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Abstract

We sought to identify quantitative trait loci (QTLs) by genome-wide linkage analysis for BMI and 

waist circumference (WC) exploring various strategies to address heterogeneity including 

covariate adjustments and complex models based on epistatic components of variance. Because 

cholesterol-lowering drugs and diabetes medications may affect adiposity and risk of coronary 

heart disease, we excluded subjects medicated for hypercholesterolemia and hyperglycemia. The 

evidence of linkage increased on 2p25 (BMI: lod = 1.59 vs. 2.43, WC: lod = 1.32 vs. 2.26). 

Because environmental and/or genetic components could mask the effect of a specific locus, we 

investigated further whether a QTL could influence adiposity independently of lipid pathway and 

dietary habits. Strong evidence of linkage on 2p25 (BMI: lod = 4.31; WC: lod = 4.23) was found 

using Willet’s dietary factors and lipid profile together with age and sex in adjustment. It suggests 

that lipid profile and dietary habits are confounding factors for detecting a 2p25 QTL for adiposity. 

Because evidence of linkage has been previously detected for BMI on 7q34 and 13q14 in National 

Heart, Lung, and Blood Institute Family Heart Study (NHLBI FHS), and for diabetes on 15q13, 

we investigated epistasis between chromosome 2 and these loci. Significant epistatic interactions 

were found between QTLs 2p25 and 7q34, 2q37 and 7q34, 2q31 and 13q14, and 2q31–q36 and 

15q13. These results suggest multiple pathways and factors involving genetic and environmental 

effects influencing adiposity. By taking some of these known factors into account, we clarified our 

linkage evidence of a QTL on 2p25 influencing BMI and WC. The 2p25, 2q24–q31, and 2q36–

q37 showed evidence of epistatic interaction with 7q34, 13q14, and 15q13.

Correspondence: Mary F. Feitosa (mfeitosa@wustl.edu). 

DISCLOSURE
The authors declared no conflict of interest.

HHS Public Access
Author manuscript
Obesity (Silver Spring). Author manuscript; available in PMC 2016 August 08.

Published in final edited form as:
Obesity (Silver Spring). 2009 December ; 17(12): 2190–2195. doi:10.1038/oby.2009.181.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



INTRODUCTION

The prevalence of obesity has grown sharply in the United States (1). Obesity is a risk factor 

for type 2 diabetes mellitus, hypertension, and cardiovascular diseases (CVDs), and 

associated with dyslipidemia, nonalcoholic fatty liver disease, gallbladder disease, 

osteoarthritis, and several cancers (2–5). Although BMI is a measure of overall adiposity, 

waist circumference (WC) reflects abdominal fat accumulation, which is more strongly 

associated with metabolic syndrome, insulin resistance, and CVD.

Complex genetic and environmental interactions regulate the accumulation and distribution 

of body fat. The majority of studies report heritabilities of 40–65% for BMI and WC (6–8). 

Several quantitative trait loci (QTLs) have been uncovered along all autosomal 

chromosomes for obesity-related phenotypes, in different population (9). In families 

participating in the National Heart, Lung, and Blood Institute Family Heart Study (NHLBI 

FHS), we reported strong evidence of QTLs on chromosomes 7q32 (lod = 4.7) and 13q14 

(lod = 3.2) for BMI (6). Other studies have reported other locations for QTLs influencing 

BMI and/or obesity (9). The lack of replication among studies could be due to population 

stratification, a difference on allele frequency, gene penetrance, sample size, and density of 

genotyping. Moreover, interaction among genes and with environmental factors play an 

important role in determining BMI and WC levels and, consequently, may play a major 

confounding role in detecting regions by linkage analysis. Additional covariate adjustment, 

subset analysis, and/or complex genetic modeling may aid identifying linked regions and 

also assist gene discovery. Epistatic models may enhance linkage signals between interacting 

QTLs and have been reported for BMI, WC, and percent fat (10,11), and for height (12) and 

hip circumference (13). In the current study, we extended our genome-wide scan analysis for 

BMI and WC exploring adjustments for different covariates as well as a subsample selection 

multipoint variance components linkage analysis. We tested gene–gene interactions using 

two-locus epistatic models in linkage analysis applied to families of the NHLBI FHS.

