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Abstract

Genome sequences provide the overall genetic blueprint of cells, but cells possessing the same 

genome can exhibit diverse phenotypes. There is a multitude of mechanisms controlling cellular 

epigenetic states and that dictate the behavior of cells. Among these, networks of interacting 

molecules, often under stochastic control, depending on the specific wirings of molecular 

components and the physiological conditions, can have a different landscape of cellular states. In 

addition, chromosome folding in three-dimensional space provides another important control 

mechanism for selective activation and repression of gene expression. Fully differentiated cells 

with different properties grow, divide, and interact through mechanical forces and communicate 

through signal transduction, resulting in the formation of complex tissue patterns. Developing 

quantitative models to study these multi-scale phenomena and to identify opportunities for 

improving human health requires development of theoretical models, algorithms, and 

computational tools. Here we review recent progress made in these important directions.
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INTRODUCTION

With the completion of the sequencing of human genomes and the advent of individual 

genomes,[1–3] we are gaining full access to the genetic blueprints of human cells. However, 

much of the behavior of cells depends on the control of expression of genes. Cells from 
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different tissues posses the same genome but exhibit different properties and perform 

different functions. Understanding how genetic information is selectively expressed and how 

epigenetic control establishes the specific expression patterns of proteins are fundamental 

problems of biology and problems with important implications in the treatment of disease.

As large scale epigenetic profiling studies have shown, covalent modification such as DNA 

methylation and post-translational modifications of proteins play important roles in 

controlling the expression of genes.[4,5] The epigenetic states of cells can also arise from the 

network of multiple molecular components itself.[6–9] Often under stochastic control, 

different biological phenotypes can result from the same molecular network, as there may 

exist multiple peaks in the stationary probabilistic landscape of the reaction network.[6,9] 

With specific wirings, cells can maintain heritable states depending on the physiological 

conditions without covalent bond modifications.[6–9]

Furthermore, recent studies based on fluorescence in-situ hybridization (FISH), chromosome 

conformation capture and related techniques have demonstrated the importance of the spatial 

organization of genome in determining cellular phenotypes.[10–14] The uncovering of 

massive amount of long range interactions in chromatins in different cells[11–14] suggests the 

existence of a complex three-dimensional folding landscape of chromosomes. The discovery 

of hierarchical structural units such as topologically associated domains (TAD) points to the 

existence of complex folding machineries that provide cooperative control of gene 

expression.

Quantitative understanding of both stochastic networks and genome folding requires the 

development of fundamental theory, models, and algorithms so that effective computational 

analysis can be efficiently carried out. Once differentiation of cells is complete and different 

cell types are formed, another important task is to understand and model how populations of 

different cells interact and form different patterns of tissue, and how insight into complex 

processes such as wound healing can be gained through computational studies.

In this review article, we examine recent progress in the development of theoretical model, 

algorithms, and computational methods for computing the probability landscape of 

stochastic network, for predicting three-dimensional structures of folded chromosomes, and 

for understanding tissue pattern formation.

Stochastic network and discrete chemical master equation

Networks of interacting molecules are the basis of the regulatory machineries of cells. When 

the copy numbers of molecules involved are small (μM to nM range, or 1 – 102 copies of 

molecules in a 10μM3 cell),[15,16] stochasticity can play significant roles in cellular 

processes such as gene regulation, protein synthesis, and signal transduction.[15,17–21] Well-

known examples of cellular epigenetic states controlled by a stochastic network include the 

decision network of switching between the lysogenic and the lytic phases of phage 

lambda,[6,15,22,23] and the competence transition network of Bacillus subtilis.[24]

A stochastic network is characterized by its time-dependent probability landscape, namely, 

the probability of the network to be at each possible microstate, namely, the vector of copy 
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numbers of molecular species in the network. Knowledge of the full probability landscape of 

a network will identify all epigenetic states, which correspond to the peaks in the landscape, 

as well as transitions and transition probabilities between them. The basic theoretical 

framework for studying a stochastic network is given by the discrete chemical master 

equation (dCME)[25,26]

(1)

where p(x, t) is the probability of the network in the microstate x, A(x′, x) is the matrix of 

transition rates between microstates x, and x′.

Computing probabilistic landscape—However, analytically solving the dCME is not 

possible except for a few simple models with one or two nodes. The stochastic simulation 

algorithm (SSA) and related techniques have been widely used for studying stochastic 

networks.[25,27] By generating Monte Carlo samples of trajectories of reactions of a network 

using SSA, one can infer properties of the stochastic network through analysis of millions of 

sampled trajectories.[25] However, SSA is inefficient in sampling rare events, as most 

computing time is spent on following high-probability paths. In addition, the assessment of 

convergence becomes difficult when the network is complex.[28–31] Overall, it is generally 

difficult to know if an accurate solution to the dCME of a network has been found. One does 

not know if all major probabilistic peaks have been identified and different epigenetic states 

located, or if important ones with significant probability mass in the usually high 

dimensional space are undetected. It is also difficult to know if the locations of identified 

probabilistic peaks are correctly mapped. One also does not know if a computed 

probabilistic landscapes is overall erroneous and how such errors can be quantified. 

Furthermore, the best possible accuracy one can achieve with a given finite computing 

resources is generally unknown. One also does not know what computing resource is 

required so solutions with accuracy within a predefined tolerance can be obtained. These 

issues can be resolved using recently developed ACME method as described in a later 

section.

