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Serum metabolomic signatures 
discriminate early liver 
inflammation and fibrosis stages in 
patients with chronic hepatitis B
Haijun Huang1,2,*, Zeyu Sun1,*, Hongying Pan2, Meijuan Chen2, Yongxi Tong2, Jiajie Zhang2, 
Deying Chen1, Xiaoling Su1 & Lanjuan Li1

Chronic HBV (CHB) infected patients with intermediate necroinflammation and fibrosis are 
recommended to receive antiviral treatment. However, other than liver biopsy, there is a lack of 
sensitive and specific objective method to determine the necroinflammation and fibrosis stages in CHB 
patients. This study aims to identify unique serum metabolomic profile associated with histological 
progression in CHB patients and to develop novel metabolite biomarker panels for early CHB detection 
and stratification. A comprehensive metabolomic profiling method was established to compare serum 
samples collected from health donor (n = 67), patients with mild (G < 2 and S < 2, CHB1, n = 52) or 
intermediate (G ≥ 2 or S ≥ 2, CHB2, n = 36) necroinflammation and fibrosis. Multivariate models 
were developed to differentiate CHB1 and CHB2 from controls. A set of CHB-associated biomarkers 
was identified, including lysophosphatidylcholines, phosphatidylcholines, phosphatidylinositol, 
phosphatidylserine, and bile acid metabolism products. Stratification of CHB1 and CHB2 patients by a 
simple logistic index, the PIPSindex, based on phosphatidylinositol (PI) and phosphatidylserine (PS), 
was achieved with an AUC of 0.961, which outperformed all currently available markers. A panel of 
serum metabolites that differentiate health control, CHB1 and CHB2 patients has been identified. The 
proposed metabolomic biosignature has the potential to be used as indicator for antiviral treatment for 
CHB management.

Patients with chronic hepatitis B (CHB) are at high risk of developing hepatic decompensation, liver cirrhosis, 
hepatocellular carcinoma (HCC) and end-stage liver disease (ESLD)1,2. Antiviral treatment can suppress HBV 
replication and rescue acute exacerbations of CHB, and prevent progression of CHB to cirrhosis, HCC and 
ESLD3–6. However, the reversion from inactive CHB to active states can occurs spontaneously without perceivable 
symptoms5. The current guidelines proposed by American Association for the Study of Liver Diseases (AASLD), 
the European Association for the Study of the Liver (EASL) and the Asian-Pacific Association for the Study of the 
Liver (APASL) for antiviral treatment predominantly rely on monitoring alanine aminotransferase (ALT) level7–9. 
Despite being adopted widely, there is still a dearth of studies to evaluate these guidelines for CHB management. 
Recent doubts have been raised that there might be a sizeable portion of CHB subgroups that will benefit from, 
but were unfortunately not eligible for antiviral treatment under the current frameworks9–14. Our previous data 
together with reports from others showed that marked necroinflammation (grade G ≥​ 2) and fibrosis (stage S ≥​ 2) 
may not trigger ALT increase in many CHB patients, who were not eligible for antiviral treatment15–18. So far, 
liver biopsy (LB) is the golden standard for assessing liver inflammation and fibrosis. But the invasive nature of 
this procedure, alongside concerns with sampling error and assessment variability make it unsuitable for CHB 
evaluation and monitoring in large population19,20. Therefore, there is need to develop noninvasive biomarkers to 
accurately assess the early CHB stages. The majority of published serum biomarkers were proposed for detecting 
significant liver fibrosis in CHB patients21, only a few serum biomarkers were proposed to assist in the detection 
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of liver necroinflammation in CHB patients22,23, but these serum biomarkers all have not been tested to predict 
the overall histological severity of CHB.

Metabolomics is an established systematic approach to profile metabolites in any given biological samples 
and leads disease markers generation. Recent metabolomic studies based on ultra-performance liquid chroma-
tography coupled with high-resolution mass spectrometry (UPLC-HRMS) have helped to develop diagnostic or 
prognostic biomarkers for a variety of liver diseases24–27. We postulate that mild hepatic inflammation and fibrosis 
at early CHB stages will lead to liver metabolic shifts without extensive cellular damages, and can be reflected by 
serum metabolomic alterations. In this study, we specifically aimed to develop multivariate models using high 
coverage UPLC-HRMS metabolomics data to differentiate patients with mild or significant inflammation and 
fibrosis stages within CHB cohort with ALT level smaller than 2X ULN and healthy controls. Based on this model, 
we further aimed to develop serum metabolite markers for CHB stage stratification.

