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Abstract

Purpose of review—The purpose of this review is to evaluate the most recent findings on 

indoor allergens and their impact on allergic diseases.

Recent findings—Indoor allergens are present inside buildings (home, work environment, 

school), and given the chronic nature of the exposures, indoor allergies tend to be associated with 

the development of asthma. The most common indoor allergens are derived from dust mites, 

cockroaches, mammals (including wild rodents and pets), and fungi. The advent of molecular 

biology and proteomics has led to the identification, cloning, and expression of new indoor 

allergens, which have facilitated research to elucidate their role in allergic diseases. This review is 

an update on new allergens and their molecular features, together with the most recent reports on 

their avoidance for allergy prevention and their use for diagnosis and treatment.

Summary—Research progress on indoor allergens will result in the development of new 

diagnostic tools and design of coherent strategies for immunotherapy.
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Introduction

Sensitization and exposure to indoor allergens is a risk factor for allergic respiratory 

diseases, including rhinitis and asthma [1, 2]. In this report, an overview of the most 

important indoor allergens is presented, together with an update on the most current cutting 

edge research on their molecular structure and function (Table 1) [3•] and approaches to 

assess and treat indoor allergies.

Arthropods

Mites—House dust mites are an important cause of allergies worldwide, associated with 

diseases such as allergic rhinitis, atopic dermatitis, and asthma [1]. Mite allergens are 

Correspondence to: Anna Pomés, apomes@inbio.com.

Compliance with Ethical Standards
Conflict of Interest Drs. Pomés, Chapman, and Wünschmann declare a grant from NIAID. Dr. Chapman is founder and a co-owner of 
Indoor Biotechnologies Inc.
Human and Animal Rights and Informed Consent This article does not contain any studies with human or animal subjects 
performed by any of the authors.

HHS Public Access
Author manuscript
Curr Allergy Asthma Rep. Author manuscript; available in PMC 2017 June 01.

Published in final edited form as:
Curr Allergy Asthma Rep. 2016 June ; 16(6): 43. doi:10.1007/s11882-016-0622-9.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



classified into 33 groups, listed in the systematic Allergen Nomenclature Database 

maintained by the World Health Organization and International Union of Immunological 

Societies (WHO/IUIS) (www.allergen.org). More than 95 % of the allergen accumulating in 

mite cultures is associated with fecal particles, where Der p 1, the first allergen to be 

isolated, was estimated to be present at 10 mg/ml [4, 5]. These particles, from 10 to 40 μm 

of diameter, become airborne upon disturbance. Although inhalation is the most common 

mechanism of exposure, ingestion of foods made with mite-contaminated wheat flour has 

also been reported as a source of allergic reactions, including anaphylaxis (“the pancake 

syndrome”) [6]. The two most common species of dust mites are Dermatophagoides 
pteronyssinus and Dermatophagoides farinae. Additional mite species are 

Dermatophagoides microceras, Euroglyphus maynei, and Blomia tropicalis, as well as 

storage mites Glycyphagus domesticus, Lepidoglyphus destructor, Acarus siro, and 

Tyrophagus putrescentiae.

Groups 1 and 2: The group 1 and 2 allergens cause sensitization in >80 % of mite-allergic 

patients. These potent allergens account for 50–60 % of anti-house dust mite IgE antibodies 

in allergic subjects [7]. The group 1 allergens, Der p 1 and Der f 1, are cysteine proteases. 

The structures of natural Der p 1 and Der f 1 were determined, alone or in complex with 

fragments of monoclonal antibodies (mAb) that inhibit IgE antibody binding [8, 9, 10••] 

(Fig. 1). The proteolytic activity of group 1 has been reported to contribute to allergenicity 

by cleaving molecules involved in the immune response (i.e., CD23, CD25) and increasing 

membrane permeability [11]. Group 3, 6, and 9 allergens are serine proteases and may have 

similar effects.

Group 2 mite allergens have immunoglobulin-like folds, which bind lipids in the internal 

cavity. Der p 2 activates the innate immune system through Toll-like receptors (TLR-4) by 

mimicking the action of human MD-2 (myeloid differentiation antigen-like lipid-binding 

protein), a structural homologue that loads lipopolysaccharide (LPS) onto these receptors 

[12]. A TLR4-associated phospholipase D1 activation has recently been reported to be 

crucial for Der f 2-induced IL-13 production [13].

