherent
region-to-region differences overwhelming the differences between normal physiological states. As most previous
studies have excluded the spatial means of R-fMRI metrics from their analysis, this work presents the first evidence
of a potential R-fMRI biomarker for baseline shifts in quantifiable metabolism between brain states.
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Introduction

Resting state functional magnetic resonance imag-
ing (R-fMRI) has emerged as a popular mode of imag-

ing networks in the human brain (Biswal et al., 1995; van den
Heuvel and Hulshoff Pol, 2010). Changes in these networks
occur under various diseases, and can closely match changes
in brain metabolism due to that disease, for example, in Alz-
heimer’s (Perrotin et al., 2015). This has created much inter-
est in better understanding the metabolic basis of R-fMRI
networks (Duncan et al., 2013; Hyder et al., 2013; Nugent

et al., 2015; Tomasi et al., 2013; Vaishnavi et al., 2010).
R-fMRI is noninvasive and, compared to other methods
(e.g., positron emission tomography, PET), easy to acquire.
Therefore, if R-fMRI can be used to generate metabolic bio-
markers of certain neurological diseases, it would be useful
for monitoring the progress of such diseases and potentially
for diagnosis as well.

There are several R-fMRI-derived candidates for measuring
state changes in metabolic activity in the brain at rest. First,
metrics based on per-voxel signal variance/power, including
frequency-band-limited measures such as the amplitude of
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low-frequency fluctuations (ALFF) and fractional ALFF
(FALFF), hypothetically measure inherent levels of the spon-
taneous local neural activity that is generating the networks
(Zang et al., 2007; Zou et al., 2008). FALFF and ALFF
show a state change between the eyes open and eyes closed
states ( Jao et al., 2013; Yan et al., 2009) and correlate well
with simultaneously recorded maps of glucose metabolism
(Aiello et al., 2015). Second, to hypothetically measure hubs
of communication across the brain, connections between vox-
els can be quantified to produce maps of the density of connec-
tions. Methods for this include regional homogeneity, degree
of centrality and functional connectivity density (FCD) (Buck-
ner et al., 2009; Tomasi and Volkow, 2010; Zang et al., 2004).
Like FALFF, regional homogeneity and FCD correlate well
with glucose metabolism (Aiello et al., 2015; Tomasi et al.,
2013). Third is the impact of BOLD time-series signal fluctu-
ations common to all voxels of the brain, also called the whole-
brain signal or global signal. This is poorly understood, but
appears to reflect global neural electrical activity (Scholvinck
et al., 2010) and, like FALFF, shows a state change between
the eyes open and eyes closed states (Wong et al., 2013).

Previous studies of these potential biomarkers and metabo-
lism have examined the spatial similarity between the derived
R-fMRI metrics and glucose metabolism by using spatial cor-
relation within a single brain state (Aiello et al., 2015; Tomasi
et al., 2013) and comparing specific networks (Di et al., 2012;
Wehrl et al., 2013). This study innovates on their work in two
ways. First [as in Riedl et al. (2014)] eyes closed versus eyes
open was used herein as a state change in the brain. (Different
subjects were used in each group.) Second, and more impor-
tantly, previous studies have discarded the baseline glucose
activity either directly or through using correlation coeffi-
cients that remove the mean glucose activity level from
each subject. While these methods are highly effective at find-
ing topological similarity, emerging evidence suggests that the
state changes in brain metabolism may be global rather than
local (Wong et al., 2013) and thus such normalization may ob-
scure the very state change we wish to search for within the
R-fMRI signal (Hyder et al., 2013).

Previously reported data of subjects with either eyes
closed or eyes open (Riedl et al., 2014) were used herein,
where R-fMRI was recorded simultaneously with fluoro-
deoxyglucose PET (FDG-PET). Average nuclear decay
counts (Becquerel/mL [Bq/mL]) of FDG were calculated in
16 brain networks derived from the R-fMRI data. Averages
of variance-based, FCD-based, and whole-brain signal-
based R-fMRI metrics were also calculated within these 16
networks. The change in baseline Bq/mL could be compared
to the change in the R-fMRI signals (which are inherently
relative and thus lack their own baselines). Thus, a link
can be made between the inherently relative R-fMRI metrics
and nonrelative baseline brain metabolism from PET.

The results presented herein suggest that FCD (when cal-
culated from short-range connections with zeros removed),
and whole-brain correlation are potential biomarkers of a
metabolic state change in the brain, with important caveats
and considerations. First, if ‘‘nuisance signal’’ regression
was done before FCD calculation this result was lost. Sec-
ond, part of the network to network difference in these poten-
tial biomarkers was observed to be based on R-fMRI signal
variance not correlated with the measured glucose metabo-
lism (but well described by FALFF).

Materials and Methods

Data collection

This study used simultaneously recorded FDG-PET, ana-
tomical MRI, and R-fMRI from 22 subjects, 11 with eyes
open (7 male, 4 female, mean – SD: 56.7 – 9.6 years old,
75.4 – 16.4 kg, 172.7 – 7.8 cm tall) and 11 with eyes closed
(8 male, 3 female, mean – SD: 52.2 – 10.4 years old,
77.0 – 13.3 kg, 177.7 – 9.1 cm tall). These data have been
previously published; see Riedl et al. (2014) for detailed meth-
ods. To summarize, subjects were instructed to keep their eyes
either closed or open, relax, and not to fall asleep. R-fMRI
(echo-planar imaging [EPI], TR 2 sec, TE 30 msec, 35 slices
with 0.6 mm gap, 192 · 192 mm FOV, 64 · 64 matrix size,
300 volumes, 10 min, 8 sec) data acquisition began simulta-
neously with injection of the FDG-PET tracer. This allowed
R-fMRI acquisition to coincide with the most sensitive
period for the FDG-PET imaging: the initial minutes after in-
jection. Following completion of R-fMRI, all subjects closed
their eyes and anatomical MRI (MP-RAGE, TR 2.3 sec, TE
2.98 msec, 160 slices with 0.5 mm gap, 256 · 256 mm FOV,
256 · 256 matrix size, 5 min 3 sec) images were then acquired.
Thirty minutes postinjection, the FDG-PET images were ac-
quired until 40 min postinjection (saturated list mode, 128 sli-
ces with 0.5 mm gap, 192 · 192 mm matrix size,
3.7 · 2.3 · 2.7 mm3 voxel sizes, 10 min).