Results
Study cohort characteristics.  Of all 155 subjects (52 CHB1, 36 CHB2 and 67 normal, Table 1), about 2/3 
were used for model training, while the remaining 1/3 were used for model validation. Patients in all groups were 
well matched with respect to age, gender ratio, and there were no remarkable differences in ALB, GLB, Cr, BUN 
levels. Importantly, CHB1 and CHB2 patients showed comparable HBeAg and HBV DNA level. When compared 
to healthy controls and CHB1 patients, CHB2 patients had significant higher level of ALT, AST, GGT and AKP, 
and significant lower level of PLT as expected.

Hepatic biopsies were obtained from all 88 CHB patients. In summary, 18.6% (11/59) of the training set and 
24.1% (7/29) of the validation set had significant fibrosis (S2–4), while 38.9% (23/59) of the training set and 34.5% 
(10/29) of the validation set had significant inflammation (G2–4). Examples of liver biopsy histology from CHB1 
and CHB2 patients are shown in Supplementary Figure 1.

Groups

Training set Validation set

CHB1 (n =​ 35) CHB2 (n =​ 24) Control (n =​ 46) P-Value* CHB1 (n =​ 17) CHB2 (n =​ 12) Control (n =​ 21) P-Value*

Age (yr) 37.14 ±​ 9.68 0.42.13 ±​ 12.33 39.30 ±​ 9.43 >​0.05 31.94 ±​ 9.22 36.83 ±​ 10.29 36.81 ±​ 8.50 >​0.05

Gender (M:F) 23:12 15:9 32:14 >​0.05† 6:11 8:4 12:9 >​0.05†

ALT (IU/L) 34.34 ±​ 18.41 55.83 ±​ 42.63 23.96 ±​ 10.12 <​0.01 27.65 ±​ 17.47 48.42 ±​ 27.48 23.42 ±​ 9.94 <0.01

AST (IU/L) 29.26 ±​ 10.44 50.13 ±​ 39.29 23.91 ±​ 5.27 <0.01 26.297 ±​ 11.98 37.08 ±​ 14.75 25.81 ±​ 4.83 <0.05

GGT (IU/L) 23.26 ±​ 14.19 45.63 ±​ 44.34 23.76 ±​ 11.81 <0.01 18.29 ±​ 9.31 34.17 ±​ 31.88 21.14 ±​ 5.82 <0.05

AKP (IU/L) 74.00 ±​ 13.90 91.25 ±​ 28.56 66.11 ±​ 17.78 <0.01 62.00 ±​ 15.46 81.08 ±​ 20.82 63.38 ±​ 16.98 <0.05

ALB (g/L) 46.36 ±​ 4.47 44.79 ±​ 5.09 44.82 ±​ 3.61 >0.05 44.75 ±​ 2.97 43.17 ±​ 3.68 43.40 ±​ 3.22 >​0.05

GLB (g/L) 28.51 ±​ 2.53 27.98 ±​ 4.02 31.55 ±​ 2.78 >​0.05 28.93 ±​ 4.17 29.18 ±​ 5.05 30.79 ±​ 2.91 >​0.05

Cr (μ​mol/L) 78.53 ±​ 11.25 75.79 ±​ 12.47 78.88 ±​ 13.36 >​0.05 80.51 ±​ 14.41 71.85 ±​ 10.85 74.49 ±​ 13.31 >​0.05

BUN (mmol/L) 5.27 ±​ 1.40 4.94 ±​ 1.06 5.18 ±​ 1.46 >​0.05 5.28 ±​ 1.53 4.64 ±​ 1.25 4.97 ±​ 1.45 >​0.05