METHODS AND PROCEDURES

Study design and measurements

The NHLBI FHS was proposed to identify and evaluate the genetic and nongenetic 

determinants of CVD and atherosclerosis. The design and objectives of this study were 

described previously (14). In summary, subjects were invited for a clinic visit that included 

measurements of body size, blood pressure, lipids, lipoproteins, hemostatic factors, insulin, 

glucose, and routine blood chemistries. Additional information on health history, medication 

use, lifestyle, and dietary habits was obtained by questionnaires. BMI was calculated as 

weight (in kilograms) divided by the square of height (in meters). WC was taken at the level 

of the smallest circumference on the torso below the sternum (in cm). The NHLBI FHS 

collected data on dietary habits by using a shortened version of the 61-item semiquantitative 

food frequency questionnaire developed by Willett et al. http://circ.ahajournals.org/cgi/

content/full/111/22/2921-R21-165596#R21-165596 (ref. 15). The intake of specific 

nutrients was computed by multiplying the frequency of consumption of an item by the 

nutrient content of specified portions. Composition values for nutrients were obtained from 

the Harvard University Food Composition Database derived from US Department of 
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Agriculture sources (1963–1988) and manufacturer information. Use of cholesterol-lowering 

and hyperglycemic medications was obtained by self-report.

Phenotypic covariate adjustments

The adjustments were carried out by stepwise regression analysis separately by sex, using up 

to a cubic polynomial in age and clinical center. Terms significant at the 5% level were 

retained in the model. The residual variances were also examined by regressing the squared 

residuals from the mean age regression on another similar regression model in a stepwise 

manner and retaining significant terms. We also employed a second multivariate stepwise 

regression adjustment using the total dietary intake of fats, carbohydrates, proteins, vitamins, 

salts, and minerals; lipid levels (high-density lipoprotein-cholesterol (HDL-C), low-density 

lipoprotein-cholesterol, total cholesterol, and triglycerides (TGs)) in addition to the standard 

covariates (age, sex, and field centers), retaining the significant terms at the 5% level.

Genotype data

Detailed description on NHLBI FHS genotype data and quality control has been previously 

published (6). Two groups of families were geno-typed: (i) 988 white subjects in 267 

sibships were typed for 243 autosomal short tandem repeat markers by the Utah Molecular 

Genetics Laboratory, and (ii) 2,666 white subjects distributed among 397 largest pedigrees 

were typed for 402 markers by the Mammalian Genotyping Service. Approximate 

chromosomal locations were ascertained from the Genetic Location Database and the 

locations in cM were used from the Marshfield map.

Genetic analysis

Linkage analyses using a variance component approach were implemented by the computer 

program SOLAR version 2.1.4 (Southwest Foundation for Biomedical Research, San 

Antonio, TX) (16). The multipoint identity-by-descent probabilities were estimated using 

GeneHunter software (version 2.0; Whitehead Institute for Biomedical Research, 

Cambridge, MA) and imported into SOLAR. The variance due to an additive genetic 

contribution of a QTL ( ), a polygenic component ( ), and an environmental component 

not shared among family members (e2) are estimated. The linkage hypothesis is tested by 

likelihood-ratio contrasting no-linkage model ( ) and the alternative ( ). The 

difference in minus twice the log likelihoods of the two hypotheses is asymptotically 

distributed as a ½: ½ mixture of χ2 with one degree of freedom and a point mass at zero. The 

lod score is calculated by dividing the χ2 value by 2 × log10. The bivariate multipoint linkage 

approach is an extension of the univariate analysis and tests whether the correlation pattern 

between two quantitative traits in families is due to pleiotropic genetic effects (17). The 

pleiotropy is modeled as cross-trait correlations caused by a QTL (ρq), a residual additive 

genetic effect (ρg), and a random environmental effect (ρe). The hypothesis of pleiotropy 

was tested by the complete model (ρq >0) against the null that the two traits has no common 