Before data recording, light from the window of the con-
sole room was used to perform the FDG tracer injection. Fol-
lowing this, during all data recording, all lights were
switched off during the experiment, including lights within
the scanner bore.

FDG-PET data are used in the originally recorded units of
Bq/mL corresponding to the number of nuclear decay events
of FDG per milliliter of brain tissue.

Data registration and network creation

These methods are described in detail in the Supplemen-
tary Data Sections S1 to S11 (Supplementary Data are avail-
able online at www.liebertpub.com/brain). To summarize,
fMRI data were slice-timing corrected and motion corrected.
Segmentation produced gray matter, white matter, cerebro-
spinal fluid (CSF), and whole-brain masks. Each subject’s
R-fMRI and FDG-PET data were registered to the same
subject’s anatomical MRI gray matter maps. Each subject’s
data in anatomical space were then registered to Montreal
Neurological Institute (MNI) space with 2 mm isotropic
voxels.

Twenty brain networks were generated using MNI space,
blurred (full-width, half-maximum [FWHM] = 8 mm, size =
6 mm) R-fMRI data, and the Group ICA of fMRI Toolbox
(GIFT, mialab.mrn.org/software/gift/) (Correa et al., 2007).
Networks were visually identified and classified solely for
the purpose of excluding white matter, CSF, or noise net-
works; four such networks were excluded (IC#1, #3, #6,
and #20). Classifications of networks are listed in Supple-
mentary Table S1.

Comparison of FDG-PET counts to quantitative units

Bq/mL units correspond to the amount of radioactive
decay of FDG in each brain location, and thus correlate with
baseline glucose metabolism. However, there was concern
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that differential uptake by different cell types could cause Bq/
mL to differ spatially from the actual cerebral metabolic rate of
glucose consumption (CMRglc).

To test this, CMRglc data in 41 Brodmann regions (left and
right sides combined, Supplementary Table S2) from a pre-
vious study, recorded with arterial blood sampling to provide
absolute CMRglc units, were used (Hyder et al., 2016). From
this study, mean Bq/mL (from FDG-PET) and mean T1
MPRAGE contrast (from anatomical MRI) in the same 41
Brodmann regions were calculated for each subject. The
mean for each Brodmann region across all subjects with
eyes closed (as eyes were closed in Hyder et al.) was then
taken and mean Bq/mL was correlated with both mean
CMRglc from Hyder et al. and mean T1 MPRAGE contrast.

Calculation of R-fMRI metrics

From the R-fMRI data we calculated three signal variance
based metrics, three FCD based metrics, and a final metric
based on whole-brain correlation. Before calculation of met-
rics, all R-fMRI data were masked to the brain, blurred
(FWHM = 8, size = 6 mm) and were analyzed both (i) without
any nuisance signal regression, and (ii) with regression of nine
signals. The nine signals were as follows: the mean whole-
brain signal, mean white matter signal, mean CSF signal,
and time courses for six motion parameters. See Supplemen-
tary Data Section S3 for full details. Additional subsets of re-
gression were also performed, however, each proved similar
to either i or ii, and therefore these will be the focus of the
main text (Supplementary Data Section S7 for full details).

Note that the use of high-pass filters, Pearson correlation
coefficients, and variance in calculating R-fMRI metrics re-
moved the temporal means of the BOLD signals. However,
these metrics are based on correlation and variance rather
than intensity, and thus the results may have very different
spatial means between subjects and between brain regions.

FCD-based R-fMRI metrics: short-range, long-range, and
total FCD. Before FCD calculation, R-fMRI images were
spatially downsampled by 4.5 (to reduce computational
time of FCD; Supplementary Data Section S4), and filtered
to 0.01–0.08 Hz (For FCD preprocessing in detail see Sup-
plementary Data Section S5). FCD is defined as the number
of voxels that correlate with a given voxel above a certain
threshold; here, we used 0.6 as was used in the original
FCD work (Tomasi and Volkow, 2010).

Three FCD metrics were calculated. (1) Total FCD result-
ing from the connections between a voxel and all other vox-
els in the brain. (2) Short-range FCD resulting from the
connections between a voxel and other voxels within six
voxels (12 mm) distance in any direction (thus a sphere
with 24 mm diameter). While small, this is comparable and
slightly larger than has been used for the similar, distance-
limited measure of regional homogeneity in similar recent
work (Aiello et al., 2015). (3) The short-range FCD map
was subtracted from the total FCD map to provide long-
range FCD.

For averaging purposes, the three FCD metrics were both
calculated including zero values (FCD) and not including
zero values (nzFCD) for a total of six FCD metrics in each
network. (Zero values occur when no connections are
above the correlation threshold.)

Nuisance signal-based metric: whole-brain correlation. A
final metric was calculated, referred to as ‘‘whole-brain corre-
lation.’’ The mean over all voxels in the whole-brain mask was
calculated at each time point for BOLD. This ‘‘whole-brain
signal’’ was then correlated (Pearson correlation) with each
voxel’s own time signal. The resulting correlation value (r)
was then assigned to that voxel’s spatial location to provide
a map of ‘‘whole-brain correlation.’’ A quadratic detrend
was done on the whole-brain signal before correlation to
remove global drift (subtract quadratic fit; see Supplementary
Data Section S11 and Supplementary Fig. S1 for frequencies
affected). Other than that, no filtering, regression, or normali-
zation was done to the BOLD data or whole-brain signal be-
fore this calculation. Finally, the r values were converted to
Z values, which represented the number of standard deviations
from a null hypothesis of no correlation using a normalizing
fisher transformation [equation (1) in Thompson et al.
(2013)]. Note that, despite averaging first, this method is math-
ematically equivalent to calculating the correlation between
each voxel and every other voxel in the brain (Saad et al.,
2013). Also note that whole-brain correlation can also be con-
sidered a form of weighted FCD (Cole et al., 2010).