Groups 4, 5, 7, and 21: Allergens belonging to groups 4, 5, 7, and 21 together account for 

30 % of house dust mite IgE antibodies, and each of them binds IgE in approximately 50 % 

of mite-allergic subjects [7]. Allergens from group 4 are α-amylases. Groups 5 and 21 

contain structurally related proteins with a three-helical bundle [14]. Allergens from group 7 

have a similar structure to LPS-binding proteins that interact with Toll-like receptors upon 

binding of LPS and other bacterially derived lipid ligands [15].

Group 8 allergens are glutathione S-transferases (GST), and group 10 allergens are 

tropomyosins. The degree of homology of these mite allergens with allergens from other 

species is an important determinant of allergenic cross-reactivity or lack thereof [16•]. 

Recently, a tropomyosin was reported from Chortoglyphus arcuatus, a storage mite to whom 

some patients are mono-sensitized in the northwest of Spain [17]. A mixture of purified mite 

allergens from groups 1, 2, 5, 7, 8, and 10 bound, on average, 76 % of mite-specific IgE 

antibodies [18]. Group 11 allergens are paramyosins, and Der p 11 is a new marker allergen 

for house dust mite-allergic patients suffering from atopic dermatitis [19••].
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Der p 23 has been described as a new major allergen with a high prevalence of IgE reactivity 

(74 %) [20, 21]. However, this allergen accounts for a small percentage of the IgE response 

to mite allergens, which is dominated by Der p 1 and Der p 2 [22]. Interestingly, RNA 

expression level of Der p 23 is the lowest of the major allergens. The allergen is a small, 

globular protein stabilized by two disulphide bonds [22]. Der p 23 is homologous to chitin-

binding proteins, but recent studies have shown that the allergen does not bind chitin and 

must have a different function [22, 23].

In 2015, genomic-transcriptomic and/or proteomic approaches have been used to identify up 

to 33 mite allergen groups [24, 25••].

Cockroaches—The first report on positive skin test responses to cockroach allergen dates 

back to 1964 [26]. A strong association between cockroach allergy, allergic rhinitis, and 

asthma has been demonstrated [27–29]. Inner-city asthma studies in the USA have shown 

that exposure and sensitization to cockroach allergens are associated with increased asthma 

morbidity in children [28, 29]. The two most common species are German and American 

cockroach (Blattella germanica and Periplaneta americana, respectively). The WHO/IUIS 

Allergen Nomenclature database currently lists 12 groups of cockroach allergens.

Groups 1 and 2: The molecular structure of group 1 cockroach allergens (Bla g 1 and Per a 

1) consists of tandem repeats of ~100 amino acids. The determination of the three-

dimensional structure of these allergens, challenging due to protein fragmentation, has 

recently been achieved for Bla g 1 thanks to the expression of its basic structural unit. The 

Bla g 1 unit comprises two consecutive repeats of six helices each, which encapsulate a large 

hydrophobic cavity that contains lipids (Fig. 1). This structure allowed the definition of 1 

unit of Bla g 1 as 104 ng of allergen, which facilitates allergen standardization [30].

Bla g 2 is a globular protein that belongs to the family of aspartic proteases, but amino acid 

substitutions in the catalytic site render it inactive [31]. The antigenic surface of Bla g 2 has 

been analyzed by determining the structure of the allergen in complex with fragments (Fab 

or Fab′) of mAb that interfere with IgE antibody binding and by site-directed mutagenesis of 

residues involved in the epitopes [32–34, 35•]. These studies revealed IgE antibody binding 

sites and mechanisms of allergen-antibody interaction.

Group 3 allergens are homologous to arylphorins and insect hemocyanins. Different 

isoallergens and variants have been reported for Per a 3 with a wide range of skin test 

reactivities (26–95 %) [36]. Therefore, the relevance of this allergen remains controversial.

Group 4 allergens are lipocalins, with a similar molecular structure to mammalian lipocalin 

allergens, e.g., from cow, dog, cat, horse, rat, and mouse (Fig. 1). The molecular structure of 

Bla g 4 consists of an eight-stranded β-barrel and a C-terminal α-helix [37]. Most lipocalins 

share a low degree of amino acid identity (~20 %), and no significant cross-reactivity among 

them is expected.

Group 5 allergens are GST, thought to be involved in detoxification of toxic compounds. Bla 

g 5, together with Bla g 2, is one of the most important cockroach allergens in USA patients 

[38]. Recently, the X-ray crystal structures of Bla g 5 and the homologous allergens Der p 8 
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and Blo t 8 from mites and Asc s 13 from the nematode Ascaris suum were determined. 