QTL effect (ρq = 0), using likelihood-ratio tests (18). We also performed analyses for 

epistatic additive interactions using a two-locus multipoint linkage analysis. This approach is 

an extension of the univariate analysis that estimates two-locus (  and ) component 
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variances with an additive epistasis variance component ( ). To test an epistatic interaction 

effect, comparison of (i) the likelihood of two-locus model with only additive effects for 

each pair of loci ( ) and (ii) the likelihood of two-locus model with additive effects as 

well as an epistatic term for interaction between the two loci was performed. Significance 

test was determined by likelihood-ratio test using a χ2 statistic with one degree of freedom. 

The false discovery rate (FDR) (19) was calculated to measure the global error for multiple 

tests, i.e., the expected proportion of false rejections of the null hypothesis among the total 

number of rejections. FDR was estimated separately by each phenotype (WC or BMI) and 

model (univariate, bivariate, and epistatic) linkage analysis using the SAS package (SAS 

Institute, Cary, NC). The P value adjusted for FDR was denoted here by FDR P value.

RESULTS

Table 1 shows the descriptive statistics for unadjusted phenotypes and covariates. Plasma 

levels of HDL-C and TG were the major predictors of BMI and WC and accounted for 10–

16% in their phenotypic variances, whereas age, field centers, and dietary intake factors 

(animal protein, fat calorie, fatty acid, total fat, polyunsaturated fat, carotene, iron, sodium, 

sucrose, zinc, and vitamin B6) accounted for 4–9% of the variances in BMI and WC. 

Significant phenotypic correlations were detected for age- and sex-adjusted BMI and WC 

with HDL-C (−0.26, for both traits), TG (0.27 and 0.29, respectively), and dietary intake 

factors (proteins: 0.08; fats: 0.04–0.10; carbohydrates, vitamins, salts, and minerals: 0.01–

0.05, for both traits). The heritabilities were over 40% for BMI and WC (Table 2).

Because lipid-lowering drugs and diabetes medications may affect adipose tissue and/or be 

related to subjects with higher values for CVD risk factors than the average population, we 

did linkage analysis excluding subjects with self-reported use of cholesterol-lowering 

medications and/or hyperglycemic medications. On chromosome 2p25 (at marker 

GATA116B01), the lod scores were higher for BMI (2.43 vs. 1.59, Table 2, Figure 1) and 

WC (2.26 vs. 1.32), in spite of the reduction in sample size (the number of sib-pairs 

decreased 15%). Besides lipid-lowering drugs, dietary habits and deregulation in lipid 

pathway affect the lipolysis in adipocytes that may develop in fat store. However, there is a 

possibility that a QTL influences adiposity independently of lipid pathway and/ or dietary 

habits, and these factors may play a confounding role to detect the locus. To test this 

hypothesis, we added lipid profile and Willett’s dietary intake factors in the basic (age, sex, 

and field centers) covariate adjustment. We found strong evidence of linkage at the same 

2p25 location using this extended adjustment in nonmedicated subjects. The lod scores 

increased further from 2.43 to 4.31 (FDR P value = 0.0000512) for BMI and from 2.26 to 

4.23 (FDR P value = 0.0000568) for WC. These results suggest that drugs, dietary habits, 

and lipid profile (TG and HDL-C levels) are confounding factors to detect a 2p25 QTL for 

adiposity traits.