Variance-based R-fMRI metrics: full-band variance, ALFF,
FALFF. Three signal variance-based metrics were calcu-
lated from the R-fMRI signal. (1) Standard variance (r2)
per-voxel (full-band variance). (2) The ALFF. (3) FALFF.
Calculation was as in Zang et al. (2007) and Zou et al.
(2008) including pass-bands of 0.01–0.08 Hz for both and a
0–0.25 Hz normalizing band for FALFF.

Significance testing on metrics

Significance testing. Two-way analysis of variance
(ANOVA2) with eyes open versus eyes closed as the first
variable, and network versus network as the second variable,
was conducted on each metric. The metrics upon which sig-
nificance testing was conducted were FDG, three variance-
based metrics (full-band variance, ALFF, and FALFF), six
FCD-based metrics (total, short-range, and long-range,
with and without zeros included in averaging) and whole-
brain correlation calculated from R-fMRI data. The variance
and FCD-based metrics were tested both with and without
nuisance signal regression. This produces 20 tests, which
are listed in Table 1.

The mean percentage change was calculated by taking each
pair of values in a set, finding the percentage change from the
lower of the two values to the higher, then taking the mean of
all of these percentage changes. (Mean percentage change can
be negative if calculated from negative values.)

Multiple comparisons correction. All p values resulting
from all ANOVA2 tests in the main study (60 p values
total, Table 1) were concatenated and tested with sequential
goodness of fit (SGoF) a binomial method of controlling
Type I (false positive) errors (Carvajal-Rodriguez et al.,
2009) at a threshold of p £ 0.05 (Supplementary Data Section
S6 for Type II errors).

Comparison of network to network mean differences

For reasons stated in the Results Section, the FDG,
FALFF, short-range nzFCD, and whole-brain correlation

‘‘GLOBAL’’ R-FMRI AS A BIOMARKER OF GLUCOSE METABOLISM 437



metrics were chosen to be compared in terms of their mean
value in-network versus the 16 different networks. The
mean values in-network had the mean taken across all sub-
jects in either the eyes closed or eyes open state, and these
32 values (16 networks, two states) were concatenated end
to end to produce a ‘‘signal’’ of mean value versus net-
work/state. The four ‘‘signals’’ from FDG, FALFF,
short-range nzFCD, and whole-brain correlation were
each set to zero mean, unit variance and the shared vari-
ance in terms of metric mean per network/state were calcu-
lated between each pair of ‘‘signals’’ by taking Pearson
correlation squared.

Significance testing on motion

Separate from metric significance testing (see Significance
testing on metrics Section) the maximum deviations in mo-

tion for each R-fMRI run were also tested with ANOVA2
with eyes open versus eyes closed as the first variable and
which motion direction as the second variable. Two separate
ANOVA2 tests were conducted for the three translation pa-
rameters and the three rotation parameters. Results were
also corrected with SGoF. Variance was also tested in Sup-
plementary Data Section S10.

Results

Statistical significance threshold

The 60 p values resulting from ANOVA2 were used to
generate a new threshold corrected for Type I errors with a
threshold of p £ 0.05. The threshold produced was
p £ 8.9 · 10�4, resulting in 10 of 60 tests being significant.
These 10 tests are shown in bold on Table 1.

Table 1. Two-Dimensional ANOVA Results

Eyes open vs. eyes closed Network vs. network
Interaction

p % Change p Mean% change p

FDG (Bq/mL) 1.1 3 10�6 11 0.51 5.0 1.0

Full-band variance
No regression 0.27 7.9 0.98 11 0.97
Regression 0.59 3.2 0.99 8.0 0.98

ALFF
No regression 8.9 3 10�4 79 1.6 3 10�25 19 1.0
Regression 0.0029 470 3.1 3 10�27 �35 1.0

FALFF
No regression 0.93 0.62 6.5 3 10�41 1400 1.0
Regression 0.065 20 2.1 3 10�32 240 1.0

Total FCD (voxels)
No regression 0.23 26 0.98 33 1.0
Regression 0.22 13 0.011 36 0.85

Short-range FCD (voxels)
No regression 0.0024 19 0.0016 24 1.0
Regression 0.56 1.9 3.4 3 10�14 22 1.0

Long-range FCD (voxels)
No regression 0.23 26 0.98 33 1.0
Regression 0.18 18 0.036 43 0.83

Total nzFCD (voxels)
No regression 0.17 27 0.99 29 1.0
Regression 0.41 7.5 0.073 29 0.95

Short-range nzFCD (voxels)
No regression 8.0 3 10�4 17 0.0037 17 1.0
Regression 0.20 2.9 2.6 3 10�12 14 1.0

Long-range nzFCD (voxels)
No regression 0.12 28 1.0 23 1.0
Regression 0.88 1.2 0.82 17 1.0

Whole-brain correlation (Z) 4.4 3 10�5 20 0.32 12 1.0

Results from 2D ANOVA testing with between-condition (eyes open vs. eyes closed) as one dimension and between-network as the other
dimension. Each row is a different metric, with FDG as the first metric, R-fMRI-derived potential biomarkers following, and whole-brain
correlation last. Where applicable, results with and without regression of nuisance signals are shown. Bolded values are significant at
p £ 0.05 corrected with SGoF for multiple comparisons across all p values. The first two columns show the p value and percentage change
between the eyes open and eyes closed conditions. This is significant ( p £ 0.00089 from SGoF) for ALFF (without regression), FDG, short-
range nzFCD (without regression), and whole-brain correlation. The middle two columns show the p value and (mean) percentage change
between networks. This is significant for ALFF and FALFF (with or without regression) and short-range FCD and nzFCD (with regression).
The final column shows the p value for interaction between network and condition. This was not significant ( p > 0.50) in every case.