HBeAg+​ (n, %) 19 (54.3%) 9 (37.5%) N/A >​0.05† 13 (76.5%) 6 (50.0%) N/A >​0.05†

HBV DNA (log10 copies/mL) 5.82 ±​ 2.18 5.78 ±​ 1.74 N/A >​0.05 5.97 ±​ 1.58 5.27 ±​ 1.97 N/A >​0.05

PLT (109/L) 208.80 ±​ 68.19 159.71 ±​ 61.31 213.22 ±​ 46.68 <0.01 206.53 ±​ 65.45 159.83 ±​ 44.99 214.48 ±​ 30.44 <0.01

HDL-C (mmol/L) 1.36 ±​ 0.26 1.23 ±​ 0.32 1.26 ±​ 0.59 >​0.05 1.20 ±​ 0.21 1.23 ±​ 0.32 1.11 ±​ 0.39 >​0.05

LDL-C (mmol/L) 2.71 ±​ 0.86 2.73 ±​ 0.66 2.60 ±​ 0.70 >​0.05 2.53 ±​ 0.58 2.42 ±​ 0.60 2.51 ±​ 0.72 >​0.05

CHL (mmol/L) 4.70 ±​ 0.96 4.62 ±​ 0.77 4.48 ±​ 0.93 >​0.05 4.19 ±​ 0.72 4.14 ±​ 0.79 4.53 ±​ 0.77 >​0.05

TG (mmol/L) 1.19 ±​ 0.69 1.43 ±​ 1.08 1.20 ±​ 0.58 >​0.05 1.00 ±​ 0.27 1.02 ±​ 0.32 1.92 ±​ 1.90 >​0.05

GLU (mmol/L) 4.79 ±​ 0.40 5.03 ±​ 0.48 5.06 ±​ 0.79 >​0.05 5.04 ±​ 0.26 5.13 ±​ 0.36 5.10 ±​ 0.54 >​0.05

Liver necroinflammation

G0: 1 G0: 0 NA <​0.05# G0: 0 G0: 0 NA <​0.05#

G1: 34 G1: 1 G1: 17 G1: 2

G2: 0 G2: 14 G2: 0 G2: 8

G3: 0 G3: 9 G3: 0 G3: 1

G4: 0 G4: 0 G4: 0 G4: 1

Liver fibrosis

S0: 20 S0: 0 NA <​0.05# S0: 12 S0: 0 NA <​0.05#

S1: 15 S1: 11 S1: 5 S1: 5

S2: 0 S2: 9 S2: 0 S2: 4

S3: 0 S3: 2 S3: 0 S3: 1

S4: 0 S4: 1 S4: 0 S4: 2

Table 1.   Clinical characteristics of enrolled patients. ALT, alanine aminotransferase; AST, aspartate 
aminotransferase; ALB, albumin; GLB, globulin; CR, creatinine; BUN, blood urea nitrogen; GGT,  
γ​-glutamyltransferase; AKP, alkaline phosphatase; HbeAg, hepatitis B e antigen; PLT, platelet; HDL-C, 
high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; TCHL, toal cholesterol; 
TG, triglyceride; GLU, blood glucose level. CHB1 and CHB2, patients showing mild and intermediate liver 
necroinflammation and fibrosis. *​OneWay ANOVA or otherwise indicated. †Chi-square test. #Kruskal Wallis 
test for ordinal variables.
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UPLC-HRMS profiling of serum metabolome.  All serum samples from both training and validation 
sets were analyzed using UPLC-HRMS nontargeting profiling method. The typical UPLC-HRMS chromatogram 
can be found in Supplementary Figure 2a. Instrument performance was constantly monitored by QC sample 
injections. Given the high stability of the UPLC and MS performance, successful alignment of metabolomic pro-
files between samples was achieved (Supplementary Figure 2b). The resulting 4636 unique RT-m/z features were 
subsequently used for multivariate analyses.