Biased Sampling for Barrier Crossing: To improve the efficiency of sampling rare events, 

Kuwahara and Mura developed the weighted SSA (wSSA) algorithm by biasing each 

reaction rate using a pre-determined constant, with the overall summation of reaction rates 

unchanged.[28] Further development introduced biases to reaction selection and significantly 

improved sampling efficiency for rare events.[29,30] These methods, however, do not address 

the issue of crossing barriers, which arises in multistable networks with a complex 

probability landscape. In reference,[31] a general theoretical framework for obtaining 

optimized biases in sampling individual reactions for estimating probabilities of rare events 

was developed. In addition, a practical algorithm called adaptively biased sequential 
importance sampling (ABSIS) method for efficient probability estimation was also given.[31] 

By using a look-ahead strategy and by enumerating short paths from the current microstate, 

the reaction-specific and state-specific forward and backward moving probabilities of the 
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system were estimated, which are then used to bias reaction selections. The ABSIS algorithm 

can automatically detect barrier-crossing regions, and can adjust bias adaptively, with bias 

determined by the outcome of exhaustively generated short paths.[31] Test results on the 

biochemical networks (see Fig 1 for the example of the Schögle bistable model) showed that 

the ABSIS method can accurately and efficiently estimate rare event probabilities, often with 

smaller variance than other importance sampling algorithms.[31]

Direct solution of dCME models: Several methods have been developed towards the goal 

of directly computing the full probability landscape of a stochastic network. These include 

the finite state projection (FSP), the sliding window method, the finite buffer dCME method, 

as well as several other techniques.[23,32–36] The FSP method is based on a truncated 

projection of the state space and uses numerical techniques to compute the time-evolving 

probability landscapes.[32,37,38] However, the use of an absorbing boundary leads to the 

accumulation of errors as time proceeds, therefore making it unsuitable to study long-time 

and steady state behavior of a network. The sliding window method is also based on 

truncation of the state space. To ensure small truncation error, a large number of states must 

be included, as the size of the state space takes the form of a n-dimensional hypercube, with 

n the number of molecular species. This makes it difficult to achieve the desired level of 

accuracy.

A bottleneck problem for solving the dCME directly is to have an efficient and adequate 

account of the discrete state space. As the copy number of each of the n molecular species 

takes an integer value, conventional methods of state enumeration incorporate all vertices in 

a n-dimensional hypercube nonnegative integer lattice, which has an overall size of 

, where bi is the maximally allowed copy number of molecular species i. State 

enumeration rapidly becomes intractable, both in storage and in computing time. To address 

this issue, we developed the finite buffer discrete CME (fb-dCME) method for efficient 

enumeration of the state space.[33] It uses a buffer queue with a fixed number of molecular 

tokens to keep track of the remaining number of states that can be enumerated. Instead of 

including every state in a hypercube, it examines only states that can be reached from a 

given initial state. This approach has been extended in the Accurate Chemical Master 

Equation (ACME) method,[39,40] in which the stochastic network is decomposed into 

independent components, each equipped with its own finite state space controlled by a 

separate buffer queue. Molecular species in each component can be transformed into each 

other through mass-balance reactions.

The ACME method is provably optimal in space and in time required for state enumeration, 

and exhibits very effective use of the overall finite state space. The size of the overall 

truncated state space is , a product of the volumes of nj-simplices, with 

nj the number of molecular species in the j-th component of the network. While maintaining 

the same maximum copy number of molecules, the truncated space is dramatically smaller 

than the n-dimensional hypercube, which has an overall size of . The reduction 
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of state space is roughly , therefore the size of the state space is much smaller than 

that generated using the conventional hypercube method.

Furthermore, a broad mathematical framework for analytical estimation of steady state 

probability solutions has been developed.[39] Importantly, an overall upper-bound estimation 

of the truncation errors has been obtained from theoretical analysis using the techniques of 

aggregation of microstates by buffer usage, factorization of a quotient matrix, and stochastic 

ordering.[39,40] This enabled estimation of truncation error a priori without actually carrying 

out costly trial solutions of the dCME for the purpose of error estimation. It also allows 

determination if the truncation error for a given computing environment is within a pre-

defined tolerance threshold. In addition, it informs on the minimal size of state space 

required to achieve a given level of accuracy.

The ACME method works for arbitrary networks, including those with strong couplings 

between species. With this optimal method for state enumeration, numerical methods for 

solving large linear systems can be applied to directly solve the dCME equation.

Multistability of common motifs—Network motifs consisting of 1–4 nodes are small 

subunits that occur frequently and often have defined functions.[41] They are the small 

building blocks of more complex regulatory networks. It is important to understand their 

roles in maintaining the multistability of different epigenetic states.

Studies based on deterministic models showed that multistability can arise only when 

feedback and cooperativity are present.[42] However, multistability can arise from stochastic 

network motifs which would go undetected if deterministic network models are used. The 

smallest network motif exhibiting stochastic multistability is that of the self-regulating gene. 

It was shown that a probabilistic landscape with multiple peaks can appear when the rates of 

gene expression in bound and unbound forms of DNA are well separated and switching 

between the bound and unbound states is slow.[43]In this case, the multistability, however, 

cannot be captured using deterministic ordinary differential equation (ODE) models or 

simple Fokker-Plank approximation of the dCME.[43] Overall, stochastic multistability in 

simple network motifs remain poorly characterized.