ALFF, amplitude of low-frequency fluctuation; ANOVA, analysis of variance; FALFF, fractional ALFF; FCD, functional connectivity
density; FDG, fluoro-deoxyglucose; nzFCD, FCD with zeros removed for averaging purposes only; SGoF, sequential goodness of fit.
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Change in FDG

Mean FDG in the eyes closed state in 41 Brodmann re-
gions (left and right sides combined) from this study was
compared to mean CMRglc in the eyes closed state from
Hyder et al. (2016) (Fig. 1). The FDG data and the anatom-
ical T1 MPRAGE contrast (structural MRI) were also com-
pared. Correlation between this study’s FDG (in Bq/mL)
and CMRglc from Hyder et al. was very high, r = 0.895/
80%. Correlation between this study’s FDG and its matching
structural MRI was lower, r = 0.20/4.0%. This indicates that
the region-to-region variation in FDG (measured in Bq/mL)
closely follows CMRglc rather than anatomical peculiarities
of this study.

Globally higher FDG was observed in the eyes open con-
dition as compared to the eyes closed condition (Figs. 2A–C
and Fig. 3A), this difference was significant (Table 1). While
some region to region differences are visible, such as IC #18
(the posterior cingulate cortex) being higher than IC #16 (the
dorsal somatomotor cortex), these differences are compara-
tively small compared to inter-subject variance and were
not significant (Table 1). Overall, there is a very large base-
line FDG in each state, this baseline changes between states,
and the network to network differences atop this baseline are
comparatively small.

FCD-based metrics

Short-range (<6 voxels or 12 mm sphere) nzFCD with no
nuisance signal regression was observed to be globally higher
in the eyes open condition as compared to the eyes closed con-
dition (Figs. 2D–F and 3B), this difference was significant.
There were greater network versus network differences in
short-range nzFCD than in FDG, but it was nonsignificant
(Table 1; see also Supplementary Data Section S6 and Supple-
mentary Fig. S2 for consideration of Type II errors).

When nuisance signal regression was not done, results for
other distances of FCD and including zeros in the averaging
followed the same trend as short-range nzFCD, but were
nonsignificant (Table 1 and Supplementary Fig. S3). How-

ever, if nuisance signal regression was done, no eyes open
versus eyes closed differences remain significant, and some
network versus network differences become significant
(Table 1 and Supplementary Fig. S3). For additional subsets
of regression, see Supplementary Data Section S7.

These results suggest that short-range FCD can potentially
be a biomarker of the globally higher values in the eyes open
condition observed in FDG. However, FCD varies between
networks more than FDG. Regression of nuisance signals
amplifies this variation and removes the eyes open versus
eyes closed difference.

Whole-brain correlation as a metric

The mean correlation between in-network voxels and the
whole-brain signal, between the eyes open versus eyes
closed states, is shown in Figures 2G–I and 3C. There is sig-
nificant higher whole-brain correlation in all networks in the
eyes open condition than in the eyes closed condition, and
network versus network differences are small (Table 1).
This is similar to FDG, though network versus network has
a higher percentage change for whole-brain correlation
(20% vs. 11%).

Variance-based metrics

FALFF (without nuisance signal regression) had large and
statistically significant network versus network differences,
but was not significantly different eyes open versus eyes
closed (Figs. 2J–L and 3D). Results for ALFF, and
FALFF/ALFF without nuisance signal regression were gen-
erally similar, though ALFF without nuisance signal regres-
sion also showed a significant increase in the eyes open state
(Table 1 and Supplementary Fig. S4). There were no signif-
icant results for full-band variance (Table 1 and see also Sup-
plementary Data Section S6 and Supplementary Fig. S5 for
consideration of Type II errors).

Thus, variance-based metrics were not similar to FDG,
but FALFF well-characterized large network to network
differences.

FIG. 1. Mean values across 41 Brodmann regions (listed in Supplementary Table S2). Mean is taken across the region first,
then across all subjects with eyes closed. (A) Mean FDG (Bq/mL, N = 11) from this study (light gray bars) compared to mean
CMRglc (N = 13) from Hyder et al. (2016) (dark gray bars). Error bars are one standard deviation. (B) Mean FDG (Bq/mL,
N = 11) from this study (light gray bars) compared to mean anatomical contrast (T1 MPRAGE, N = 11) also from this study
(black bars). Note that Bq/mL correlates very highly with quantitative CMRglc, even more than the mean anatomical contrast
from the same subjects. CMRglc, cerebral metabolic rate of glucose consumption; FDG, fluorodeoxyglucose.
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Network to network variation

To better understand the R-fMRI signal, the two best poten-
tial biomarkers (short-range nzFCD without nuisance sig-
nal regression and whole-brain correlation) were chosen.
FALFF without regression was also chosen as it had the great-
est mean network to network difference (1400%), is consid-
ered less susceptible to physiological noise than ALFF (Zou
et al., 2008), and was compared to the nzFCD calculated with-
out regression. Network to network values in FDG (Fig. 4A),
short-range nzFCD (no regression, Fig. 4B), whole-brain cor-
relation (Fig. 4C), and FALFF (no regression, Fig. 4D) were
converted to signals (Fig. 4E) and the network to network var-
iation correlated between modalities.

The shared variance between the network to network
mean metrics is shown in Table 2. All shared variance values
are high (22% or greater) indicating substantial topological
similarity between FALFF, short-range FCD and FDG, as
has been previously reported (Aiello et al., 2015).

It can be noted that, while FDG, short-range nzFCD, and
whole-brain correlation all show the trend of being higher
in the eyes open condition, FALFF does not (Fig. 3).
While some peaks are present in all four, some peaks present

in whole-brain correlation and short-range nzFCD are pres-
ent in FALFF, but are not present in FDG (Fig. 4E). Short-
range nzFCD and whole-brain correlation have compara-
tively high shared variance with FDG and FALFF, compared
with FDG shared variance with FALFF (Table 2). Thus,
components of both FALFF and FDG network to network
variation correlate with the network to network variation of
these potential biomarkers.