Initial multivariate model based on all detected features.  To illustrate CHB-related metabo-
lomic alterations, a supervised PLS-DA model were constructed using the training set (Fig. 1a). Using 7-fold 
cross-validation (CV), this model achieved 78% goodness-of-fit (R2Y) with a goodness-of-prediction (Q2) of 62%. 
Class permutation test also indicated that the model was rigorously built without overfitting (Fig. 1b). However, 
this full PLS-DA model cannot distinguish all 3 groups completely, albeit an overall separation trend was showed. 
Considering the complex and dynamic nature of human serum metabolome, this is possible that our data still 
comprised majorly innegligible individual differences, i.e. disease irrelevant variations, whereas the inflammation 
and fibrosis at such early stages are unlikely to introduce dominant impact on global metabolite profiles.

Selection and characterization of potential CHB biomarkers.  Potential biomarkers contributed to 
the discriminative power were selected according to VIP score, which measures the importance of individual var-
iables in the projection used in the PLS-DA model. Extra stringent criteria of VIP >​ 2 and significant intergroup 
differences in normalized MS intensity (t-test, P <​ 0.05) as well as quality filtering steps described in Supporting 
Information were taken to narrow down the targets to a final list of 26 metabolite features depicted in Table 2.

Using tandem MSMS spectra and database matching, a total of 21 compounds, mostly lysophosphatidylcho-
line, phosphatidylcholine, fatty acid or bile acid metabolites were identified (Table 2). The identity of remaining 
5 compounds cannot be revealed at this point, due to lack of record in current databases. The relative intensities 
of these 26 metabolites across samples were displayed by heatmap (Fig. 2a). There were 21 and 18 metabolites 
shown significant differences between CHB1 and healthy controls, and between CHB1 and CHB2, respectively. 
Correlation analysis (Fig. 2b) suggested no significant dependence of metabolite markers on any current serologi-
cal markers. Interestingly, AST, ALT and GGT were highly correlated in our dataset. In addition, we identified two 
highly correlated clusters of metabolites: one included palmitic amide, oleamide, lithocholate 3-O-glucuronide 
and 9-hydroxy-hexadecan-1,16-dioic acid (9HHDDA), while the other one comprised mostly lysophosphatidyl-
cholines and phosphatidylcholines. A negative correlation between these two metabolite groups was observed.

Complementary functional analysis was performed in addition to the identified metabolites using all signifi-
cantly changed RT-m/z features. Overall, we found several fatty-acid metabolism pathways are highly represented 
in the 455 significantly changed m/z species selected from the previous PLS-DA model (Supplementary Table 3). 
These results highly correlated with the CID evidence which indeed identified mainly products from fatty acids 
metabolism.

Differentiate CHB groups using simplified OPLS-DA models.  Subsets of metabolites shown signif-
icant intergroup differences were used to build simplified OPLS-DA models to replace the full PLS-DA model. 
The 1st OPLS-DA model (R2Y =​ 0.65, Q2 =​ 0.58) was established based on 21 metabolites showing significant 

Figure 1.  PLS-DA model of the training set. The PLS-DA score plot showed clear separation of 3 groups.  
(a) Verification of the PLS-DA model by a class permutation tests. (b) The horizontal axis indicates the 
correlation between the ‘real’ and the permuted ‘y’ class. The vertical axis represents R2 (goodness-of-fit) and 
Q2 (goodness-of-prediction) values of each permuted model.
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difference between CHB1 and controls (Fig. 3a). Using this model, 30 out of 35 (85.7%) CHB1 and 42 out of 46 
(91.3%) control samples were correctly classified. Using the 2nd OPLS-DA model (R2Y =​ 0.67, Q2 =​ 0.57) built 

RT (min) MZ (Th) Identification (shortname)# VIP (PLS-DA) FC CHB1vsCon
Ttest 

CHB1vsCon FC CHB1vsCHB2
Ttest 

CHB1vsCHB2

7.53 297.1674 3-Hydroxytetradecanedioic acid (3HTDEA) 8.26 0.42 1.15E-09 1.54 >​0.05

8.09 274.2736 C16 Sphinganine 4.12 1.38 0.034789 1.30 >​0.05

8.39 325.1977 9-hydroxy-hexadecan-1,16-dioic acid (9HHDDA) 3.46 0.54 0.000274 1.75 >​0.05