The ACME method can be applied to study the stochastic behavior of motifs of gene 

regulatory network. As an illustration, we discuss the motif of a single input module.[44] 

There are three genes in this network. GeneA, GeneB, and GeneC express protein A, B, and 

C, respectively (Fig 2A). Protein A inhibits both GeneB and GeneC, both in turn activate the 

expression of protein A. Multistability exist in the probabilistic landscape of this simple 

motif computed using the ACME method, where bistabilities for expression of proteins A, 
B, and C can be clearly seen (Fig 2B and 2C).

With the ACME method, we can examine systematically the stochastic behavior of all major 

network motifs with 3–4 nodes, including negative feed-back loops,[45] feed-forward 

loops,[46] and four-nodes bifan networks.[47] For example, the results of computation of the 

probability landscape using ACME for the incoherent feed-forward loop (Fig 2D) showed 

that the stationary probabilistic landscape of the motif changes from that of one peak (E) to 
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that of six peaks (F) when network parameters are altered. With the ACME method, we can 

characterize the probability landscapes of these motifs and identify key factors defining their 

stochastic multistabilities. We can now explore the full parameters space and construct phase 

diagrams of multistability of many network motifs. These results can be useful for 

constructing synthetic gene networks for desired stochastic properties.

Epigenetic decision network of cellular fate—Bacteriophage lambda is a virus that 

infects E. coli cells (Fig 3). A molecular circuitry controls phage lambda to choose between 

two productive modes of development, namely, the lysogenic phase and the lytic phase (Fig 

3A). In the lysogenic phase, phage lambda represses its developmental function, integrates 

its DNA into the chromosome of the host E. coli bacterium, and is replicated in cell cycles 

for potentially many generations. When threatening DNA damage occurs, for example, 

when UV irradiation increases, phage lambda switches from the epigenetic state of lysogeny 

to the lytic phase and undergoes massive replications in a single cell cycle, releasing 50–100 

progeny phages upon lysis of the E. coli cell.[22]

To study how lysogeny is maintained and how it transitions to the lytic state, we used a 

simplified stochastic model for the molecular regulatory network that controls the epigenetic 

switch in phage lambda (Fig 3b).[23] With a total of 54 reactions involving 13 molecular 

species and around 1.7 million microstates, the effects of UV irradiation can be modeled by 

increasing the CI degradation rates kd due to the response of the SOS system. The steady 

state probability associated with each of these microstates are computed from dCME after 

state enumeration.[23] Fig 4 (row 1) shows the probability landscape of phage lambda 

projected to the subspace of CI and Cro dimers at five different UV irradiation conditions, 

each modeled with a different CI degradation rate kd. With a high copy number of the CI2 

repressor, the lysogenic phase of the phage lambda is maintained, whereas a high copy 

number of Cro2 protein signifies the lytic phase.[48] A clear picture of the landscape in 

lysogeny, at the start of transition, during mid-transition, at the end of transition, and in lysis 

can be seen.

Calculation results also showed that wild-type phage lambda can maintain a constant level of 

repressor over a wide range of repressor degradation rates and is stable against UV 

irradiation, ensuring heritability of the lysogenic state. Furthermore, it can switch efficiently 

to the lytic state once repressor degradation increases past a high threshold by a small 

amount. Novel findings including the role of cooperativity, effects of mutations and hair-

triggers, and the origin of network robustness, are discussed in reference.[23]

The example of the decision network of phage lambda demonstrated that realistic systems 

can now be directly studied using the ACME method. A detailed network of 16-dimensional 

MAPK network that can be studied using the ACME method is shown in Figure 5, with its 

probability landscape computed exactly.[40] This is a significant improvement over current 

practice in which one introduces simplifications to reduce this network into that of 3-4 

nodes, with consequences unknown, so SSA simulation can be carried out.
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Chromatin folding and Cellular States

Recent development of fluorescence in-situ hybridization (FISH), chromosome 

conformation capture (3C) and related techniques (4C, 5C, Hi-C) enabled large-scale 

discovery of long-range chromatin looping interactions among distant chromosomal 

elements,[10–14] as well as the identification of Topologically Associated 

Domains(TAD).[49–51] Understanding the spatial organization of the genome in a cell 

nucleus provides an important route towards gaining insight into the mechanisms of gene 

activities and the maintenance of cellular epigenetic states.[52]

Global scaling properties of chromosome folding—FISH and chromosome 

conformation capture studies revealed important global scaling properties of the human 

genome, including the relationship between contact probability Pc(s) and loop length s,[13] 

the spatial distance R2(s) between elements and the loop length s, as well as the leveling-off 

effects of spatial distances between genomic elements as their genomic distances 

increases.[10,11]

The fractal globule (FG) model[13] was the first model developed to describe the global 

folding properties of the human genome, as it can explain the scaling relationship between 

Pc(s) and s. However, it does not account for the leveling-off effects observed in FISH 

experiments.[10,11] Subsequently, the Strings and Binders Switch (SBS) model was 

developed, which pointed to a more heterogeneous structural ensemble, in which the scaling 

properties of the individual structures depend on the concentration of binder molecules such 

as architectural proteins.[53] However, scaling in the SBS model strongly depend on the 

choice of model parameters, and all observed scaling properties cannot be accounted for 

using a fixed set of parameters.