Short-range nzFCD and whole-brain correlation also show
85% shared variance in network to network differences
(Table 2). As whole-brain correlation is much quicker to
compute than FCD (Supplementary Data Section S4), this
suggests it might be possible to use whole-brain correlation
to approximate FCD.

Effect of motion

SGoF correction for Type I errors on the six p values for
motion parameters (eyes open vs. eyes closed, the three di-
rections vs. each other, and interaction between direction
and state, for both rotation and translation) produced a
threshold of p £ 5.8 · 10�4 for significance, with two signifi-
cant tests.

FIG. 2. Mean (N = 11) brain images showing the global increase in FDG and some potential R-fMRI biomarkers. (A) FDG,
lower in eyes closed condition. (B) FDG, higher in eyes open condition. (C) Difference between (A) and (B), times 10 to
show on same scale. (D) Short-range FCD, lower in the eyes closed condition. (E) Short-range FCD, higher in the eyes
open condition. (F) Difference between (D) and (E), times two to show on the same scale. (G) Whole-brain correlation,
lower in the eyes closed condition. (H) Whole-brain correlation, greater in the eyes open condition. (I) Difference between
(G) and (H), times three to show on the same scale. (J) FALFF in the eyes closed condition. (K) FALFF in the eyes open
condition. (L) Difference between ( J) and (K) on the same scale. From (C), (F) and (I) it can be noted that these metrics are
consistently higher across gray matter in the eyes open condition. In (L) as there are changes in both directions (Fig. 3).
ALFF, amplitude of low-frequency fluctuation; FALFF, fractional ALFF; FCD, functional connectivity density; R-fMRI,
resting state functional magnetic resonance imaging.
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There were significant differences in the amount of motion
depending on the direction ( p = 2.1 · 10�7, means: 0.43 mm
right, 0.34 mm forward, and 1.0 mm up) and the angle
( p = 5.9 · 10�4, means: 0.019 rad for pitch, 0.0093 rad for
roll, and 0.011 rad for yaw) but there was no significant dif-

ference for either depending on whether a subject was in the
eyes open or eyes closed group ( p = 0.093 for translation,
p = 0.93 for rotation, 0.68 mm, 0.013 rad for eyes closed,
0.52 mm, 0.013 rad for eyes open) and there was also no sig-
nificant interaction between these terms ( p = 0.49 for transla-
tion, p = 0.87 for rotation).

This suggests motion did not influence observed differ-
ences between the eyes open and eyes closed states. In ad-
dition, a motion effect would be expected to have a
differential effect on long-range connections versus
short-range connections in the FCD calculations (Power
et al., 2012). The relationship between FDG and the
FCD metrics (and whole-brain correlation) is largely con-
stant network to network (Fig. 3), whereas the effect of
motion has been shown to vary network to network (Van
Dijk et al., 2012).

Discussion

Our study uses a simple yet common state difference that
is physiological (eyes open vs. eyes closed) to model a state
change in the brain. Within a given state the FDG was con-
stant across networks (not individual brain regions), how-
ever, globally higher FDG was observed across all
networks in the eyes open state compared with the eyes
closed state (Table 1 and Fig. 2). The ICA-derived networks
spanned the entire cerebrum, from the frontal cortex through
the posterior cingulate cortex to the visual cortex (Supple-
mentary Table S1). Unlike FDG, broadband variance and
FALFF showed an increase in some networks but a decrease
in others, and ALFF and FALFF showed significant variation
between networks within a given state. Thus, these variance-
based metrics were not observed to reflect the trends in FDG
(Fig. 3). Conversely, all measures of FCD were, like FDG,
globally higher in the eyes open state. However, FCD was
only statistically significant at r = 0.60 for short-range
nzFCD (Table 1 and Fig. 3) and at r = 0.25 for short-range
and long-range nzFCD (Supplementary Fig. S2). Whole-
brain correlation had a statistically identical result to short-
range nzFCD (with r = 0.60) and FDG (Table 1 and
Fig. 3C). In terms of network to network variation, whole-
brain correlation was strongly correlated with short-range
nzFCD, both of these were strongly correlated to both
FALFF and FDG, but FDG and FALFF themselves were
less correlated (Table 2 and Fig. 4E).

Limitations

FDG-PET data were acquired without arterial blood
sampling and, while the original radiation counts numbers
(Bq/mL) were used, these counts could vary from the ac-
tual CMRglc. However, there is a strong correlation in
the eyes closed condition between this study’s Bq/mL
counts and our previous work where arterial blood sam-
pling was used to obtain absolute CMRglc (Fig. 1), indicat-
ing the FDG numbers in this study do reflect the underlying
metabolism.

Image registration was generally very consistent for each
modality (BOLD, FDG, anatomical MRI). However, there
was a small (<0.5%) but significant difference between
eyes open and eyes closed for the registrations of the ana-
tomical MRI images versus the registrations of the FDG-
PET images (see Supplementary Data Section S8 and

FIG. 3. Mean (N = 11) of metrics is plotted as bars for 16
numbered networks along the X-axis. Error bars are one stan-
dard error. Dark gray is N = 11 in the eyes closed condition,
light gray is N = 11 in the eyes open condition. All signifi-
cance from ANOVA2 (Table 1) is shown with asterisks
(*), nonsignificant not shown. (A) FDG. (B) Short-range
nzFCD. (C) Whole-brain correlation. (D) FALFF. Note
that FDG, short-range nzFCD and whole-brain condition
are relatively constant within a given state, but globally
greater in the eyes open state. FALFF has strong network
to network variation, but does not show the global effect.
nzFCD, FCD with zeros removed for averaging purposes
only.
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Supplementary Fig. S6). This did not affect our results as we
compared BOLD metrics to FDG-PET metrics, which did
not significantly differ in their registrations. However, future
studies that compare anatomy to FDG-PET data should ac-
count for this variation.