8.46 437.1942 Unknown compound 1 10.68 0.87 >​0.05 1.51 0.0014

9.04 525.3042 Unknown compound 2 5.13 0.53 0.000338 1.80 >​0.05

9.47 553.3356 Lithocholate 3-O-glucuronide (LCA-3-O-GCN) 6.52 0.50 4.56E-05 1.57 >​0.05

10.08 639.4106 Unknown compound 3 7.04 0.54 0.000191 1.39 >​0.05

10.66 520.3403 LysoPC (18:2)_C26H50NO7P_1* (LysoPC_1) 2.48 1.09 >​0.05 0.69 0.0004

10.87 566.3216 PC (0:0/20:4)_C28H50NO7P (PC_1) 2.45 0.95 >​0.05 0.82 0.0056

10.93 520.3408 LysoPC (18:2)_C26H50NO7P_2* (LysoPC_2) 6.06 1.32 3.88E-06 0.85 0.0065

11.14 496.3404 PC (0:0/16:0)_C24H50NO7P (PC_2) 3.63 0.96 >​0.05 0.85 0.0063

11.35 659.2885 Unknown compound 4 4.34 1.48 1E-05 1.14 >​0.05

11.44 991.6747 N-acetylneuraminyl-Galactosylceramide (GM4) 11.08 0.85 0.016832 0.73 0.0002

11.46 496.3405 PC (16:0/0:0)_C24H50NO7P (PC_3) 7.57 1.16 3.01E-05 0.91 0.0178

11.46 497.3427 2-Palmitoylglycerophosphocholine (2PGPC) 5.47 1.08 >​0.05 0.68 9E-05

11.74 544.3385 LysoPC (20:4)_C28H50NO7P (LysoPC_3) 3.62 1.12 0.001982 0.91 0.0342

11.88 256.2642 Palmitic amide 7.43 0.19 3.18E-22 3.55 0.0281

12.21 282.2796 Oleamide 9.29 0.24 3.8E-14 4.64 0.0258

12.77 524.3715 LysoPC (18:0)_C26H54NO7P (LysoPC_4) 6.00 1.14 0.00194 0.93 >​0.05

12.83 805.5167 PI (P-16:0/17:2)_C42H77O12P (PI) 2.90 0.04 2.97E-14 0.02 4E-11

15.25 796.5467 PS (P-18:0/20:4)_C44H78NO9P (PS) 4.04 4.95 5.96E-06 0.59 0.025

17.04 828.5525 PC (22:5/18:4)_C48H78NO8P (PC_4) 3.23 1.73 0.004687 1.85 0.001

17.47 808.5877 PC (20:4/18:1)_C46H82NO8P (PC_5) 3.15 1.40 3.88E-07 1.43 1E-06

17.52 778.0394 Unknown compound 5 2.77 0.32 4.57E-06 0.19 1E-10

18.03 760.5857 PC (19:1/15:0)_C42H82NO8P (PC_6) 4.81 1.45 3.78E-11 1.18 0.005

18.27 786.6019 PC (18:1/18:1)_C44H84NO8P (PC_7) 5.92 1.49 1.02E-16 1.17 0.0016

Table 2.   Discriminating serum metabolites. LysoPC, lysophosphatidylcholine; PC, phosphatidylcholine; PI, 
phosphatidylinositol; PS, phosphatidylserine. *​These two PC isoforms share exact the same m/z and chemical 
formula, but were eluted at different RT.

Figure 2.  Heatmap (a) representation of clustering of 26 discriminating metabolites across the 3 groups of 
patients (CHB1 and CHB2 in yellow and red, healthy controls in green). Columns represent individual samples 
and rows refer to distinct metabolites. Shades of red or green represent elevation or decrease, respectively, of a 
metabolite relative to the median metabolite levels. Correlation matrix (b) of 26 discriminating metabolites and 
7 clinical serum markers (ALT, AST, GGT, AKP, PLT, GLB, ALB) based on their abundance profiles across all 
samples. Shades of red or blue represent low-to-high correlation coefficient between markers.
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on 18 metabolites showing significant difference between CHB1 and CHB2, 31 out of 35 (88.6%) CHB1 and 21 
out of 24 (87.5%) CHB2 samples were correctly classified (Fig. 3b). Both OPLS-DA model using one predictive 
and one orthogonal latent variables achieved clear intergroup separation with comparable fitting and predictive 
power to the original PLS-DA model based on all RT-M/Z features (Supplementary Table 1). In addition to class 
permutation test that shown the reliability of both OPLS-DA models (Fig. 3c,d), a set of validation samples (i.e. 
17 CHB1, 12 CHB2 and 21 controls) was used to prospectively evaluate the predictability of these two OPLS-DA 
models. The results revealed that 94.1% CHB1 samples and 90.5% controls were correctly predicted using the 1st 
OPLS-DA model, and 88.2% CHB1 and 83.3% CHB2 samples were correctly predicted using the 2nd OPLS-DA 
model (Fig. 4a,b).