As the maximum lod scores for BMI and WC are located on the same chromosome 2p25 

region, we also performed bivariate analysis to explore to what extent their correlation could 

be explained by that QTL. The bivariate lod slightly increased to 4.53 (2p25) for age-, sex-, 

lipid-, and dietary factors–adjusted BMI_WC (vs. 4.31 and 4.23 for BMI and WC, 

Feitosa et al. Page 4

Obesity (Silver Spring). Author manuscript; available in PMC 2016 August 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



respectively). The trait correlation attributable to the QTL (ρq) bounded to 1, suggesting that 

both traits are influenced by the same underlying gene(s) at this location. The trait 

correlation due to residual additive genetic effects (ρg) was 0.74. We also investigated 

whether a pleiotropic genetic effect on chromosome 2 influenced adiposity and lipid profile. 

On 2p25, the bivariate lod scores for age- and sex-adjusted cross-trait correlations did not 

increase compared with the univariate lod scores (lodBMI_HDL-C = 0.87, lodBMI_TG = 0.94, 

lodWC_HDL-C = 0.68, and lodWC_TG = 0.71 vs. lodBMI = 1.59, lodWC = 1.32, lodHDL-C = 

0.58, and lodTG = 0.02). These results suggest that there was not a common QTL on 2p25 

affecting the mean levels of adiposity, HDL-C, and TG.

Because other QTLs have been detected on chromosomes 7q34 and 13q14 for BMI in the 

NHLBI FHS (6), we tested for epistasis between loci on chromosome 2 conditioning on the 

linkage evidence on 7q34 and 13q14. The epistasis variance component linkage analysis was 

carried out for age- and sex-adjusted BMI and WC in the complete NHLBI FHS data. There 

was significant evidence of epistasis between QTLs on 2p25 and 7q34 (BMI: , P = 

0.0128 and WC: , P = 0.0153, Table 3, Figure 2), 2q37 and 7q34 (BMI: , P 

= 0.0120), and 2q31 and 13q14 (BMI: , P = 0.0217 and WC: , P = 0.0343).

Because interactions between loci on chromosomes 2 and 6q (ref. 12), and 15q (ref. 20) have 

been reported in the literature for obesity-related traits, we investigated further the 

possibility of epistasis with QTLs influencing BMI and WC at these locations. There was no 

suggestion of genetic interaction between QTLs on chromosomes 2 and 6 in the current data. 

However, significant evidence of epistasis between QTLs on 2q31 and 15q13 (BMI: 

, P = 0.0349 and WC: , P = 0.0208), and 2q36 and 15q13 (WC: , P 
= 0.0325) were found. Moreover, the evidence of linkage increased significantly on 2p25, 

2q31, and 2q36–q37 locations when the variance component due to epistasis was modeled 

into the two-locus linkage analysis (Table 3, Figure 2). Compared with oligogenic lod 

scores, the epistatic lod scores were significantly higher on 2p25 (and 7q34 QTL: lod = 4.04 

vs. 1.35), 2q31 (and 13q14 QTL: lod = 3.36 vs. 1.07), and 2q37 (and 7q34 QTL: lod = 4.39 

vs. 1.65), for BMI as exempla. We also tested for epistasis between loci on chromosomes 7, 

13, and 15 conditioning on the linkage evidence on chromosome 2q. The epistatic lod scores 

increased on chromosomes 13q14 (from 2.72 to 3.03) and 15q21 (from 1.55 to 2.87). These 

results suggest that besides significant epistatic interactions between these QTLs, the 

epistatic model conditioning on 2q also improved the evidence of linkage on chromosomes 

13 and 15.

DISCUSSION

There is strong evidence that chromosome 2 harbors at least three QTLs (2p25, 2q24–q31, 

and 2q36–q37) influencing the variation of BMI and WC levels in families participating in 

the NHLBI FHS. On chromosome 2p25, the linkage signal was enhanced when subjects 

taking medications for hypercholesterolemia and/or hyperglycemia were excluded. 