These GST allergens showed a significant lack of cross-reactivity in a US population, 

suggesting that each individual allergen would be required for molecular diagnostic purposes 

[16•].

Groups 6, 7, and 8 are structural molecules including troponin C (group 6), tropomyosin 

(group 7), and myosin light chain. Tropomyosins are ubiquitous inhalant and food 

panallergens. In Brazil, cockroach tropomyosin is an important allergen, showing potential 

cross-reactivity with mite and shrimp tropomyosins [27]. Allergens from groups 6 and 8 are 

minor allergens and regulatory proteins involved in muscle contraction, which undergo 

structural changes upon calcium binding to EF-hand motifs [39].

Groups 9, 10, 11, and 12 are enzymes: arginine kinases, serine proteases, α-amylases, and 

chitinases, respectively, and mostly reported for P. americana, except for Bla g 11 [40–43]. A 

Per a 9-homolog from German cockroach and Bla g 11 have recently been reported to be 

immunodominant, together with Bla g 5, for T cell responses in asthmatic subjects [44]. The 

prevalence of IgE to these allergens was relatively high in the Asian countries where they 

were identified and needs to be evaluated in other parts of the world.

Mammalian Allergens

Animal allergens are primarily produced in the liver or secretory glands and are present on 

animal skin and in body fluids, such as urine, saliva, and blood. With the exception of the 

main cat allergen Fel d 1, most major animal allergens belong to the lipocalin family of 

proteins [45]. The proteins adhere to fur and can thus be efficiently distributed in the 

environment where they accumulate on fabrics, carpets, upholstery, and mattresses. 

Numerous studies have confirmed that the distribution of animal allergens in the 

environment is ubiquitous. Thus, allergy to animal proteins is considered a significant public 

health problem [46].

Cat (Felis domesticus)—Fel d 1 is a 38 kD tetrameric glycoprotein with a structure 

similar to that of uteroglobulin [47] (Fig. 1). IgE from over 90 % of cat-sensitized 

individuals reacts with this major cat allergen [48]. Fel d 1 is produced in sebaceous, anal, 

and salivary glands and transferred to the fur by grooming [49, 50]. While airborne Fel d 1 is 

mostly associated with larger particles (>9 μm), about 23 % of airborne Fel d 1 is carried on 

small particles (<4.7 μm diameter) that stay suspended in the air for several days, favoring 

distribution of the allergen in the environment [51]. In fact, the quantity of cat allergen in 

schools is directly correlated to the number of children in the class who live with cats in 

their homes [52]. Other relevant cat allergens include the cross-reactive serum albumin Fel d 

2 and the lipocalins Fel d 4 and Fel d 7, which react with 15–40, 63, and 38 % of IgE from 

cat-allergic patients, respectively [53–55].

Dog (Canis familiaris)—Four of six currently identified dog allergens, Can f 1, Can f 2, 

Can f 4, and Can f 6, are lipocalins [56]. About ~70 % of dog-allergic individuals have IgE 

antibodies specific to the major dog allergen Can f 1 [57, 58]. Can f 1 is detectable not only 

in all homes with a dog, but also in one third of homes without a dog [59, 60••]. The size 

distribution of particles associated with Can f 1 is similar to that of Fel d 1 [60••]. A wide 
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variability in Can f 1 levels can be found between dog breeds, but there is no evidence for a 

hypoallergenic breed [61, 62]. Can f 5 is also considered a major allergen, with up to 70 % 

of dog-allergic patients having Can f 5-specific IgE. Interestingly, 38 % of dog-allergic 

patients were monosensitized to Can f 5 [63]. Other relevant dog allergens are the lipocalins 

Can f 2 and Can f 4 and the cross-reactive dog serum albumin Can f 3, which react with 20–

30, 15–50, and 81 % of IgE from dog-allergic patients, respectively [64–67].