Receiver operating characteristic curve analyses.  Receiver operating characteristic (ROC) curve anal-
yses were performed for individual markers and possible marker combinations. We focused our analysis on mark-
ers with known chemical formula and have an AUC >​ 0.7: PS, PI, GM4, LysoPC_1 and PC_5 (Supplementary 
Table 2). PI (AUC =​ 0.87) displayed a mediocre sensitivity at 75%, but nonetheless has the highest specificity 
(100%) among all others. On the contrary, PS (AUC =​ 0.71) provides superior sensitivity (100%), but lacks sen-
sitivity (44.23%). We propose these two biomarkers can be used complementarily. Among conventional serum 
biomarkers, the AST shown the best combination of both sensitivity (69.44%) and specificity (76.92%) with AUC 
reached 0.765. Such distinctive diagnostic characteristics of different markers identified in this dataset prompt us 
to try marker combinations to achieve higher sensitivity and specificity for CHB stratification. Regarding to this, 
we further constructed a logistic regression model, dubbed PIPSindex (Equation 1), using combinations of the 
relative MS intensity from 2 metabolites.

=



 −





= . × + . × − .

p
PIPSindex Ln p

1
0 9935 PI 0 06453 PS 4 7619

(1)

We defined odds of dichotomous classification by the probability of being classified as CHB2 (p) divided by the 
probability of being classified as CHB1 (1-p). The PIPSindex resulted in much balanced sensitivity (83.33%) and 

Figure 3.  OPLS-DA models, built with short list of 21 CHB1vsCon specific (a) and 18 CHB2vsCHB1 specific 
(b) m/z species. Validation of the OPLS-DA models by class permutation tests (c,d).
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specificity (100%) with AUC reached 0.961. In our data, this logistic regression index based on 2 metabolite panel 
outperformed the current serological marker such as ALT and AST (Fig. 5b, Supplementary Table 2). In addition, 
LysoPC _1 (AUC =​ 0.74), PC_5 (AUC =​ 0.77) and GM4 (AUC =​ 0.74) also shown comparable diagnostic value 
as aminotransferases. Yet combinations of these variables did not have significant improvement over sensitivity 
and specificity.

Discussion
One of the biggest conundrum with chronic viral hepatitis management is when to start or who will benefit from 
the antiviral treatment. For many CHB patients, liver histology is not always available, therefore surrogate bio-
marker, like ALT was used to evidence the need of antiviral treatment. Nevertheless, previous studies suggested 
about half of CHB patients have significant inflammation (G ≥​ 2) or fibrosis (S ≥​ 2) shown normal and mildly ele-
vated ALT values (≤​2 ULN)15–18. However, the current study suggested even higher percentage of CHB patients 
with significant inflammation or fibrosis stages (CHB2, 32 out of 36) would failed to be diagnosed by ALT without 
extra histopathological evidence. Based on these observations, we argue that ALT value alone lacks the sensitivity 
to determinate the active inflammation in a certain portion of CHB patients. We reasoned that the release of ALT 
only occurs upon distortion of hepatic membrane permeability which correlates with severe histological damages. 

Figure 4.  The OPLS-DA predicted class for the CHB1vsCon (a) and CHB2vsCHB1 (b) validation sets.