ICA has ‘‘inherent global signal regression built into it’’
[p. 16, Murphy et al. (2009)]. Therefore, the networks gener-
ated by ICA could potentially be biased. However, a similar
positive shift can be seen without network selection (Fig. 2
and Supplementary Fig. S7A). Additionally, when different
methods of generating networks were used (including seed-
based networks with no whole-brain signal regression), a
statistically identical result is produced in terms of FDG: a
significant increase in the eyes open condition and no signif-
icant network to network difference [Conference abstract:
Thompson et al. (2015)].

Non-neuronal and nonmetabolic effects impact the mea-
sured BOLD signal including changes in field homogeneity,
coil receiver gain, analog-to-digital conversion, and subject
motion (as motion correction is not perfect). Time-variant

and spatially variant effects may average together to impact
the potential biomarkers, in particular the whole-brain signal,
for example, through bulk motion. Future work including
other simultaneously measured and time-variant modalities
(e.g., electrophysiology or in vivo microdialysis in animal
models) is needed to confirm R-fMRI-derived biomarkers
are actually due to metabolism or brain activity.

Neurometabolic basis of potential R-fMRI biomarkers

The state change in glucose metabolism seen between
conditions was reflected with the potential R-fMRI biomark-
ers of FCD and whole-brain correlation, but was only some-
what reflected by ALFF and was not reflected by FALFF or
broadband variance. However, a previous study has shown
that the topological variation in FALFF does match the topo-
logical variation in CMRglc (Aiello et al., 2015). This simi-
larity in spatial correlation was replicated in this study
(Fig. 4E and Table 2; Supplementary Fig. S8D and Supple-
mentary Table S3). This raises an important question: How

FIG. 4. (A) Scatter plot with each
network as a point, mean FDG
(N = 11) in the eyes closed condition
as the X-axis, mean FDG (/10,000,
N = 11) in the eyes open condition as
the Y-axis. Line is Y = X. All values
are in Bq/mL divided by 10,000. (B)
As (A), but short-range nzFCD. (C)
As (A), but whole-brain correlation.
(D) As (A), but FALFF. FDG, short-
range nzFCD and whole-brain cor-
relation show a shift from the Y = X
line, while FALFF instead occupies
a larger dynamic range along it.
Voxel-wise scatter plots for (A–D)
are shown in Supplementary
Figure S7. (E) The Y-axis plots the
relative values of each metric in
different networks, with the X-axis
corresponding to 16 networks in the
eyes closed condition (left) and eyes
open condition (right). For each
metric the black horizontal line rep-
resents the average value across all
networks and both conditions. Peaks
represent a network having a higher
value than other networks in that
condition (mean of N = 11). Note
that, as shown in Figure 3, FDG,
short-range nzFCD, and whole-brain
correlation all are consistently
greater in the eyes open condition,
while FALFF has approximately the
same mean value across conditions.
Also note that some peaks in short-
range FCD and whole-brain corre-
lation occur in FALFF, but do not
occur in FDG. This suggests that
short-range FCD and whole-brain
correlation relate to both FDG and
FALFF. Statistics are shown in
Table 2. Color images available
online at www.liebertpub.com/brain
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can CMRglc/R-fMRI similarity seen with spatial correlation
not directly translate to the state difference? One possibility
is that different potential R-fMRI biomarkers represent vary-
ing levels of regional tissue differences versus sensitivity to
baseline metabolism, and these two elements are not com-
pletely correlated.

Tomasi et al. (2013) hypothesize that voxels with greater
degree of connectivity (here, higher FCD score) have greater
energy demand due to the property of Hopfield neural net-
works (Hopfield, 1982) where energy demand scales with
number of direct functional connections. Cole et al. (2010)
indicated that whole-brain connectivity also measures the
amount of connections, but in a weighted manner, and thus
it would also reflect energy demand. While Aiello et al.
(2015) also use connections as a surrogate for measuring en-
ergy demand, they also include FALFF, which is not a direct
measure of connections. Their justification for FALFF as a
correlate of glucose comes from the assumption that low-
frequency fluctuations are an inherent part of functional con-
nectivity. Thus, since low-frequency fluctuations create the
functional connections we would otherwise measure with
FCD, FALFF should also correlate with metabolism.

While this assumption is valid and holds well for differ-
ences in FALFF across different regions of the brain, it
does not consider that there are both region to region and
state to state changes in metabolism. Different brain regions
vary in cell type, cell density, vascular density, large vein
proximity, and nonphysiological parameters such as the
signal-to-noise ratio (Logothetis, 2008; Logothetis et al.,
2009), all of which affect either metabolism or the ability
to accurately measure it. It is possible that, due to these re-
gional differences in metabolic, hemodynamic and physio-
logical factors, the level of R-fMRI fluctuations measured
in a given region may have a high level of variance owed
to being in that particular region (e.g., Fig. 3D).

Thus, in the context of a global change in brain metabo-
lism, FALFF will continue to reflect the regional variance
differences (and ALFF will still be dominated by them,
though it may be more sensitive to baseline metabolism as
it is not divided by the wider frequency range), even if the
change to baseline FDG does have an effect. FCD and
whole-brain correlation are, conversely, less sensitive to

the regional variance differences as Pearson correlation nor-
malizes every voxel’s temporal variance to one.

Comparison with previous studies

Comparison with previous studies of eyes closed versus
eyes open. Even a condition as simple as opening one’s
eyes creates a large, global metabolic change in the brain.
This has been defined as an ‘‘interoceptive’’ state when the
eyes are closed, versus an ‘‘exteroceptive’’ state when the
eyes are open, that is, either internally or externally focused
(Marx et al., 2003).