Rodents (Mus musculus, Rattus norvegicus)—Allergy to mice and rats is an 

important occupational health problem. The prevalence of rodent allergy among technicians, 

animal care takers, physicians, and scientists working in pharmaceutical industry, university 

laboratories, and animal facilities ranges from 11 to 44 % [68]. Besides exposure in 

occupational settings, rodent exposure also occurs in domestic environments as was shown 

in inner-city children with asthma in the USA, where mouse and rat sensitization rates were 

11–47 and 21 %, respectively [69, 70•, 71]. In contrast, a recent study from Europe has 

reported very low sensitization prevalence for mouse and rat (1.5 and 0.5 %, respectively) in 

urban atopic populations without occupational exposures [72]. Mouse sensitization has also 

been associated with allergic rhinitis in urban children in the USA with comorbid asthma 

[73]. Urine is the main source of allergenic proteins in both mice and rats, and the major 

allergens Mus m 1 from mouse and Rat n 1 from rat are lipocalins. Mus m 1 is carried on 

small particles that stay airborne for a long time, favoring the distribution of the allergen 

within the facility and even outside the facility into the homes of laboratory animal workers 

[74, 75]. Indeed, children of parents who are occupationally exposed to rodents have a 

higher prevalence of sensitization to mouse, rat, and hamster compared to children of non-

exposed parents [76].

Fungi

From more than 15 genera of fungi measurable in inner-city homes, Cladosporium, 

Penicillium, Aspergillus, and Alternaria species were the most commonly detected [77]. 

Alternaria and Cladosporium species also produce important outdoor allergens, and 

sensitization and exposure to species of these genera is associated with the development of 

asthma and rhinitis, as well as epidemics of asthma exacerbations, some of which are life 

threatening [78].

Alternaria alternata—The prevalence of sensitization to Alternaria is approximately 5 % 

and is strongly associated with asthma and allergic rhinitis [79]. Alt a 1 is the most 

important Alternaria allergen with a seroprevalence of over 90 % among Alternaria-

sensitized individuals [80]. The structure of this dimeric allergen has been recently 

determined [81]. Other relevant Alternaria alternata allergens include Alt a 2, a 25 kD 

aldehyde dehydrogenase and major allergen, as well as Alt a 5, an enolase, which is 

recognized by approximately 20 to 50 % of Alternaria-sensitized individuals [82, 83].

Cladosporium herbarum—Similar to Alternaria, C. herbarum is frequently found in 

indoor and outdoor air and is a major source of fungal inhalant allergens [84]. While 

Alternaria alternata is a major allergen in humid climates, Cladosporium is the leading 

allergenic mold in cooler climates [85]. No dominant Cladosporium allergen had been found 
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until the identification of Cla h 8, a NADP-dependent mannitol dehydrogenase. Cla h 8 is 

recognized by IgE antibodies of 57 % of all Cladosporium-allergic patients [86]. In addition, 

Cla h 6 (enolase) is recognized by ~50 % of sera from Cladosporium-sensitized patients 

[87].

Aspergillus fumigatus—Aspergillus fumigatus is a thermo-tolerant fungus with 

worldwide distribution. A. fumigatus is the principal etiologic agent of allergic 

bronchopulmonary aspergillosis (ABPA) and is also associated with asthma [88]. Both 

ABPA and allergic asthma are characterized by hypersensitivity and presence of A. 
fumigatus-specific IgE, but the sensitization patterns to individual allergens differ [89]. The 

major allergen, Asp f 1, is an 18 kD ribotoxin that is recognized by 85 % of Aspergillus-

sensitized patients [90]. Besides Asp f 1, several other Aspergillus allergens (Asp f 2, Asp f 

3, Asp f 4, Asp f 5, Asp f 9, Asp f 11, Asp f 15, and Asp f 18) are associated with a high 

prevalence of reactivity among Aspergillus-sensitized patients [78].

Penicillium—Penicillium species are prevalent indoor fungi that are associated with 

allergic disease in sensitized individuals. Penicillium citrinum and Penicillium chrysogenum 
are the most studied and the two most abundant species in the USA. The major allergens of 

P. chrysogenum include the serine proteases Pen ch 13 and Pen ch 18 with specific IgE 

reactivities of 88 and 82 %, respectively [91, 92]. Generally, IgE reactivity to allergens from 

P. citrinum was lower, and the highest reactivity of 46 % among Penicillium-sensitized 

asthmatic patients was reported for Pen c 3, an 18 kD membrane protein [93].

Cross-Reactive Indoor Allergens

The most relevant protein families involved in cross-reactivity with indoor allergens are 

tropomyosins and serum albumins. Tropomyosin is a highly conserved protein found in both 

muscle and non-muscle cells of all species of vertebrates and invertebrates. Allergenic 

tropomyosins are found in invertebrates such as crustaceans, arachnids (house dust mites), 

insects (cockroaches), and mollusks (squid). Immunological cross-reactivity has been 

demonstrated between crustaceans, cockroaches, and house dust mites, suggesting that 

tropomyosin is an important cross-sensitizing panallergen. More than 50 % of European 

house dust mite-allergic patients with IgE sensitization to tropomyosin (Der p 10) have 

clinically relevant cross-reactivity to eating seafood [94]. However, there is a lack of 

allergenic cross-reactivity between these tropomyosins and those from vertebrates such as 

bony fish, beef, pork, or chicken, which are considered nonallergenic [95].