Figure 5.  Area under the receiver operating characteristic (ROC) curves, comparing diagnostic performance 
of PI, PS with serum ALT, AST, AKP (a) and the logistic PIPSindex (b) to differentiate CHB2 from CHB1. AUC, 
Area under the curve; Sen, Sensitivity; Spe, Specificity.
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In comparison, small molecules can be readily transported or diffuse through cellular boundaries, thus reflecting 
subtle biochemical alterations in hepatocytes with much higher sensitivity.

The liver functions as the “chemical factory” of the body and contributes significantly to the metabolic con-
tent pool in the blood. We therefore proposed that pathological alteration, such as fibrosis and inflammation 
induced by CHB, can be reflected in the changes of serum metabolic profiles. Profiling different classes of bio-
chemicals simultaneously, i.e. metabolomics, has gain popularity by the significant technological advances in 
analytical instrumentation and methodologies recently. When coupled with multivariate analyses, metabolomics 
has emerged as an powerful tool to characterize disease phenotypes, to identify novel biomarkers, and to under-
stand the mechanisms underlying pathological progression. A plethora of metabolomic investigations has been 
attempted to study liver diseases25–27. To the best of our knowledge, this is the first study to investigate the rela-
tionship between global serum metabolomic signatures and histologic characteristics in CHB patients. We hope 
this study can help to lay the foundation for future development of novel, sensitive, and none-invasive circulating 
diagnostic biomarkers to foresee the overall hepatic histological severity, and hence to guide antiviral therapy for 
CHB patients.

Quantitative global metabolomic survey in coupled with pathway analysis suggest CHB cause significant 
shift in fatty acid, vitamin A/E, and amino acid metabolism, which all take place in the liver. In addition, the 
identified biomarkers also suggested that remarkable changes in the levels of lysophosphatidylcholines, phos-
phatidylcholines, sphingomyelins and bile acid metabolism products. In particular, we found lysophosphatidyl-
cholines including LysoPC_1 were highly elevated in CHB2 patients suggests extensive cell death, as they have 
been well documented as toxic metabolite markers as the result of hepatocytes apoptosis28,29. Phosphatidylserine 
(PS) also plays important role in cellular apoptosis, and attract macrophages to engulf actions during tissue 
damage30. In addition, conjugated bile acid lithocholate-glucuronide has also been shown cytotoxic and plays 
important roles in bile acid and very-low-density lipoproteins transportation across hepatocyte membrane31,32. 
N-acetylneuraminyl-Galactosylceramide (Sialyl-GalCer, GM4) is a key byproduct of sphingolipid biosynthesis. 
Although sphingolipid metabolism has long been indicated in liver disease progression33–35, yet the specific role 
of GM4 in hepatitis has not reported, therefore future studies are required to investigate the relationship between 
GM4 alteration and chronic HBV infection.

One of the key aims of this study is to develop biomarker panels for CHB stratification in early stages. To fulfill 
this end, OPLS-DA models based on a subset of 18 metabolites was built to specifically discriminate CHB2 from 
CHB1 patients, with an excellent predictive power with an AUC of 0.979 in the validation sample set. In addition, 
when compared to healthy controls within the validation sample set, the serum samples from CHB1 patients can 
be distinguished with an AUC of 0.962 using the OPLS-DA model based on a subset of 21 metabolites. The pre-
dictive capability of both models was further tested in the validation datasets with >​85% accuracy. These results 
support the hypothesis that serum metabolomic signatures could be useful to reflect histologic changes in CHB 
patients.

However, it is understood that total metabolomic profiles cannot be used directly for clinical diagnostic pur-
pose in large-scale, due to uncontrollable variations caused by instruments, workflows and sophisticated data 
mining process. Therefore, key metabolite biomarkers that contributed most to the overall intergroup metab-
olomic differences should be selected as surrogate targets, based on which simple and robust diagnostic assays 
can be developed. To this end, ROC analyses were performed for each metabolite candidate in comparison with 
current available biomarkers (Supplementary Table 2). Interestingly, the ALT (AUC =​ 0.709) did not perform the 
best among these biochemical indicators, while the AST (AUC =​ 0.765) shown improved diagnostic value for 
CHB2 (Fig. 5a). In comparison, we found individual metabolic markers only provide compromised diagnostic 
performance with sensitivity and specificity trade-offs. In our datasets, PIPSindex (AUC =​ 0.961), comprised 
of PI and PS, outperformed ALT or AST with much improved sensitivity and specificity as shown by Fig. 5b. In 
summary, the metabolomics approach described herein has allowed us to stratify CHB patients at early stage with 
high degree of agreement to the histological results.