Many previous studies have examined the difference be-
tween the eyes open and eyes closed states using fMRI. How-
ever, unlike this study, those studies were interested in local
differences so justifiably discarded the mean of each R-fMRI
metric with each conditions through performing statistical
parametric mapping using the general linear model (Bian-
ciardi et al., 2009; Brandt, 2006; Gonzalez-Hernandez
et al., 2005; Marx et al., 2004; Qin et al., 2012; Riedl
et al., 2014; Wicker et al., 2003), performing global signal
regression to find local significance (Xu et al., 2014; Yuan
et al., 2014; Zou et al., 2009), or using paired T-tests on a
per voxel basis (which can hypothetically detect a global
change if region-to-region variation is small, but will not
necessarily as it only compares per-voxel changes and global
means are never calculated) (Patriat et al., 2013). All of these
methods will amplify local region to region, voxel to voxel
variation, but obscure the relations to the global change ob-
served in FDG (Fig. 2 and see also Supplementary Data Sec-
tion S9 and Supplementary Fig. S9). Some studies have had
conflicting results, for example, whether the visual system is
more ‘‘active’’ in the eyes open or eyes closed state (Marx
et al., 2003; Yuan et al., 2014) or whether functional connec-
tivity is higher or lower ( Jao et al., 2013; Yan et al., 2009).
The global change in ALFF, short-range nzFCD and whole-
brain correlation observed here followed changes in baseline
metabolism as measured by absolute Bq/mL values. Thus,
various data processing methods that retain different
amounts of the global metabolic change may be behind
some of the inconsistencies in the literature.

Previous studies have been able to find all networks in
both states (Xu et al., 2014). Patriat et al. (2013) reported dif-
ferences between states, but comparison to this study is dif-
ficult as they used correlation between regions of interest
rather than per-voxel metrics in defined networks.

Reliability has been shown to be improved in certain net-
works in the eyes open condition versus eyes closed (Zou
et al., 2015). This may be related to the greater baseline met-
abolic activity observed in this study. Overall, the results of
this study support this general consensus that R-fMRI stud-
ies can be conducted with either eyes open or eyes closed,
with the caveat that baseline metabolic activity (and thus
potential reliability of metabolic biomarkers) will be higher
with eyes open.

Comparison with previous studies of R-fMRI metrics as
metabolic biomarkers. Short- and long-range FCD have
both been previously shown to correlate with FDG when
recorded separately (Tomasi et al., 2013). Studies of cerebral
perfusion also strongly suggest a metabolic link between
both short and long range connections (Liang et al., 2013).

Table 2. Network to Network Shared

Variance Between Different Metrics

Short-range
nzFCD

(voxels) (%)

Whole-brain
correlation

(Z) (%)
FALFF

(%)

FDG (Bq/mL) 51 71 22
Short-range

nzFCD (voxels)
85 65

Whole-brain
correlation (Z)

43

Correlation across different metrics, between the mean values each
metric produces in each network per condition (i.e., correlation of the
traces in Fig. 1). FDG, short-range nzFCD (without regression), whole-
brain correlation, and FALFF (without regression) are shown. The
least shared variance (22%) is between FDG and FALFF. Short-range
nzFCD and whole-brain correlation have 43–71% shared variance
with both FALFF and FDG. The greatest shared variance is between
short-range nzFCD and whole-brain correlation (85%).
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The regional homogeneity (a measure of short-distance sim-
ilarity, likely comparable to short-range FCD) has also been
shown to correlate with FDG when recorded simultaneously
as data were herein (Aiello et al., 2015). In our study, long-
range FCD was not significant but demonstrated an identical
trend to short-range FCD and FDG (Table 1 and Supplemen-
tary Fig. S3). This may be due to high spatial similarity be-
tween long-range and short-range FCD and higher subject to
subject variance in long-range FCD (Tomasi and Volkow,
2011), corroborated by long-range FCD becoming signifi-
cant if the r threshold was lowered (Supplementary
Fig. S2). Aiello et al. also did not observe as strong a rela-
tionship between FDG and the measure of ‘‘degree of cen-
trality,’’ which was calculated in a similar manner to long-
range FCD. For comparison to Aiello et al., voxel-wise
scatter plots between R-fMRI metrics and CMRglc are
shown in Supplementary Figure S8.

Yan et al. showed increased FALFF in the default mode
network in the eyes open condition (Yan et al., 2009).
Our study replicates that result (IC #19, Fig. 3D). Jao et al.
(2013) more recently showed decreased variance and
FALFF in the default mode network in the eyes open condi-
tion. Results of Jao et al. use much smaller nodes than the
networks used in our study, and also used correlation matri-
ces rather than per-voxel FCD, thus many of their results are
difficult to compare to our study. Results of Jao et al. regard-
ing FALFF differ from that of Yan et al., and thus there is no
consensus with which to compare the results of this study on
whether FALFF should increase or decrease with increased
CMRglc.

Our result supports the hypothesis put forth by Tomasi
et al. (2013) that the metabolism is reflected by the number
of connections (from a region) rather than the amplitude of
individual fluctuations (within that region). A recent study
by Di et al. (2012) showed more spatial correlation between
homotopic R-fMRI networks and metabolism, as compared
to widely separated networks. Results from the same data
as used here, using the general linear model, also agreed
that areas of greater local PET activity were spatially local-
ized to areas where functional connectivity increased (Riedl
et al., 2014). Similarly, high glucose uptake has been linked
to the most strongly connected default mode network nodes
(Passow et al., 2015).

While the source of the global signal in the brain is not
well understood, there is increasing evidence that part of it
has a neural origin (even if other parts are influenced by
non-neural or even nonmetabolic hardware-based effects).
Schölvinck et al. (2010) showed that an implanted electrode
correlated with fMRI voxels from all over the brain. Con-
versely, for local correlations between two sites in short
time windows, regression of the global signal increased cor-
relation between changes in neuroelectric and BOLD signals
(Thompson et al., 2013). Wong et al. (2013) demonstrated a
relationship between the variance of the global signal itself
and vigilance. They observed greater variance in the eyes
closed state, which may correspond to the lower mean corre-
lation observed here. Schizophrenia shows increased cortical
power and variance across the whole brain (Yang et al.,
2014) and lower global brain connectivity overall (Hahamy
et al., 2014). Obsessive–compulsive disorder shows changes
in local areas in terms of how closely they relate to the global
signal (Anticevic et al., 2014). Global brain connectivity also

increases across the entire brain under acute ketamine (Drie-
sen et al., 2013).