Chromosomes reside within the severely confined space of the cell nucleus. However, the 

direct effects of nuclear confinement on chromatin folding and compaction are not known. A 

detailed computational model, named Constrained Self-Avoiding Chromatin (C-SAC), was 

developed for studying the folding properties of chromosomes (Fig 6A).[54] In C-SAC, 

nuclear confinement is explicitly modeled and ensemble of chromatin chains are generated 

inside the severely confined cell nucleus. This was achieved by overcoming the challenging 

problem of attrition in sampling using the geometrical sequential important sampling 

technique.[54–61]

Results using C-SAC showed that spatial confinement of the nucleus is responsible for much 

of the experimentally observed scaling behavior of chromosome folding (Fig 6B-E).[10,11,13] 

The C-SAC model also predicts the formation of highly interactive sub-structures that may 

give rise to topological domains (Fig 6F).[50] A recent study further suggested that the 

segregated organization of chromosome is due to the onset of glassy dynamics when long 

chromosome chains are confined into small nuclei.[62] These findings highlight the 

importance of nuclear confinement and how its size change may regulate epigenetic 

programming of cells, as in the case of transitioning from stem cells to differentiated 

cells.[53,54]
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Genome-wide structures of multi-chromosomes in yeast—Understanding 

different cellular states in mammalian cell differentiation requires knowledge of genome-

wide interactions of chromatins. Budding yeast is an excellent model system for 

constructing genome-wide models of multi-chromosomes, as its transcription machineries 

have been well studied and the roles of genome organization well understood.[63]

Nevertheless, there is some controversy on the extent that the genome organization of yeast 

is dictated by the architectural properties of the cell nucleus. Recent computational studies 

showed that yeast chromosomes behave as randomly folded flexible self-avoiding polymer 

chains subject to the constraints derived from nuclear landmarks and nuclear 

confinement.[64,65] However, correlations of modeled inter-chromosomal interactions with 

experimentally captured interactions are modest at best.[64,65] The question whether the 

genome organization of budding yeast is fully dictated by physical tethering of the 

landmarks and the excluded-volume of the self-avoiding chains is unresolved. Another study 

showed that once observed interactions are corrected using a null model, the genome 

organization of the budding yeast no longer exhibit the properties of randomly folded 

polymer chains with constraints.[66]

To shed light into the nature of the organization of yeast chromosome, we developed a three-

dimensional chromosome model incorporating constraints derived from electron/light 

microscopy experiments to mimic the nuclear environment and its effects on the folding of 

the yeast genome (Fig 7A). Large ensembles of model genomes (~200,000) were generated 

using different constraints. Our results showed that the organization of the yeast genome, 

including interchromosomal interactions is indeed dictated to a large extent by the 

confinement of the cell nucleus and the physical tethering of the centromeres.[61]

Comparison of computatioanlly generated ensembles of folded chromosomes g with those 

from 3C-based studies showed that the majority of measured interactions regulating 

important cellular functions are captured by our model (at an accuracy of 92%, Fig. 4B-

D).[61] Furthermore, preliminary study suggests that these computationally captured 

interactions can be used to extract biologically specific interactions from experimental data, 

as they arise from the nuclear architecture of the cell nucleus and can be subtracted. This 

would allow predictions of novel transcription regulatory mechanism in budding yeast that 

are experimentally testable.

Spatial structures of functional loci of chromatin in different cell states—
Experimental data from chromosome conformation capture studies can capture detailed 

promoter-enhancer interactions at the locus level. However, the captured information is 

intrinsically two-dimensional pairwise contact frequencies. Such captures may also be 

limited by the distribution of restriction enzyme sites and the sequence mappability. 

Constructing 3D structures of a gene locus can help to obtain detailed structural 

understanding of promoter-enhancer interactions and how they may affect transcriptional 

machineries and regulate cellular epigenetic states. Several polymer models of chromatin in 

genome or locus level have been developed,[13,14,53,62,64–73] and many can generate 

structures of chromatins from 3C/5C measurements, capturing many known interactions.
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There are many difficulties in constructing accurate 3D models of a gene locus. Random 

interactions from non-specific formaldehyde fixation,[74] introduce complexity as it is 

challenging to distinguish biologically relevant interactions from non-specific random 

spatial interactions. As measurements of 3C/5C are from a mixture of cell populations, full 

ensembles of 3D chromatin chains need to be generated to collectively best describe the bulk 

measurements and to reveal specific interactions from experiments.[75]

We have developed a method that can generate well-sampled ensembles of high-resolution 

chromatin chains of a specific locus. Our method can remove non-specific physical 

interactions from 3C measurements and can incorporate data of specific interactions. We 

have applied our method to study the chromatin structures of the α-globin locus, which is 

differentially expressed in normal (GM12878) and cancer (K562) cell lines.[70] (Fig 8A-B) 

Comparison of differences in their spatial structures will help to understand how spatial 

organization of the genome affects the expression level of this important gene and will allow 

identification and interrogation of patterns of spatial interactions. Preliminary results showed 

that the differential expression of α-globin is strongly influenced by the folding landscape of 

chromatin, such as the formation of different chromatin globules, in agreement with 

previous studies.[70] In addition, our model predicts specific novel interactions that are not 

captured by 3C experiments because of primer design. A subset of such predicted 

interactions are found to be biological important as verified by an independent studies (Fig 

8C).[76]

Cell model for tissue pattern formation

Fully differentiated cells under epigenetic control grow, divide, and migrate to form tissue. 

Regulation of cell growth and cell-cell interactions plays fundamental roles in tissue 

formation, organ development, and cancer progression.[77–80] The coordinated efforts of a 

large number of cells to form an organ is a complex process that is not yet fully understood. 