Allergic sensitization to serum albumin can occur by inhalation as well as ingestion [96]. 

Serum albumins are found in dander and saliva and are important inhalant allergens of cat 

(Fel d 2) and dog (Can f 3). Chicken serum albumin (Gal d 5) is a major hen egg allergen 

that is associated with the bird-egg syndrome, a cross-reactivity between ingested egg 

allergens and inhaled feather and dander allergens [97]. Similarly, the cat-pork syndrome is 

based on cross-reactivity between Fel d 2 and pork serum albumin (Sus s 6). In this rare 

syndrome, patients develop an IgE antibody response specific for cat serum albumin Fel d 2 

that cross-reacts with porcine albumin Sus s 6 and can lead to severe or even fatal allergic 

reactions on occasions when pork is consumed [98].
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Indoor Allergens for Diagnosis

Commercial allergen extracts are standardized based on in-house assays and standards and 

are not comparable between different manufacturers [99]. Efforts to improve standardization 

and enable cross-product comparisons using individual recombinant allergens were initiated 

in 2001 with the CREATE project of the European Union [100]. Purified allergens from 

birch, timothy grass, olive pollen, and dust mites were compared with the natural 

counterparts, and allergen-specific candidate ELISA systems were investigated. Two 

allergens, rBet v 1 and rPhl p 5, were further characterized through the BSP090 Biological 

Standardization Programme (BSP) of the European Directorate for the Quality of Medicines 

and HealthCare (EDQM) [101]. These allergens have since been included in the European 

Pharmacopeia.

The selection of an optimal set of allergens for diagnosis needs to be evaluated for each 

source. Sensitization to Fel d 1 in childhood is a good predictor of cat allergy symptoms 

during adolescence [102]. However, other allergen sources such as cockroach do not have a 

dominant allergen. Early studies revealed that Bla g 1, Bla g 2, Bla g 4, and Bla g 5 identify 

~95 % of cockroach-allergic patients in the USA [103]. As more allergens have been 

identified around the world, different patterns of IgE sensitization to cockroach have been 

found in other populations. IgE reactivity to cockroach tropomyosin was found to be 

dominant in Brazil [27]. Overall, a cocktail of five cockroach allergens from groups 1, 2, 4, 

5, and 7 would allow to diagnose 50–65 % of patients worldwide [103].

For mites, Der p 1 and Der p 2 will diagnose most mite-allergic patients. Der p 23 has also 

been defined as a major allergen [20]. However, the contribution of Der p 23 to mite-specific 

IgE was small (4 %) compared to Der p 1 and Der p 2 combined (85 %) in a North 

American population [22]. Der p 1 and Der p 2 diagnosed 96 % of mite-allergic patients, and 

addition of Der p 23 did not show further improvement. Similarly, a European study 

reported an IgE prevalence of 89 % for Der p 1 and Der p 2 combined, and the addition of 

Der p 23 increased the percentage only by 3 % [104].

Allergen Exposure Assessment

Measurements of major allergens in dust and air samples have proved to be an effective 

approach to assess allergen exposure and to relate exposure to allergic sensitization. While 

in the past, these measurements were made by ELISA, they are increasingly being replaced 

by multiplex technology (MARIA) which enables 6–10 allergens to be measured in a single 

assay [105]. In keeping with the CREATE project, ELISA and MARIA use purified 

allergens as standards. For example, cockroach allergens are used to be measured in 

arbitrary units but are now measured in absolute units using purified allergen standards [30, 

106]. The advantages of immunoassays are that they provide high throughput and are ideally 

suited to large cohorts involving hundreds or thousands of environmental samples. 

Alternatively, much progress has recently been made using mass spectrometry for allergen 

measurements, and this highly sensitive technology is increasingly being used in the 

pharmaceutical industry (reviewed in [107]). The joint task force of the AAAAI and ACAAI 

recently published several practice parameters on environmental exposure assessments as 

part of allergy practice [108–111]. The parameters provided systematic reviews of the 
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categories of evidence linking allergen exposure and allergic symptoms. The practice 

parameters did not make specific recommendations regarding allergen exposure thresholds 

for health effects. Further work in this area is needed to improve indoor air quality in the 

homes of allergic patients.

