Table 2.
Parameter estimates for multilevel model.
| Fixed Effects (intercept, slope) | Estimate | SE | t | p |
|---|---|---|---|---|
| Intercept | 2.37 | 0.45 | 5.4 | < 0.000 |
| Dyadic Coping () | 0.59 | 0.12 | 5.0 | < 0.000 |
| Dyadic Coping (DCij −) | 0.35 | 0.03 | 13.5 | < 0.000 |
| CONTROL VARIABLES | ||||
| Gender | −0.04 | 0.01 | −3.0 | 0.002 |
| Age | −0.01 | 0.01 | −5.6 | < 0.000 |
| Education | 0.02 | 0.01 | 3.8 | < 0.000 |
| GDP | 0.01 | 0.01 | 2.3 | 0.033 |
| Random Effects ([co-]variances) | Slopes | Intercepts | p | |
| NORTH AMERICA AND WEST EUROPE | ||||
| Canada | 0.54 | 2.25 | 0.000 | |
| Germany | 0.43 | 2.37 | 0.000 | |
| Great Britain | 0.29 | 2.37 | 0.000 | |
| Italy | 0.25 | 2.54 | 0.000 | |
| Portugal | 0.23 | 2.38 | 0.000 | |
| Spain | 0.35 | 2.48 | 0.000 | |
| Switzerland | 0.31 | 2.37 | 0.000 | |
| United States of America | 0.36 | 2.31 | 0.000 | |
| EAST EUROPE | ||||
| Bulgaria | 0.78 | 1.76 | 0.000 | |
| Croatia | 0.40 | 2.40 | 0.000 | |
| Greece | 0.47 | 2.21 | 0.000 | |
| Hungary | 0.44 | 2.46 | 0.000 | |
| Poland | 0.43 | 2.38 | 0.000 | |
| Romania | 0.56 | 2.17 | 0.000 | |
| Slovakia | 0.55 | 2.23 | 0.000 | |
| FORMER SOVIET COUNTRIES | ||||
| Estonia | 0.38 | 2.41 | 0.000 | |
| Kazakhstan | 0.25 | 2.47 | 0.000 | |
| Russia | 0.37 | 2.35 | 0.000 | |
| ASIA | ||||
| China | 0.33 | 2.46 | 0.000 | |
| Hong Kong | 0.56 | 2.13 | 0.000 | |
| India | 0.14 | 2.42 | 0.001 | |
| Indonesia | 0.30 | 2.50 | 0.000 | |
| Malaysia | 0.25 | 2.49 | 0.001 | |
| Pakistan | 0.25 | 2.45 | 0.000 | |
| South Korea | 0.37 | 2.35 | 0.000 | |
| MIDDLE EAST | ||||
| Iran | 0.22 | 2.25 | 0.000 | |
| Israel | 0.46 | 2.27 | 0.000 | |
| Saudi Arabia | 0.45 | 1.96 | 0.000 | |
| Turkey | 0.36 | 2.38 | 0.000 | |
| AFRICA | ||||
| Ghana | 0.16 | 2.55 | 0.013 | |
| Kenya | 0.24 | 2.50 | 0.000 | |
| Nigeria | 0.11 | 2.54 | 0.000 | |
| Uganda | 0.26 | 2.41 | 0.000 | |
| MIDDLE AND SOUTH AMERICA | ||||
| Brazil | 0.27 | 2.56 | 0.000 | |
| Mexico | 0.29 | 2.51 | 0.000 | |
N = 7973; All p-values are two-tailed. GDP in $1000; (j) = nation-level mean of dyadic coping; (DCij − j) = difference between each individual's dyadic coping from their nation-level mean.