Tissue formation occurs with precision and persistence, extending beyond individuals and 

even generations. We do not yet have the full picture of how changes in properties of 

individual cells such as cell size, shape, geometry, lineage, division, growth rate, and death 

affect tissue formation and the whole organism. Neither do we have sufficient information 

on how and when cell-cell interactions become important. It is challenging to design and 

conduct experimental studies to identify and differentiate specific effects of individual cell 

attributes and cell-cell interactions on tissue and organ development. Computational studies 

can generate useful hypothesis that can complement experimental studies in providing 

important insights.

Mechanical models of cell—Several computational methods have been developed to 

model tissue formation. These include the cellular Potts model, center-based model, finite 

element models and vertex models. Below we briefly summarize these methods (see Sëma et 

al.[81] for a detailed comparison).

The cellular Potts model is used for studying cell behavior, where each cell is modeled as a 

collection of about 25–50 lattice sites.[82] Each lattice site can be modeled as a square, 

triangle, or a hexagon. Size of the cells is constant and neighboring cells interact with 
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specific binding energy, which models the underlying biology, e.g., cadherin interactions.[83] 

Cell shape and topology are not modeled directly in the cellular Potts model and realistic 

modeling of cell shapes often requires extensive post-processing. Metropolis moves are 

often used to indirectly model cell proliferation. The state of a randomly picked lattice site is 

first proposed to change into that of its neighbor. This proposal is then evaluated for 

acceptance or rejection according to certain probability determined by energy calculation. 

Cell motions are also implemented as a result of energy minimization after stochastic 

fluctuations of flips of lattice sites introduced by Metropolis moves.[83]

The center-based model approximates each cell by an isotropic, elastic, and adhesive 

sphere.[84] Cell growth, division, and migration can be modeled by this model. It is 

specifically designed to study details of pair-wise cell forces where cellular interactions can 

be treated as interactions between homogeneous elastic sticky spheres.[84] However, detailed 

descriptions of cell shapes are not included, and any shape deviation from sphere is 

ignored.[84] As a result, center based models are not well-suited to study details of the 

biological problems that involve dynamic changes in cell shape and topology.

Finite element methods model cell shapes realistically but have inflexible boundary 

conditions and cannot model dynamic changes in cell shape such as cell growth, cell 

migration, cell birth, and cell apoptosis.[85–87]

Vertex models minimizes the energy under forces acting on cell junctions (represented as 

vertices) to model cell shapes. These models are specifically designed to study packing and 

remodeling of epithelial cells.[88,89] They can be used to study cell birth, growth, migration, 

and apoptosis at varying degrees as they can realistically model cell size, shape, and 

elasticity.[90–94] However, there are some limitations in the current vertex models. For 

example, cells are always polygonal and do not have boundaries with curvature. Cell growth 

is also not modeled in detail. In addition, initial conditions require a plural number of cells 

(e.g., ≥16 cells), often with periodic boundary conditions. Cell death can only be modeled 

for the special case associated with a specific type of topological change.[89]

Chimeric methods such as the viscoelastic cell model by Jamali et al.[95] and the immersed 

boundary framework by Rajniak[96] can model realistic cell shape, cell growth, cell division, 

cell motion, and cell-cell interactions. However, they are not suitable for simulating large 

tissues due to the model choice of representing the shape of a cell by a network of linear 

Voigt elements or by a collection of boundary points connected through linear springs, 

which leads to substantial computational overhead.

Dynamic vertex model of cells—We have recently developed a physical model of cell 

and a simulation algorithm that incorporates cell size, shape, lineage, growth rate, death rate, 

and different cell-cell interactions (Fig 9[81]). Our method can model monolayered tissue 

formation by following the growth process of either a single cell, or a group of cells with 

arbitrarily pre-arranged spatial relationship, unlike previous studies that must start with a 

specific pre-existing cellular pattern.[89,91,94] Our method can model cell proliferation and 

programmed cell death without the constraints from unrealistic boundary conditions and can 

incorporate different growth rates due to the effect of specific growth factors. Moreover, our 
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model represents the geometry of cells more accurately, with inner cells treated as polygons 

and outer cells as disc segments, as seen in in vivo studies.[97]

In our method, we assume force equilibrium and adopt small step sizes in cell volume 

changes. Time-specific, cell-type specific, and location specific parameter values for cell 

growth or shrinkage and tissue mechanical properties can be introduced. Our 

implementation of the model using the Half-Edge data structure is very efficient and robust, 

and provides additional benefit of no overhead with regards to time and storage in 

maintaining the list of neighboring cells for each cell. We were able to simulate tissues with 

a large number of cells (~20,000) in a very short amount of time (e.g., <1 hour).[81,98]

Pattern formation of tissue—We have used our dynamic vertex model[81,98] to examine 

the mechanisms regulating topological changes in tissue formation. Specifically, we studied 

the effects of orientation of division plane, differential proliferation, and mechanical forces 

on animal epithelial cells.[99,100] By incorporating cell rearrangements, we succeeded in 

reproducing the commonly observed topological distributions of cells in natural proliferating 

animal epithelial, regardless of the orientation of division plane. Different schemes of 

division plane generated different frequency of hexagonal cells, consistent with experimental 

observations. Moreover, in our simulations of proliferating cells interfacing quiescent cells, 

we found that differential proliferation and increased tension on the boundary together 

reproduced the observed topological changes. Our simulation showed that both division 

plane orientation and mechanical forces play important roles in cell topology in animal 

proliferating epithelial.[99,100]

We have also used our dynamic vertex model to study the mechanisms of regulating tissue 

elongation in drosophila wing.[101] Our simulation on the effects of directional cues and 

reduced cell size on tissue elongation indicated that oriented cell divisions and oriented 

mechanical forces act as directional cues during tissue elongation. In addition, we found that 

reduced cell size may significantly promote tissue elongation in conjunction with the 

directional cues. Our findings suggest that cell divisions without cell growth play essential 

roles in tissue elongation.[101]

We have also used our dynamic vertex model to study the effects of mechanical properties 

on tumor invasion.[102] Our simulations show increased adhesion to extra-cellular matrix 

(ECM) and decreased adhesion among tumor cells result in invasive tumor behavior. 