Indoor Allergens and Therapy

Avoidance of indoor allergen exposure is an important factor that may ameliorate symptoms 

but is not always sufficient. Immunotherapy via either subcutaneous or sublingual routes has 

shown benefits in patients with allergic rhinitis and allergic asthma induced by house dust 

mites. However, there is a lack of consensus on basic treatment parameters (i.e., dose and 

duration) and a need for rigorous, long-term, double-blind, placebo-controlled randomized 

clinical trials for house dust mite allergies [112]. Four pilot studies of cockroach 

immunotherapy suggest that immunotherapy with cockroach allergen is more likely to be 

effective with SCIT than SLIT [113].

Modified Indoor Allergens for Immunotherapy

The availability of natural and recombinant purified allergens has led to the design of new 

immunotherapeutic molecules [114]. The rationale for using modified allergens for 

immunotherapy is to reduce side effects due to IgE cross-linking during the administration 

of increasing doses of allergen, while maintaining immunogenicity. Hypoallergenic 

chemically modified extracts (allergoids) are successfully used in Europe for rhinitis, 

asthma, and atopic dermatitis. These include carbamylated allergoids and depigmented-

polymerized extracts [115–117]. However, the Federal Drug Administration has not 

approved their use in the USA, because these preparations lack structurally well-defined 

molecules and are difficult to standardize.

Alternative approaches to immunotherapy are under study, based on current knowledge of 

the molecular structure of allergens. One of them uses short T cell epitope synthetic peptides 

from the allergen sequence and has been extensively studied for cat allergy and less for mite 

[118, 119].

Additional approaches to immunotherapy have become possible with the advent of 

molecular biology to generate modified allergens expressed as recombinant proteins [114]. 

The design of protein modifications is based on structural features of the allergens and aims 

to reduce IgE antibody reactivity while preserving immunogenicity. For example, hybrid 

molecules were obtained by either combining two allergens, such as Der p 1 and Der p 2 

[120, 121], or by combining two fragments in inverse order [122]. Allergens fused to viral 

domains or viral-like particles have shown immunomodulatory capacity [21]. Another 

strategy is to perform site-directed mutagenesis of known IgE epitopes, based on the X-ray 

crystal structures of the allergens alone or in complex with monoclonal antibodies that 

interfere with IgE antibody binding [9, 10••, 32, 34, 35•, 123, 124].

Conclusions

In the past 20 years, a broader knowledge of indoor allergens from mite, cockroach, cat, dog, 

rodents, and fungi has led to the development of new strategies for the diagnosis and 
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treatment of allergic disease. These include the use of modified allergens with reduced IgE 

reactivity, allergen peptides, or fusion proteins with molecules that modulate immune 

responses.
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Fig. 1. 
X-ray crystal structures of Bla g 1 (Protein Data Bank ID code 4JRB), Der p 1 (3RVW), 

Mus m 1 (1MUP), and Fel d 1 (2EJN)
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Table 1

Most relevant indoor allergens

Source Group Allergen Protein family

Mite 1 Der p 1, Der f 1 Cysteine protease

2 Der p 2, Der f 2 Immunoglobulin-like

5 Der p 5 Structural protein

7 Der p 7, Der f 7 LPS-binding protein

10 Der p 10, Der f 10 Tropomyosin

11 Der p 11, Der f 11 Paramyosin

23 Der p 23 Chitin-binding protein homologue

Cockroach 1 Bla g 1, Per a 1 Microvilli protein homologue

2 Bla g 2, Per a 2 Inactive aspartic protease

4 Bla g 4 Lipocalin

5 Bla g 5 Glutathione S-transferase

9 Per a 9 Arginine kinase

11 Bla g 11, Per a 11 α-Amylase

Cat 1 Fel d 1 Uteroglobulin

4 Fel d 4 Lipocalin

Dog 1 Can f 1 Lipocalin

2 Can f 2 Lipocalin

5 Can f 5 Arginine esterase

Rodents 1 Mus m 1, Rat n 1 Lipocalin

Fungi 1 Asp f 1 Mitogillin

1 Alt a 1 Unknown

6 Cla h 6 Enolase

8 Cla h 8 Mannitol dehydrogenase

13 Pen ch 13 Serine protease

18 Pen ch 18 Serine protease
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