Medicated subjects for hypercholesterolemia and/or hyperglycemia are associated with 

higher CVD risk factors than the average population and may act as confounders in the 

linkage analysis. Some lipid-lowering drugs (21) and antidiabetic medications (22) have 
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been reported to be associated with weight change. Niacin is a lipid-lowering drug and has 

been shown to affect the adipose tissue lipolysis raising adiponectin and leptin (21,23). Also, 

recent findings have reported that lipid-lowering drugs, diet, and impairment of lipase 

enzymes (e.g., hormone-sensitive lipase and adipose triglyceride lipase) influence 

triglyceride lipolysis in adipocytes that in turn may affect development of fat stores (21,24–

26). Dietary factors, especially fats and carbohydrates (3), influence the development of 

obesity and may alter the expression of several genes in adipose tissue (24). However, the 

exact metabolic pathways involving drugs, diet, and lipids in the adipocytes are unclear.

We hypothesized that the interaction of dietary and genetic factors may act as major 

confounders in detecting QTLs and also may mask the effect of a QTL influencing adiposity 

independently of lipid pathway. When we tested this hypothesis, by adjusting for lipid 

profile and dietary factors as well as age and sex effects, the evidence for linkage to 2p25 

location for BMI and WC in nonmedicated subset was strengthened. Thus, our data suggest 

that these lifestyle and genetic effects as well as their interactions are involved in a complex 

metabolic pathway of obesity and related CVD risk factors. By controlling for these 

confounding factors, evidence for a QTL on 2p25 affecting adiposity independent of dietary 

habits and lipid pathway was enhanced.

Recent genome-wide association studies have identified novel loci for obesity (27–29). A 

review of these findings reveals significant variants of transmembrane protein 18 gene 

residing on 2p25, that could, in part, account for the linkage signal. To test this hypothesis, 

we investigated the effect of transmembrane protein 18 variants in a subset of 856 unrelated 

subjects from the NHLBI FHS data that has been typed using the Illumina 550K chip 

(Illumina, San Diego, CA). Selecting 89 tag-single-nucleotide polymorphisms across 324.4 

kilobases of transmembrane protein 18 (from 471,504 to 795,871 base pairs), we found three 

single-nucleotide polymorphisms significant at P < 0.0007, confirming the association of the 

locus with BMI in our data. These three single-nucleotide polymorphisms collectively 

accounted for 3% of variability in BMI, suggesting that although these loci may indeed 

account for some of the linkage signal, there are likely other genes in the 2p25 region.

The three loci on chromosomes 2p25, 2q24–q31, and 2q36–q37 appear to interact with 

chromosomes 7q34, 13q14, and 15q13. The evidence of epistatic interactions was consistent 

across BMI and WC. Also, the epistatic variance component two-locus linkage model 

enhanced significantly the evidence of linkage on 2p25, 2q31, and 2q36–q37 locations for 

both BMI and WC phenotypes. The epistatic lod scores remained significant even after 

correction for multiple tests (FDR P value, Table 3). Several independent linkage studies 

have suggested susceptibility loci to obesity-related phenotypes on chromosome regions 

2p25, 2q24–q31, 2q36–q37, 7q34, 13q14, and 15q13 (ref. 9). Moreover, epistasis has been 

reported between 2p25–p24 and 13q13–q21 for BMI, percent fat, and WC in European-

American families (11), and between 2q37 and 15q21 for diabetes in Mexican Americans 

(20).

There are several candidate genes on chromosome 2 (proopiomelanocortin (POMC), insulin 

receptor substrate 1, calpain 10, among others), on 7q31 (leptin), on 13q14 (5-

hydroxytryptamine, serotonin; forkhead box-O1A), and on 15q (LIPC, hepatic lipase), 
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which are linked and/or associated with obesity-related phenotypes. POMC (2p23) encodes 

a polypeptide hormone precursor that undergoes extensive, tissue-specific, posttranslational 

processing via cleavage by subtilisin-like enzymes known as prohormone convertases. The 

encoded protein is synthesized mainly in corticotroph cells of the anterior pituitary. 