Moreover, our simulations show increased stiffness and increased degree of degradation of 

ECM promote tumor invasion, resulting in invasive tumor morphologies.[102] We have 

further improved this vertex based model into a stochastic spatial dynamic model by 

incorporating the inhibition growth rate, proliferation and differentiation probabilities of 

individual cells through feedback loops controlled by secreted factors from neighboring 

cells.[103] Our simulations show that with proper strengths of inhibition to growth and stem 

cell divisions, the tissue is capable of achieving a homeostatic size control.[103]

Dynamic finite element model and wound healing—Built upon the dynamic vertex 

model, we have further developed a novel cell model approach based on dynamic finite 

element method (dFEMC) that can model explicitly cells with realistic cell elasticity, cell-
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cell interactions, and can model complex cell shapes and their dynamic changes during cell 

proliferation, cell migration and cell apoptosis. In addition, it can be used to study a large 

population of cells in the tissue.[104]

In dFEMC, we assume cells have linear elasticity.[105] Both external and internal stresses 

can deform the cell. Cell deformation in turn can generate internal stresses. Following 

standard elastic models,[106] we use strain tensor to measure the local deformation of the 

cell. Denote the displacement of a point x in cell as u(x) = [u1(x), u2(x)]T, the strain tensor ϵ 

of x can be defined as ϵ = [ϵx1, ϵx2, ϵx2x1]T = Bu. Taking into account the properties of cell 

material, the stress tensor σ of internal stress in a cell in response to cell deformation can be 

written as σ = Dϵ. With the strain and stress tensors defined, the elastic strain energy of a 

cell, along with work done by external forces (x) can be written as 

In our model, the boundary ∂Ω of a cell Ω with specific shape is represented by a set of 

discrete points ∂Ω = {x = [x1, x2]T}. Triangular mesh tilling up the body of the cell Ω is then 

constructed using the farthest point sampling method based on Delaunay triangulations,[107] 

which generates internal discrete point set {Int(Ω) : x = [x1, x2]T} and partitions the cell 

domain into a set of triangular elements {TΩ : Te = [x1, x2, x3]T : xi ∈ ∂Ω ⋃ Int(Ω))} (Figure 

11a and 11b).

Each triangular element Te is defined by three nodes either from ∂Ω or Int(Ω). The strain 

energy of each Te under external force and/or internal forces is at its minimum when ∂E(u)/

∂u = 0. This can be used to obtain the equilibrium solution of displacement describing cell 

deformation, which can be written as Keue = fe, where Ke is the element stiffness matrix of 

Te, ue the displacement vector of nodes in Te, fe the discredited force vector exerted on 

nodes in Te. Upon assemblage of all elementary stiffness matrix into a global stiffness 

matrix, we obtain a large sparse linear system Ku = f. The behavior of the whole cell system 

at a specific time then can be simulated by solving this linear equation.

In many physiological process, cells migrate under chemical and mechanical cues. For 

example, during the re-epithelialization process in wound healing, cells migrate to the 

wound bed and repair the tissue. A rapidly moving cell often adapts its shape dynamically 

and may completely rebuild its cytoskeleton and adhesive structures during the migration 

process.[109] To gain understanding of the influence of intercellular adhesions and 

transmission of mechanical signal on the collective migration of cells, it is important to take 

into account dynamic changes in cell shape, along with changes in cell behavior associated 

with mechanical signal transmission.

We have applied our dFEMC method to study cell proliferation, apoptosis and tissue 

fusion.[104] We were able to reproduce suppression of tumor tissue growth under the 

treatment of curcumin and DMSO which influences the growth rate of cancer cells, as 

observed in clinical experiment.[104,110,111] Differential suppression effects of curcumin and 

DMSO treatments from our simulation were consistent with experimental observations,[108] 
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where curcumin exhibited stronger suppression effect on cancer cells than DMSO agent 

(Figure 12).

The dFEMC method can be further applied to study skin wound healing, a complex process 

involving many different cell types, signal transduction networks, as well as mechanical cell-

cell interactions (Fig 13). It can help to delineate the differential roles of chemical signal and 

mechanical force in regulating processes such as re-epithelialization and granulation during 

wound healing, and can identify the specific effect of cytokines such as TGF-β in 

reconstruction of granulation tissue during wound healing.