Variations in cerebrovascular reactivity between different
areas of the brain, states and subjects also likely influence the
observed results. In particular, the close mapping between
resting state physiological fluctuation amplitude and cerebro-
vascular reactivity observed previously (Kannurpatti and
Biswal, 2008; Liu et al., 2013) and the large network to net-
work differences in variance-based metrics observed here
(Table 1) suggest that network to network variation in R-
fMRI metrics may be influenced by cerebrovascular reactiv-
ity. This may apply even to the metrics where network versus
network comparisons were not significant (Fig. 4E and
Table 2).

Finally, it must be considered that non-neuronal and non-
metabolic factors influence BOLD, and in particular the
whole-brain signal (see Limitations Section).

Comparison with previous studies comparing different
R-fMRI metrics. Cole et al. referred to a metric similar to
FCD as ‘‘unweighted global brain connectivity’’ and an
equivalent metric to whole-brain correlation ‘‘weighted
global brain connectivity’’ (Cole et al., 2010). They demon-
strated that weighted and unweighted global brain connec-
tivities were very similar. Our study mirrors this as high,
shared variance was observed between short-range nzFCD
and whole-brain correlation (Table 2 and Supplementary
Fig. S8B).

Nugent et al. (2015) compared ALFF, whole-brain corre-
lation, and glucose consumption in individuals with temporal
lobe epilepsy and healthy controls using spatial correlation.
They found ALFF more similar to glucose consumption in
healthy controls, but whole-brain correlation more similar
in patients (Nugent et al., 2015). It is difficult to compare
these results to our study, however, as spatial correlation is
independent of spatial mean, which were shifted between
states (Fig. 3C).

Aiello et al. (2015) compared multiple R-fMRI metrics to
simultaneously recorded brain glucose metabolism in the
state of eyes open. They observed strong similarity between
FALFF, regional homogeneity, and CMRglc. However, to fa-
cilitate topological comparison of these metrics, they set all
R-fMRI and PET metrics to zero mean and unit variance be-
fore analysis. While this step was necessary for correlation, it
meant that they could not have observed a change in global
means of potential R-fMRI biomarkers. This makes compari-
sons with this study difficult as herein results were dominated
by the change in the global means of ALFF, short-range
nzFCD, and whole-brain correlation. However, corroborating
Aiello et al., substantial shared variance of 22% (r = 0.47) or
more was observed between all pairings of short-range
FCD, FALFF, and CMRglc in terms of topological comparison
between networks (Fig. 4E and Table 2). For comparison
to Aiello et al., voxel-wise scatter plots between different
R-fMRI metrics are shown in Supplementary Figure S8. Com-
pare parts B, E, and F to Figures 2 and 3 of Aiello et al.

Future work

In Figure 2A and B it can be seen that an increase in white
matter is observed as well, though to a smaller extent than
gray matter. Supplementary Figure S7A illustrates that this
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is not a partial volume effect as the majority of white matter
voxels show an increase similar to gray matter. While this
has remained unstudied to a large extent, some evidence sug-
gests that functional connectivity, measurable with R-fMRI,
exists in white matter (Ding et al., 2013). In addition, regres-
sion of the white matter signal alone produced effects similar
to regression of the whole-brain signal, which is unusual,
considering that signal variance and temporal features have
normally been reported to differ between gray matter and
white matter (Birn et al., 2008; Chang and Glover, 2009;
Chang et al., 2009) (see Supplementary Data Section S7,
Supplementary Table S4). As neurons exist in white matter
it is possible these results reflect an actual change in neural
activity, but much work beyond the scope of this study
would be required to demonstrate this with certainty.

Interaction between state to state differences and network
to network differences always had a high probability of
accepting the null hypothesis ( p > 0.5, often p& 1,
Table 2). As this study only had two states, but many net-
works, it is hard to say definitively if this means that such in-
teractions do not exist. Future work with multiple states
(such as different stimuli in healthy subjects or different dis-
ease states) could better illuminate how global state changes
interact with network to network differences in these poten-
tial biomarkers.

The two significant potential biomarkers of FDG in the
main study, short-range nzFCD and whole-brain correlation,
vary network to network in a manner similar to FALFF
(Fig. 4E and Table 2). At a lower threshold for connections,
short-range nzFCD also shows the same significance pattern
as ALFF (Supplementary Fig. S2A). These results suggest
that FCD (and maybe ALFF) reflect two different types of in-
formation: both state-dependent metabolic information and
network-dependent information containing both metabolic
and hemodynamic components. Future studies using cali-
brated fMRI (combining blood flow and BOLD measure-
ments) could more accurately establish the potential of
both short-range FCD and whole-brain correlation as alterna-
tives for metabolic imaging.

A limitation of the dataset of this study is that subjects ei-
ther had eyes closed or eyes open, but not both. While this
does highlight a potential strength of our analytical method
(it can used for disease states where a subject cannot be in
both groups), intra-subject comparisons would improve in-
terpretation and the authors are currently collecting such
data for future work.

Conclusion

We have demonstrated that the globally higher glucose
metabolism in the eyes open state is reflected by a similar
state change within short-range nzFCD along with an even
more similar state change within whole-brain correlation.
Thus, these two R-fMRI metrics are promising as potential
biomarkers of state changes in glucose metabolism in the
brain. Variance-based metrics, conversely, vary network to
network more strongly and may elucidate network to net-
work variation better than the other potential biomarkers.
Future combined PET/R-fMRI studies with a larger extent
of changes in glucose metabolism (e.g., anesthetized or
sleep states) would be useful in establishing these R-fMRI
metrics as biomarkers for brain state changes.
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