Adrenocorticotrophin, essential for normal steroidogenesis and the maintenance of normal 

adrenal weight, and β-lipotropin are the major end products. Mutations in POMC have been 

associated with obesity (30), whereas calpain 10 (2q37) and insulin receptor substrate 1 

(2q36) genes have shown to be associated with diabetes (31,32). The calpain 10 encodes a 

ubiquitously expressed member of the calpain-like cysteine protease family (31). IRS-1 
mediates the control of various cellular processes by insulin and has shown an important role 

in insulin-induced metabolism in the muscle and adipose tissue in animal model (32).

It is worth mentioning that gene–gene interactions have been reported in animal models 

(33,34). Recently, Kitamura et al. (34) found that Foxo1 promotes opposite patterns of co-

activator–corepressor exchange at the Pomc and agouti-related protein promoters, resulting 

in activation of agouti-related protein and inhibition of Pomc. Foxo1 represents a shared 

component of pathways integrating food intake and peripheral metabolism (34). Also, 

epistatic interaction between two nonstructural loci influencing hepatic lipase activity was 

reported in an obese mouse model (35). Thus, these current results showing evidence of 

epistatic interaction on chromosomes 2 with 7q34, 13q14, and 15q may bring new insights 

for discovery of gene networks and obesity-metabolism pathways.

In conclusion, adiposity phenotypes interacting with lipids, diabetes, and environmental 

exposures may play a major confounding role in identifying regions that likely harbor QTL 

influencing BMI and WC. We observed that excluding subjects taking medications for 

hypercholesterolemia and/or hyperglycemia, and also including lipid levels and dietary 

intake factors in the basic covariate adjustment improved effectively the linkage signals. We 

also found evidence of three QTLs on chromosome 2 (2p25, 2q24–q31, and 2q36–q37) with 

epistatic interaction with chromosomes 7q34, 13q14, and 15q13 influencing the levels of 

BMI and WC. Thus, the current study shows the evidence of linkage on chromosome 2 

enhanced when biological and behavioral effects involved in the obesity-related metabolism 

were accounted in the linkage analysis models. We believe these findings will guide further 

investigations in gene discovery and may shed light on genetic architecture of obesity.
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Figure 1. 
Lod plots for BMI on chromosome 2. Nonmedicated data: subjects taking medications for 

high cholesterol and/or diabetes were excluded. Basic adjustment: age, field centers, and 

sex; extended adjustment: age, field centers, sex, lipid levels, and dietary intake factors.
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Figure 2. 
Lod plots on chromosome 2 with epistatic additive interactions with chromosomes 7q32, 

13q14, and 15q13. The analyses were performed on age-, sex-, and field centers–adjusted 

BMI and WC in the complete National Heart, Lung, and Blood Institute Family Heart Study 

data. WC, waist circumference.
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Table 1

Descriptive analysis for unadjusted variables in the NHLBI FHS

Complete data Nonmedicated dataa

Variables N Mean s.d. N Mean s.d.