CONCLUSIONS

Multiscale modeling of biological systems can aid in formulating theoretical models and can 

reveal fundamental insight into biological systems. It also has the promise to uncover new 

opportunities for disease treatment and health interventions. Previous computational studies 

at the molecular levels of proteins and RNAs have already generated important insight (not 

reviewed here, but see[112,113]). Computational techniques such as master equation treatment 

of protein folding[114] and sequential importance sampling of polymers can serve as the 

basis for developing effective computational techniques for studying stochastic network and 

for understanding chromosome folding.[55–60] The intricate geometry and topology of 

macromolecule with tens of thousands of atoms bears strong resemblance to problems 

encountered in studying cells and tissue.[115,116]

The development of computational algorithms such as the ACME method for computing the 

probability landscape of a stochastic network discussed here is significant. With orders of 

magnitude reduction in the size of the state space, it enables accurate solution of the dCME 

for a large class of problems, whose solutions were previously unobtainable. For example, 

the state space of the MAPK network (Fig 5) can be reduced by 6–9 orders (e.g., from 1.0 × 

1016 to 6.2 × 106), allowing a stochastic problem otherwise unsolvable to be computed on a 

desktop computer.[39,40] With explicit formulas for error bounds, the accuracy of the 

solution of a stochastic network can now be reliably estimated, and we gain the certainty of 

knowing if there are any probability peaks missing from our computational solution, hence 

no longer suffer from possible unknown unknowns. We can also assess rapidly the best 

possible accuracy we can achieve for a given computing environment. Such advancement 

has important implications, as we will be able to access hidden peaks and valleys of complex 

probabilistic landscapes, allowing quantitative models of epigenetic states corresponding to 

disease and healthy states, and the rare stochastic transitions between them to be developed 

and computed.[117,118]

There is a large amount of data on chromatin interactions available from studies using 

chromosome conformation capture and related techniques. We now have access to detailed 

knowledge of pairwise interactions among genomic elements, many of which are important 

for nuclear activities. Computational construction of three-dimensional structures of 

chromatin can overcome significant limitations in these experimental techniques and can 

covert 2D mappings of genomic interactions into 3D spatial models of gene loci as well as 

the full genome. With genome-wide epigenetic studies pointing to potential enhancers along 
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the 1D genome, 3D models of chromatins can facilitate interpretation and integration of 

epigenetic information, enabling mechanistic understanding of the temporal and spatial 

pattern of genome organization associated with cell differentiation. We expect future 

development of computational predictions of structural models of gene locus and global 

folding of genome will aid in the discovery of many novel higher order gene-enhancer 

interactions. Such knowledge will help to understand the control mechanism of the 

epigenetic states of stems cells and differentiated cells, with important implications in 

regenerative medicine.

Fully differentiated cells of different types grow, divide, interact, and migrate to form tissues 

with complex pattern. A fundamental question is how mechanical properties and chemical 

signaling specifically affect cell behavior and tissue formation. As mechanical stress exerted 

at cell-cell junctions and its transmission between cells cannot be easily measured 

experimentally, computational cell models such as those described here can play important 

roles in identifying the roles of mechanical cues and chemical cues in regulating the growth, 

division, and collective migration of different cell types. The dynamic finite element model 

(dFEMC) of cells discussed here can realistically model cell growth, death, migration, along 

with accurate description of cell shapes. It can also integrate effects of chemical network and 

mechanical forces, and can be used to study cellular pattern formation in complex processes 

such as wound healing, with the promise of generating new treatment strategies.
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Figure 1. 
The time-evolving probability and transition probability of rare events of the bistable 

Schlögl model. The blue and black curves show the landscape at t = 2 and at the steady state, 

respectively. The two high probability regions at the steady state (black curve) are located at 

x = 4 (red circle on black curve) and x = 92 (red dot on black curve), respectively. They are 

separated by a high barrier of low probability. The initial state x = 0 (green dot) is near the 

first peak, and the target state (red dot) is at the center of the second peak. The probability 

landscape at time t = 2 (blue curve) shows a much sharper peak centered at x = 3 (red circle 

on blue curve). The transition from x = 0 to x = 92 within t = 2 is a rare event and the 

transition paths have a steep barrier to cross. The probability of this rare event can be 

sampled effectively using the ABSIS method (adapted from reference[31]).
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Figure 2. 
Single input network module. (A) Its network architecture. Steady state probability 

landscapes for (B) proteins B and C, and (C) proteins A and B+C. (D) The network 

architecture of the incoherent feed-forward loop. Steady state probability landscapes (E) 

with one peak and with (F) six peaks.
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Figure 3. 
Different selection of cell fate of E. coli infected by phage lambda and a model of the 

epigenetic circuit for lysogeny maintenance. (a) The lysogenic and lytic phases of phage 

lambda. (b) A simplified model of the epigenetic switch for lysogeny maintenance. 

(Modified from reference[23]).
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Figure 4. 
The probability landscape of the epigenetic circuits of lysogeny maintenance in phage 

lambda. (Row 1) For wild type phage lambda, at the CI degradation rate of kd = 7.0 × 

10−4/s, probability landscape centers at locations with high copy numbers of CI2 and close 

to 0 copy of Cro2. This corresponds to the lysogenic phase of phage lambda. When kd 

increases from kd = 1.8 × 10−3/s to 2.2 × 10−3/s, the peak located at lysogenic phase 

gradually diminishes, whereas the peak located at lytic phase gradually increases. At about 

kd = 2.0×10−3/s, phage lambda has about equal probability to be in either lysogenic or lytic 

phase. When CI is degraded at a faster rate of kd = 3.6 × 10−3/s, the probability landscape 

centers at locations where there are higher copy numbers of Cro dimer and close to 0 copy 

of CI. This corresponds to the lytic phase of phage lambda. (Row 2) When all cooperativities 

are removed from the model, lysogeny cannot be achieved. (Row 3) When only the 

cooperativity of ΔG12 is restored, wild-type behavior is largely restored. (Row 4) When all 

other cooperativities except ΔG12 are restored, lysogeny still cannot be achieved (Modified 

from reference[23]).
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Figure 5. 
A detailed network model of the MAPK cascade. The ERK(K) phosphorylation is catalyzed 

by the kinase MEK, whereas MEK synthesis is up-regulated by dual phosphorylated 

ERK(Kpp). Detailed reactions during the dual phosphorylation process of the ERK(K), the 

synthesis and degradation of MEK are explicitly modeled. Red and blue arrows represent 

phosphorylation and dephosphorylation reactions, respectively. Bidirectional arrows 

represent reversible reactions. The network can be partitioned into two components, as 

shown in two shaded areas of different color. There are a total of 16 molecular species and 