Attempting to bridge the gap between professional society guidelines and expert recommendations regarding 
which CHB patient should be treated and which patient can be monitored, this work aims to unravel unique 
metabolomic signature and to discover novel serum metabolite constituents associated with CHB development. 
Combinatory metabolites panel for patient stratification at early CHB stages were developed. Further mecha-
nistic investigations on how these metabolites involved with the CHB progression and histologic changes are 
clearly warranted. Moreover, further validation using targeted methods such as multiple-reaction monitoring on 
LC-MSMS platform in larger CHB cohort are needed to evaluate the performance of these markers.

Materials and Methods
Clinical samples.  Eighty-eight consecutive treatment naive CHB patients were prospectively enrolled 
in Department of infection disease, Zhejiang provincial people’s hospital from June 2012 to December 2013. 
Inclusion criteria were age ≥​20 years, positive HBsAg for more than 6 months, HBV DNA ≥​103 copies/ mL and 
ALT ≤​2 ULN (ULN =​ 50 U/L); ALT and HBV DNA were monitored monthly for 6 months prior to enrollment to 
ensure the persistent maintenance of ALT ≤​2 ULN and HBV DNA ≥​103 copies/mL. The control group included 
67 healthy individuals who came to the hospital for medical evaluation. They were confirmed to have normal 
liver function without any liver diseases. Informed consent was obtained from all patients. The study protocol was 
carried out in accordance with the guidelines approved by Ethics Committee of the Zhejiang Provincial People’s 
Hospital and the ethical guidelines of the 1975 Declaration of Helsinki. Exclusion criteria and serum sample col-
lection protocol is detailed in the Supporting Information.

Biochemical and histopathological analysis.  Circulating marker such as alanine aminotranferease 
(ALT), aspartate aminotransferase (AST), alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT), 
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total bilirubin (Tbil), albumin (ALB), together with serum HBV-DNA and hepatitis antibodies including HBsAg, 
HBsAb HBeAg, HBeAb, HBcAb, and anti-HCV were measured in the clinical laboratory detailed in Supporting 
Information.

All enrolled patients received LB were staged by liver necroinflammation activity (G0-G4) and liver fibrosis 
(S0–S4) using Scheuer’s classification36 as detailed in Supporting Information. Patients were divided into two 
groups with different histological severity levels: CHB1 (mild CHB with G ≤​ 1 and S ≤​ 1) and CHB2 (severe CHB 
with G ≥​ 2 or S ≥​ 2).

Serum metabolomics analysis.  Serum metabolite fingerprinting, data processing was performed on a 
UPLC-Q-TOF platform using parameters detailed in the Supporting Information.

Multivariate modeling and statistical analyses.  Partial Least Squares Projection to Latent Structures 
regression with Discriminant Analysis (PLS-DA)37 was used to extract relevant intergroup associations in the 
metabolomics data. Further simplified orthogonal PLS-DA models (OPLS-DA)38 based on short lists of markers 
that differentiate CHB2 from CHB1 and CHB1 from controls were built. Continuous clinical and biochemi-
cal data were compared by one-way ANOVA or student’s t-test, while categorical data were compared using 
Chi-square test. Significance was established by P <​ 0.05. The reader is referred to Supporting Information for 
details.

Biomarker identification and pathway analysis.  Biomarkers candidate for CHB staging were selected 
based on PLS-DA model by VIP >​ 2 (Variable Importance in the Project score) and a set of additional criteria. 
Selected metabolites were identified by comparing their exact mass or MS/MS spectra to public metabolite reser-
voirs as described in Supporting Information.

An additional strategy was employed to unveil inflammation and fibrosis related metabolic pathway during 
CHB progression using the mummichog approach39 by mapping significantly alterated RT-m/z features to refer-
ence human metabolic networks in public domain. The reader is referred to Supporting Information for details.
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