Age (years) 5,710 52.6 14.1 4,363 50.8 13.9

BMI (kg/m2) 5,072 27.5 5.4 4,363 27.0 5.3

Waist circumference (cm) 5,076 97.0 15.2 4,363 95.9 15.1

High-density lipoprotein-cholesterol (mg/dl) 5,620 50.3 15.2 4,363 50.8 15.2

Total cholesterol (mg/dl) 5,620 205.5 40.5 4,363 203.7 39.3

Triglycerides (mg/dl) 5,620 150.5 107.6 4,363 143.5 103.6

Energy intake (kJ/day) 4,883 7,316 3,137 4,194 7,410 3,123

Energy from saturated fat (%) 4,883 11.5 4,194 11.8

Energy from monounsaturated fat (%) 4,883 12.1 4,194 12.2

Energy from protein (%) 4,883 18.1 4,194 17.9

Energy from carbohydrates (%) 4,883 51.2 4,194 52.5

Iron (g/day) 4,883 0.012 0.006 4,194 0.012 0.007

Sodium (g/day) 4,883 1.64 0.74 4,194 1.65 0.75

Sucrose (g/day) 4,883 0.051 0.035 4,194 0.053 0.036

Zinc (g/day) 4,883 0.011 0.006 4,194 0.012 0.006

Vitamin B6 (mg/day) 4,883 2.0 0.9 4,194 2.0 0.9

Carotene (IU) 4,883 8,651.2 10,313.4 4,194 8,569.2 10,344.9

Self-reported use of cholesterol-lowering drugs 5,710 13%

Self-reported use of diabetes medication 5,710 6%

NHLBI FHS, National Heart, Lung, and Blood Institute Family Heart Study.

a
Nonmedicated data: subjects taking medications for high cholesterol and/or diabetes were excluded.
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Table 2

Linkage analysis results on chromosome 2p25 in the NHLBI FHS

Sample and
adjustment

Complete data Nonmedicated dataa

Basicb Basicb Extendedc

BMI

 Overall additive
 genetic heritability

0.43 ± 0.04 0.44 ± 0.04 0.48 ± 0.04

 Lod (location) 1.59 (18 cM) 2.43 (15 cM) 4.31 (13 cM)

  P value 0.00343 0.00041 0.0000042

  FDR P value 0.02366 0.00453 0.0000512

WC

 Overall additive
 genetic heritability

0.41 ± 0.04 0.42 ± 0.04 0.45 ± 0.04

 Lod (location) 1.32 (18 cM) 2.26 (16 cM) 4.23 (13 cM)

  P value 0.00677 0.00063 0.0000050

  FDR P value 0.03187 0.00559 0.0000568

FDR, false discovery rate; NHLBI FHS, National Heart, Lung, and Blood Institute Family Heart Study; WC, waist circumference.

a
Nonmedicated data: subjects taking medications high cholesterol and/or diabetes were excluded.

b
Basic adjustment: age, field centers, and sex.

c
Extended adjustment: age, field centers, sex, lipid–lipoprotein levels, and dietary intake factors.
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Table 3

Summary of linkage analysis for oligogenic and epistatic models in the complete NHLBI FHS data

Interaction

Oligogenic (I) Epistatic (II) Test: I vs. II

Chromosome (cM) Lod Loda hE
2

P valueb FDR P value P valuec

BMI

 7q34 (140) and 2p25 (19) 1.35 4.04 0.33 0.0000079 0.00017 0.0128

 7q34 (140) and 2q37 (238) 1.65 4.39 0.35 0.0000034 0.00015 0.0120

 13q14 (42) and 2p25 (19) 1.20 2.74 0.27 0.0001901 0.00335 0.0596

 13q14 (42) and 2q31 (178) 1.07 3.36 0.34 0.0000417 0.00218 0.0217

 15q13 (22) and 2q31 (174) 1.22 3.15 0.27 0.0000698 0.00229 0.0349

WC

 7q34 (140) and 2p25 (16) 1.09 3.64 0.31 0.0000211 0.00080 0.0153

 13q14 (42) and 2p25 (18) 0.94 2.46 0.26 0.0003862 0.00610 0.0617

 13q14 (42) and 2q31 (176) 1.07 2.57 0.31 0.0002912 0.00610 0.0343

 15q13 (22) and 2q31 (173) 0.81 3.13 0.30 0.0000735 0.00171 0.0208

 15q13 (22) and 2q36 (221) 0.92 2.90 0.28 0.0001282 0.00182 0.0325

FDR, false discovery rate; , epistatic variance component; NHLBI FHS, National Heart, Lung, and Blood Institute Family Heart Study; WC, 

waist circumference.

a
The epistatic lod value is for chromosome 2 conditioned on chromosome 7, 13, or 15.

b
P value: epistatic lod P value.

c
P value of χ21 = (model I (oligogenic log-like)–model II (epistatic log-like)).
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