35 individual reactions in the network. (Modified from reference[40]).
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Figure 6. 
The physical model of C-SAC chains and its scaling properties. (A) Schematic 

representation of the C-SAC model. A chromatin fiber is represented by a self-avoiding 

polymer chain with a persistence length Lp. Polymers are grown as chains inside a spherical 

confined space of a diameter D. (B) The scaling of R2(s) from 10,000 chains of length 

1,000Lp in log10 scale. (C) The scaling of contact probability Pc(s). (D) Comparison of 

exponent α of Pc(s) between C-SAC and Hi-C data.[13] Values of α for different 

chromosomes[13,53] were compared to those calculated separately for different clusters of C-

SAC chains. (E) Pc(s) vs. chain length s for different confinement sizes D. (F) A random C-

SAC chromatin chain with independent substructures. A singular domain-like conformation 

is shown in detail (adapted from reference[54]).
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Figure 7. 
Multi-chromosome model of budding yeast. (A) Schematic representation of yeast 

genome in the confined nuclear space. Different chromosomes are represented in different 

colors. (B) Heatmap of interactions that are taken from biochemical experiments.[14] Each 

block represents a chromosome and darker color indicates higher frequency interaction. (C) 
Heatmap of interactions that are averaged from predicted model genomes built without using 

any biochemical data. The heatmap generated using predicted models is very similar to the 

measured heatmap in (C). (D). Experimentally measured interaction frequencies correlate 

well with predicted interaction frequencies from our model (see reference[61] for more 

details.
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Figure 8. 
Structural models of the α-globin gene domain. (A) Representative three-dimensional 

chromatin chains of the α-globin gene domain in the GM12878 and the K562 cell lines. The 

α-globin gene domain has only one domain and is more compact in the GM12878 cell. In 

the K562 cell, the α-globin gene domain has two distinct domains that form a more extended 

structure. Close-up views of selected sites for comparison between cell lines are also shown, 

with specific nodes noted. (B) Comparison between the number of CTCF- (top) and 

RNAPol2-mediated (bottom) interactions based on the predicted model (beige) and based on 

measurements from an independent experimental study using the technique of CHIA-PET 

(blue, reference[76]).
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Figure 9. 
Dynamic vertex model: (a) An isolated cell is modeled as a disk. (b) A cell is modeled as a 

disk segment when contacting other cell(s). An outer edge ei is an arc or a circle, 

representing the boundary between cell ci and the outside medium (denoted as c0). An inner 

edge ei,j occurs when a cell ci is in contact with another cell cj. Their shared boundary is 

modeled as a straight line segment. When two cells ci and cj make contact, their outer edges 

(arcs) ei and ej intersect at two vertices vi,0,j and vj,0,i which are also the two end-points of 

the inner edge ei,j (c) When three cells ci, cj and ck intersect, they form a vertex vi,j,k. (d) A 

cell completely surrounded by other cells is represented as a polygon. (e) Fusion of two 

growing tissues. New edges and vertices formed are highlighted.
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Figure 10. 
Simulation of tissue elongation. (a) Oriented cell divisions drive tissue elongation, but only 

to a limited extent (black). Reduced cell size, when combined with oriented cell divisions, 

enhances tissue elongation (red). (b) Morphology of the elongated tissue (see reference[101]) 

for details.
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Figure 11. 
Geometric democratization of cells: (a) An example of a toy model of a tissue consisting of 

3 cells. The boundary of each cell is represented by a set of vertices. (b) Each cell is tiled by 

a triangular mesh generated using the farthest point sampling method based on Delaunay 

triangulation.[107] (c) Cell grows incrementally, with volume change attributed to individual 

boundary element that sum to ΔV (adapted from references[81,104]).
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Figure 12. 
Cancer cell growth under suppression induced by antitumor agents. (a). The initial state of 

cell growth. (b). Tumor tissue after 800 time steps using growth parameter modeling the 

effects of suppression from DMSO. (c). Tumor tissue after 800 time steps using growth 

parameter modeling the effects of suppression from curcumin. (d). The percentage of 

boundary cells, namely, the number of cell on boundary of the tissue over the total cell 

number, at each time step for DMSO treatment (red) and for curcumin treatment (blue). The 

higher boundary cells percentage corresponds to a more scattered cell population. (e). The 

colony number for DMSO and curcumin treatments. We count every 9 cells as one colony. 

The colony number ratio between the two treatments, 12 against 7, is consistent with the 

colony number ratio between the two treatments found in experiment studies[108] (see 

reference[104] for details).
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Figure 13. 
Application of the dFEMC model to study wound healing. (a) Detailed view of the wound 

tissue including multiple cell types and clot elements. Green: wound element; Blue: 

keratinocyte cells; Red: fibroblast cells; Gray: elements of extra-cellular matrix. (b) A global 

view of a snapshot of a simulation of the process of wound healing.
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